JPS6133132A - Method for hydrogenating olefin - Google Patents

Method for hydrogenating olefin

Info

Publication number
JPS6133132A
JPS6133132A JP59153034A JP15303484A JPS6133132A JP S6133132 A JPS6133132 A JP S6133132A JP 59153034 A JP59153034 A JP 59153034A JP 15303484 A JP15303484 A JP 15303484A JP S6133132 A JPS6133132 A JP S6133132A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogenation
unsaturated double
compound
olefinically unsaturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59153034A
Other languages
Japanese (ja)
Other versions
JPH0153851B2 (en
Inventor
Tetsuo Masubuchi
増淵 徹夫
Yasushi Kishimoto
岸本 泰志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59153034A priority Critical patent/JPS6133132A/en
Publication of JPS6133132A publication Critical patent/JPS6133132A/en
Publication of JPH0153851B2 publication Critical patent/JPH0153851B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To hydrogenate a compound containing an olefinically unsaturated double bond selectively under mild conditions, by using a stable easily handleable catalyst consisting of titanocenediaryl compound and an alkyllithium in such an amount as to require no deashing. CONSTITUTION:An olefinically unsaturated double bond in a compound containing the olefinically unsaturated double bond is selectively hydrogenated in an inert organic solvent. In the process, a catalyst consisting of a titanocenediaryl compound expressed by the formula (R1-R6 are H or 1-4C alkyl, provided that one or more of R1-R3 and R4-R6 are H), e.g. diphenylbis(eta-dicyclopentadienyl) titanium, and an alkyllithium compound expressed by the formula R-Li (R is 1-6C alkyl), e.g. n-butyllithium, is used as a catalyst. The above-mentioned method is preferably applied particularly to conjugated diene polymers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、オレフィン性不飽和二重結合含有化合物のオ
レフィン性不飽和二重結合を選択的に水添することがで
きろ水添方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a hydrogenation method capable of selectively hydrogenating olefinically unsaturated double bonds in a compound containing olefinically unsaturated double bonds. .

〔従来の技術〕[Conventional technology]

オレフィン性不飽和二重結合を有する化合物の水添触媒
としては、一般に不均一系触媒と均一系触媒が知られて
いる。前者の不均一系触媒は、広く工業的に用いられて
いるが均一系触媒と比べると一般に活性が低(、所望の
水添反応を行うためには多量の触媒を要し、高温高圧下
で行われるので不経済となる。一方、後者の均一系触媒
は、通常均一系で水添反応が進行するので不均一系と比
べると活性が高く触媒使用量が少なくて済み、より低温
、低圧で水添できる特徴があるが、反面、触媒調整が煩
雑で触媒自体の安定性も十分とはいえず、再現性にも劣
り好ましくない副反応を併発しやすい欠点を有している
。従って高活性で取扱いの容易な水添触姪の開発が強く
望まれているのが現状である。
Heterogeneous catalysts and homogeneous catalysts are generally known as hydrogenation catalysts for compounds having olefinically unsaturated double bonds. The former type of heterogeneous catalyst is widely used industrially, but its activity is generally lower than that of homogeneous catalyst (it requires a large amount of catalyst to carry out the desired hydrogenation reaction, and cannot be used at high temperatures and pressures). On the other hand, the latter type of homogeneous catalyst usually progresses the hydrogenation reaction in a homogeneous system, so it has higher activity and requires less catalyst than a heterogeneous system, and can be used at lower temperatures and pressures. It has the characteristic of being able to perform hydrogenation, but on the other hand, it has the drawbacks that the catalyst preparation is complicated, the stability of the catalyst itself is not sufficient, the reproducibility is poor, and undesirable side reactions are likely to occur.Therefore, it has the disadvantages of high activity. At present, there is a strong desire to develop a hydrogenated compound that is easy to handle.

一方、オレフィン性不飽和二重結合を含有する重合体は
、不飽和二重結合が加硫等に有利に利用される反面、か
かる二重結合は耐候性1.耐酸化性等の安定性に劣る欠
点を有している。これらの安定性に劣る欠点は、重合体
を水添して重合体鎖中の不飽和二重結合をな(すことに
より著しく改善される。しかし、重合体を水添する場合
には低分子化合物を水添する場合に比べて、反応系の粘
度や重合体鎖の立体障害等の影響を受けて水添しにくく
なる。さらに水添終了後、触媒を物理的に除去すること
が極めて難しく、実質上完全に分離することができない
、等の欠点がある。従って経済的に有利に重合体を水添
するためには、脱灰の不要な程度の使用量で活性を示す
高活性水添触媒、あるいは極めて容易に脱灰できる触媒
の開発が強く望まれている。
On the other hand, in polymers containing olefinic unsaturated double bonds, while the unsaturated double bonds are advantageously used for vulcanization, etc., such double bonds have poor weather resistance. It has the disadvantage of poor stability such as oxidation resistance. These disadvantages of poor stability can be significantly improved by hydrogenating the polymer to form unsaturated double bonds in the polymer chain. However, when hydrogenating the polymer, Compared to hydrogenating a compound, hydrogenation becomes difficult due to the effects of the viscosity of the reaction system and steric hindrance of the polymer chain.Furthermore, it is extremely difficult to physically remove the catalyst after hydrogenation is complete. However, in order to hydrogenate polymers economically, it is necessary to use highly active hydrogenation methods that exhibit activity at a level that does not require deashing. There is a strong desire to develop a catalyst or a catalyst that can be extremely easily deashed.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明は安定で取扱い易く、水添反応時には極めて少な
い使用量で活性を示す高活性水添触媒船発見すること、
特に重合体の水添に用い脱灰の不要な程度の使用量で活
性を示す高活性水添触媒を発見し、耐候性、耐酸化性、
耐オゾン性に優れた重合体の水添物を得る方法を見出す
ことをその解決すべき問題点としているものである。
The present invention aims to discover a highly active hydrogenation catalyst that is stable, easy to handle, and exhibits activity in extremely small amounts used during hydrogenation reactions.
In particular, we discovered a highly active hydrogenation catalyst that is used in the hydrogenation of polymers and shows activity at a level that does not require deashing, and has excellent weather resistance, oxidation resistance,
The problem to be solved is to find a method for obtaining hydrogenated polymers with excellent ozone resistance.

〔問題点を解決するための手段及び作用〕本発明は、チ
タノセンジアリール化合物とアルキルリチウムからなる
水添触媒が、温和な条件下で極めて高いオレフィン性不
飽和二重結合の水添活性を示し、またオレフィン性不飽
和二重結合を含有する重合体の不飽和二重結合を、脱灰
の不要な程度の使用量、温和な条件下にて選択的に水添
し得るという驚くべき事実に基きなされたものである。
[Means and effects for solving the problems] The present invention provides a hydrogenation catalyst consisting of a titanocene diaryl compound and an alkyl lithium that exhibits extremely high hydrogenation activity of olefinically unsaturated double bonds under mild conditions, Furthermore, it is based on the surprising fact that unsaturated double bonds in polymers containing olefinic unsaturated double bonds can be selectively hydrogenated under mild conditions and in an amount that does not require deashing. It has been done.

即ち、本発明は、オレフィン性不飽和二重結合含有化合
物を不活性有機溶媒中にて水添する方法において、 (A)下記(8,)で示されるチタノセンジアリール化
合物 I (但し、R1−R6は水素あるいは炭素数1〜4のアル
キル炭化水素基を示し、R1−R8およびR4−R6の
うち1つ以上は水素である。)お、よび ■)一般式R−Li (但し、Rは炭素原子数が1〜6
個のアルキル基を示す。)で示されるアルキルリチウム
化合物の少なくとも一種 とからなる触媒の存在下に水素と接触させて、核化合物
中のオレフィン性不飽和二重結合を水添することを特徴
とするオレフィンの水添方法に関する。
That is, the present invention provides a method for hydrogenating an olefinically unsaturated double bond-containing compound in an inert organic solvent, in which (A) a titanocene diaryl compound I represented by the following (8,) (provided that R1-R6 represents hydrogen or an alkyl hydrocarbon group having 1 to 4 carbon atoms, and one or more of R1-R8 and R4-R6 is hydrogen. Number of atoms is 1-6
represents an alkyl group. ) Relating to a method for hydrogenating olefins, which comprises hydrogenating an olefinically unsaturated double bond in a core compound by contacting it with hydrogen in the presence of a catalyst comprising at least one alkyllithium compound represented by .

本発明に係る一般式伝)で示した如きチタノセンジアリ
ール化合物は室温、空気中で安定に取扱え、単離も容易
である事はすでに知られている。(例えば、L、 Su
mmersら、J、 Am、 Ohem、 Soc、+
第77巻、3604頁(1955年)、M、 D、 R
auschら、J、 Organometaj/ Oh
em、y第10巻、127頁(1967年)等) また、本発明者らは、かかるチタノセンジアリール化合
物が、単独で高い水添活性を有する事を見出し、すでに
特許出願した(特願昭!59−76614)。
It is already known that the titanocene diaryl compound as shown in the general formula according to the present invention can be stably handled in air at room temperature and can be easily isolated. (For example, L, Su
mmers et al., J. Am. Ohem, Soc.
Volume 77, page 3604 (1955), M, D, R
ausch et al., J. Organometaj/Oh
em, y Vol. 10, p. 127 (1967), etc.) Furthermore, the present inventors have discovered that such titanocene diaryl compounds alone have high hydrogenation activity, and have already filed a patent application (Patent Application Sho!). 59-76614).

本発明者らは、この先願オレフィン水添触媒系の活性を
さらに向上させ、効率的かつ経済的にオレフィンを水添
する方法につき、さらに鋭意検討した結果、かかるチタ
ノセンジアリール化合物とアルキルリチウム化合物から
なる水添触媒が、条件を選択するとチタノセンジアリー
ル化合物単独で用いるよりもさらに高い水添活性を示す
ことを見出し、本発明を完成するに至ったものである。
The present inventors further improved the activity of this prior application olefin hydrogenation catalyst system and as a result of further intensive studies on a method for efficiently and economically hydrogenating olefins, the present inventors found that The present invention was completed based on the discovery that the hydrogenation catalyst exhibits higher hydrogenation activity than the use of the titanocene diaryl compound alone under selected conditions.

本発明に係るオレフィン性不飽和二重結合水添触媒成分
(A)は一般式(a) R1 La で示される。但し、R,〜R6は水素あるいは炭素数1
〜4のアルキル炭化水素基を示し、R8〜B8およびR
4−R6のうち1つ以上は水素である。アルキル炭素基
の炭素数が5以上のもの、およびR1−R8またはR4
−R6がすべてアルキル基のものでは立体障害から収率
良く合成することが難しく室温での貯蔵安定性も劣るの
で好ましくない。
The olefinically unsaturated double bond hydrogenation catalyst component (A) according to the present invention is represented by the general formula (a) R1 La. However, R, ~R6 are hydrogen or carbon number 1
-4 alkyl hydrocarbon groups, R8 to B8 and R
One or more of 4-R6 is hydrogen. Those in which the alkyl carbon group has 5 or more carbon atoms, and R1-R8 or R4
If -R6 is all an alkyl group, it is difficult to synthesize in good yield due to steric hindrance, and the storage stability at room temperature is also poor, which is not preferred.

また、アルキル炭化水素基がチタンに対しオルトの位置
にある化合物は合成が困難である。係る水添触媒の具体
的な例としては、ジフェニルビス(η−ジクロペンタジ
ェニル)チタニウム、ジーm −) 1,1ルビス(η
−シクロペンタジェニル)チタニウム、ジーp−)リル
ビス(η−シクロペンタジェニル)チタニウム、ジーm
、p−キシリルビス(η−シクロベンタジエニノヒ)チ
タニウム、ビス(A−エチルフェニル)ビス(η−シク
ロペンタジェニル)チタニウム、ビス(A−ブチルフェ
ニル)ヒス(η−シクロペンタジェニル)チタニウム等
が挙げられる。アルキル炭素基の炭素数が大きい化合物
はど貯蔵安定性が低下し、一方種種の有機溶媒に対する
溶解性は底好となるので、安定性と溶解性のバランスか
らジーp−トvルビス(η−シクロペンタジェニル)チ
タニウムカ最も好ましい。
Furthermore, it is difficult to synthesize a compound in which the alkyl hydrocarbon group is ortho to titanium. Specific examples of such hydrogenation catalysts include diphenylbis(η-diclopentadienyl)titanium, di-m −) 1,1rubis(η
-cyclopentagenyl) titanium, g-p-)lilbis(η-cyclopentagenyl) titanium, g-m
, p-xylylbis(η-cyclobentadienyl)titanium, bis(A-ethylphenyl)bis(η-cyclopentadienyl)titanium, bis(A-butylphenyl)his(η-cyclopentadienyl)titanium etc. Compounds with a large number of carbon atoms in the alkyl carbon group have lower storage stability, while their solubility in certain types of organic solvents is generally good. Most preferred is titanium (cyclopentadienyl).

本発明の水添触媒成分(A)は他のチタノセン化合物に
比べ種々の有機溶媒に対する溶解性が極めて良好である
という特徴を有し、溶液として用いる事ができ取扱いが
容易であるので工業上極め(有利である。
The hydrogenation catalyst component (A) of the present invention is characterized by extremely good solubility in various organic solvents compared to other titanocene compounds, and can be used as a solution and is easy to handle, making it an excellent industrial choice. (It is advantageous.

一方、触媒成分■)としては、触媒成分(A)のチタノ
センジアリール化合物を還元する能力のある有機金属化
合物、例えば有機リチウム化合物、有機アルミニウム化
合物、有機亜鉛化合物、有機マグネシウム化合物等を単
独あるいは相互に組み合わせて用いることによって重合
体を水添することができる。しかし、高い活性を発現し
、オレフィン性不飽和二重結合を選択的に水添するため
には、有機リチウム化合物、特にアルキルリチウム化合
物の使用が必須である。即ち、チタノセンジアリール化
合物にアルキルリチウム化合物を組み合わせて用いるこ
とによって本発明の目的は好適に達成され、驚くべきこ
とに、少量の触媒添加でしかも温和な条件にて、オレフ
ィン性不飽和二重結合をほぼ定量的に、しかも優先的に
水添することが可能である。
On the other hand, as the catalyst component (2), an organometallic compound capable of reducing the titanocene diaryl compound of the catalyst component (A), such as an organolithium compound, an organoaluminium compound, an organozinc compound, an organomagnesium compound, etc., may be used singly or together. By using them in combination, the polymer can be hydrogenated. However, in order to exhibit high activity and selectively hydrogenate olefinically unsaturated double bonds, it is essential to use organolithium compounds, especially alkyllithium compounds. That is, the object of the present invention can be suitably achieved by using a titanocene diaryl compound in combination with an alkyllithium compound, and surprisingly, olefinically unsaturated double bonds can be formed with the addition of a small amount of catalyst and under mild conditions. It is possible to hydrogenate almost quantitatively and preferentially.

かかる触媒成分CB)としては、一般式R−Li(但し
、Rは炭素原子数1〜6個のアルキル基を示す。)で示
されるアルキルリチウム化合物が好ましく用いられ、具
体的な例としてはメチルリチウム、エチルリチウム、n
−プロピルリチウム、イソプロピルリチウム、n−ブチ
ルリチウム、5ec−ブチルリチウム、イソブチルリチ
ウム、n−ペンチルリチウム、n−ヘキシルリチウム等
が挙げられる。
As such catalyst component CB), an alkyllithium compound represented by the general formula R-Li (wherein R represents an alkyl group having 1 to 6 carbon atoms) is preferably used, and specific examples include methyl lithium, ethyllithium, n
-Propyllithium, isopropyllithium, n-butyllithium, 5ec-butyllithium, isobutyllithium, n-pentyllithium, n-hexyllithium, and the like.

これらは2種以上を相互に混合して使用してもさしつか
えないし、2種以上相互の錯体であってもヨイ。最も高
い水添活性を示し、オレフィン性不飽和二重結合を選択
的に水添するためにはn−ブチルリチウムが最も好まし
い。
Two or more of these may be used as a mixture, or a complex of two or more may be used. In order to exhibit the highest hydrogenation activity and selectively hydrogenate olefinically unsaturated double bonds, n-butyllithium is most preferred.

本発明の触媒はオレフィン性不飽和二重結合を有する全
ての化合物に適用する事ができる。例えば、1−ブテン
、・1,3−ブタジェン、シクロペンテン、1,3−ペ
ンタジェン、1−ヘキセン、シクロヘキセン、1−メチ
ルシクロヘキセン゛、スチレン等の水添に好適に用いる
ことができる。
The catalyst of the present invention can be applied to all compounds having olefinically unsaturated double bonds. For example, it can be suitably used for hydrogenating 1-butene, 1,3-butadiene, cyclopentene, 1,3-pentadiene, 1-hexene, cyclohexene, 1-methylcyclohexene, styrene, and the like.

一方、本発明の水添触媒は高い水添活性、選択性を有す
るので不飽和二重結合を有する重合体の水添に特に好適
に用いられる。
On the other hand, since the hydrogenation catalyst of the present invention has high hydrogenation activity and selectivity, it is particularly suitable for hydrogenation of polymers having unsaturated double bonds.

本発明は不飽和二重結合を有する重合体の全たに適用す
ることができるが、好ましい実施態様は共役ジエン重合
体、共役ジエンとオレフィン単量体の共重合体、ノルボ
ルネン重合体、シクロペンテン重合体等である。特に共
役ジエン重合体、共役ジエンとオレフィン単量体の共重
合体の水添物は、弾性体や熱可塑性弾性体として工業的
に有用である。
Although the present invention can be applied to all polymers having unsaturated double bonds, preferred embodiments include conjugated diene polymers, copolymers of conjugated dienes and olefin monomers, norbornene polymers, and cyclopentene polymers. Such as merging. In particular, conjugated diene polymers and hydrogenated copolymers of conjugated dienes and olefin monomers are industrially useful as elastic bodies and thermoplastic elastomers.

かかる共役ジエン重合体の製造に用いられる共役ジエン
としては、一般的には4〜約12個の炭素原子を有する
共役ジエンが挙げられ、具体的な例としては、1,3−
ブタジェン、イソプレン、2.3−ジメチル−1,3−
ブタジェン、1,3−ペンタジェン、2−メチル−1j
3−ペンタジェン、1.3−へキサジエン、4,5−ジ
エチル−1,3−オクタジエン、3−ブチル−1,3−
オクタジエン等が挙げられる。工業的に有利に展開でき
、物性の優れた弾性体を得る上からは、1,3−ブタジ
ェン、イソプレンが特に好ましい。
Conjugated dienes used in the production of such conjugated diene polymers generally include conjugated dienes having from 4 to about 12 carbon atoms, specific examples include 1,3-
Butadiene, isoprene, 2,3-dimethyl-1,3-
Butadiene, 1,3-pentadiene, 2-methyl-1j
3-pentadiene, 1,3-hexadiene, 4,5-diethyl-1,3-octadiene, 3-butyl-1,3-
Examples include octadiene. 1,3-butadiene and isoprene are particularly preferred from the viewpoint of obtaining an elastic body that can be industrially advantageously developed and has excellent physical properties.

また、共役ジエンの少なくとも1種と共重合可能なオレ
フィン単量体としては、ビニル置換芳香族炭化水素が特
に好ましい。即ち、共役ジエン単位の不飽和二重結合の
みを選択的に水添する本発明の効果を1分発揮し、工業
的に有用で価値の高い弾性体や熱可塑性弾性体を得るた
めには、共役ジエンとビニル置換芳香族炭化水素との共
重合体が特に重要である。用いられるビニル置換芳香族
炭化水素の具体例と見ては、スチレン、t−ブチルスチ
レン、α−メチルスチレン、p−メチルスチレン、シビ
ニルベ、ンゼン、1.1−ジフェニルエチレン、N、N
−ジメチル−p−アミンエチルスチレン、N、N−ジエ
チル−p−アミンエチルスチレン等が挙げられ、特にス
チレンが好ましい。具体的な共重合体の例としては、ブ
タジェン/スチレン共重合体、イソプレン/スチレン共
重合体等が工業的価値の高い水添共重合体を与えるので
最も好適である。
Furthermore, as the olefin monomer copolymerizable with at least one conjugated diene, vinyl-substituted aromatic hydrocarbons are particularly preferred. That is, in order to exhibit the effect of the present invention of selectively hydrogenating only the unsaturated double bonds of conjugated diene units for one minute and to obtain industrially useful and valuable elastic bodies and thermoplastic elastic bodies, Of particular interest are copolymers of conjugated dienes and vinyl substituted aromatic hydrocarbons. Specific examples of vinyl-substituted aromatic hydrocarbons that can be used include styrene, t-butylstyrene, α-methylstyrene, p-methylstyrene, cyvinylbenzene, 1,1-diphenylethylene, N, N
-dimethyl-p-amineethylstyrene, N,N-diethyl-p-amineethylstyrene, etc., and styrene is particularly preferred. As specific examples of copolymers, butadiene/styrene copolymers, isoprene/styrene copolymers, etc. are most preferred since they provide hydrogenated copolymers with high industrial value.

かかる共重合体においては、ブロック共重合体が熱可塑
性弾性体として工業的に最も有用な水添重合体を与える
が、末端に少なくとも1個の共役ジエンを主としたブロ
ックを有するブロック共重合体は、末端に共役ジエンブ
ロックを有しない物に比べ、加工性、他のオレフィン重
合体との相溶性、接着性等に優れた水添重合体を与える
ので特に好適に用いられる。
Among such copolymers, block copolymers provide hydrogenated polymers that are industrially most useful as thermoplastic elastomers; is particularly preferably used because it provides a hydrogenated polymer with excellent processability, compatibility with other olefin polymers, adhesive properties, etc., compared to those without a conjugated diene block at the end.

本発明の水添反応の好ましい実施態様は、オレフィン性
不飽和二重結合を有する化合物又は前記重合体を不活性
有機溶媒に溶解した溶液において行われる。もち論、シ
クロヘキセン、シクロオクテンの如き室温で液体の低分
子量化合物の場合は溶媒に溶解しなくとも水添反応は行
なえるが、反応を均一に温和な条件下で行なうには溶媒
に溶解した溶液において行なうのが好ましい。「不活性
有機溶媒」とは溶媒が水添反応のいかなる関与体とも反
応しないものを意味する。好適な溶媒は、例えばn−ペ
ンタン、n−ヘキサン、n−へブタン、n−オクタンの
如き脂肪族炭化水素類、シクロヘキサン、シクロヘプタ
ンの如き脂環族炭化水素類、ジエチルエーテル、テトラ
ヒドロフランの如きエーテル類の単独もしくは混合物で
ある。まり、ベンゼン、トルエン、キシレン、エチルベ
ンゼンの如き芳香族炭化水素も、選択された水添反応条
件下で芳香族性二重結合が水添されない時に限って使用
することができる。
A preferred embodiment of the hydrogenation reaction of the present invention is carried out in a solution in which a compound having an olefinically unsaturated double bond or the above polymer is dissolved in an inert organic solvent. Of course, in the case of low molecular weight compounds that are liquid at room temperature, such as cyclohexene and cyclooctene, the hydrogenation reaction can be carried out without dissolving them in a solvent, but in order to carry out the reaction uniformly and under mild conditions, a solution dissolved in a solvent is required. It is preferable to carry out at "Inert organic solvent" means a solvent that does not react with any participant in the hydrogenation reaction. Suitable solvents include, for example, aliphatic hydrocarbons such as n-pentane, n-hexane, n-hebutane, and n-octane, alicyclic hydrocarbons such as cyclohexane and cycloheptane, and ethers such as diethyl ether and tetrahydrofuran. It is single or a mixture of the following. Thus, aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene can also be used as long as the aromatic double bonds are not hydrogenated under the selected hydrogenation reaction conditions.

本発明の水添反応は、一般的には上記被水添物溶液を水
素または不活性雰囲気下、所定の温度に保持し、攪拌下
または不攪拌下にて水添触媒を添加し、次いで水素ガス
を導入して所定圧に加圧することによって実施される。
The hydrogenation reaction of the present invention is generally carried out by maintaining the hydrogenated product solution at a predetermined temperature under hydrogen or an inert atmosphere, adding a hydrogenation catalyst with or without stirring, and then adding hydrogen. This is carried out by introducing gas and pressurizing it to a predetermined pressure.

不活性雰囲気とは、例えばヘリウム、ネオン、アルゴン
等の水添反応のいかなる関与体とも反応しない雰囲気下
を意味する。空気や酸素は触媒成分を酸化したりして触
媒の失活を招くので好ましくない。また窒素は水添反応
時触媒毒として作用し、水添活性を低下させるので好ま
しくない。特に、水添反応器内は水素ガス単独の雰囲気
である事が最も好適である。
An inert atmosphere means an atmosphere that does not react with any participants in the hydrogenation reaction, such as helium, neon, argon, and the like. Air and oxygen are not preferred because they oxidize catalyst components and cause catalyst deactivation. Further, nitrogen is not preferred because it acts as a catalyst poison during the hydrogenation reaction and reduces the hydrogenation activity. In particular, it is most preferable that the inside of the hydrogenation reactor be in an atmosphere containing only hydrogen gas.

一方、触媒はあらかじめ触媒成分(A)と触媒成分03
)とを混合したものを用いるのが高活性を有するので好
ましい。触媒成分(A)と触媒成分CB)とをいずれか
一方を先に別に被水添物溶液中に加えても水添反応を行
なえるが、触媒成分■)のアルキル、リチウムと反応性
のオレフィンを水添する場合には副反応が起こり目的と
する水添反応の収率が低下するので好ましくない。
On the other hand, the catalyst was prepared in advance using catalyst component (A) and catalyst component 03.
) is preferred because it has high activity. Although the hydrogenation reaction can be carried out by adding either the catalyst component (A) or the catalyst component CB) to the hydrogenated product solution first, the olefin reactive with the alkyl and lithium of the catalyst component (■) When hydrogenating , side reactions occur and the yield of the desired hydrogenation reaction decreases, which is not preferable.

触媒成分の)は、前記不活”性雰囲気下で取扱うことが
必要である。触媒成分(A)については空気中において
も安定であるが、不活性雰囲気下で取扱うことが好まし
い。
It is necessary to handle the catalyst component (A) under the above-mentioned inert atmosphere.Although the catalyst component (A) is stable even in air, it is preferable to handle it under an inert atmosphere.

また、各々の触媒成分はそのまま使用してもよいが、前
記不活性有機溶媒の溶液として使用する方が扱い易く好
適である。溶液として用いる場合に使用する不活性有機
溶媒は、水添反応のいかなる関与体とも反応しない前記
各種溶媒を使用することができる。好ましくは水添反応
に用いる溶媒と同一の溶媒である。
Further, although each catalyst component may be used as it is, it is preferable to use it as a solution of the inert organic solvent because it is easier to handle. As the inert organic solvent used when the solution is used, the various solvents mentioned above that do not react with any of the participants in the hydrogenation reaction can be used. Preferably, it is the same solvent as used in the hydrogenation reaction.

触媒成分をあらかじめ混合する場合や水添反応器に触媒
成分を添加する場合は、水素雰囲気下で行なうのが最も
好適である。触媒成分(A)と触媒成分CB)とをあら
かじめ混合し、て使用する場合は、−306C〜100
℃の温度、好ましくは一10℃〜50℃の温度にて水添
反応直前に調製するのが好ましいが、水素雰囲気Tiた
は不活性雰囲気下に貯蔵すれば、室温でも約1週間以内
は実質的な水添活性は変らずに用いることができる。
When premixing the catalyst components or adding the catalyst components to the hydrogenation reactor, it is most preferable to do so under a hydrogen atmosphere. When using the catalyst component (A) and catalyst component CB) mixed in advance, -306C to 100C
It is preferable to prepare the hydrogenation reaction immediately before the hydrogenation reaction at a temperature of 10°C, preferably 10°C to 50°C, but if stored in a hydrogen atmosphere or an inert atmosphere, it will remain virtually stable for about one week even at room temperature. can be used without changing the hydrogenation activity.

高い水添活性及び゛水添選択性を発現するための各触媒
成分の混合比率は、触媒成分(6)のリチウムモ/l/
 数ト、触媒成分(A)のチタニウムモル数との比率(
以下Li/T1モル比)で約20以下の範囲である。L
i/Tエモル比−〇においても定量的な水添反応を行な
う事はできるが、より高温高圧の条件を要し、またL 
i/Tエモル比2oを超えると実質的な活性向上に関与
しない高価な触媒成分ω)を過剰に用いることにより不
経済であるばかりではなく、不必要な副反応を招き易く
なり好ましくない。
The mixing ratio of each catalyst component to exhibit high hydrogenation activity and hydrogenation selectivity is lithium mo/l/l of catalyst component (6).
several tons, the ratio of the number of moles of titanium in the catalyst component (A) (
The Li/T1 molar ratio (hereinafter referred to as Li/T1 molar ratio) is in the range of about 20 or less. L
Quantitative hydrogenation reaction can also be carried out at i/T emole ratio -0, but it requires higher temperature and pressure conditions, and
If the i/T emolar ratio exceeds 2o, it is not only uneconomical due to excessive use of the expensive catalyst component ω) which does not contribute to substantial improvement in activity, but also undesirable because unnecessary side reactions are likely to occur.

Li/+1+1モル比=0.5〜10の範囲は水添活性
を著しく向上するのに最も好適である。
A range of Li/+1+1 molar ratio=0.5 to 10 is most suitable for significantly improving hydrogenation activity.

触媒の添加量は被水添物100p当り0.005〜20
ミリモルで寸分である。この添加量範囲であれば被水添
物のオレフィン性不飽和二重結合を優先的に水添するこ
とが可能で、芳香核二重結合の水添は実質的に起こらな
いので極めて高い水添選択性が実現される。20ミリモ
ル以上の添加においても水添反応は可能であるが、必要
以上の触媒使用は不経済となり、水添反応後の触媒脱灰
、除去が複雑となる等不利となる。また選択された条件
下で重合体の共役ジエン単位の不飽和二重結合を定量的
に水添する好ましい触媒添加量は、重合体100g当り
0.05〜5ミリモルである。
The amount of catalyst added is 0.005 to 20 per 100 p of hydrogenated material.
It is measured in millimoles. Within this addition amount range, it is possible to preferentially hydrogenate the olefinically unsaturated double bonds of the hydrogenated product, and hydrogenation of aromatic double bonds does not substantially occur, resulting in extremely high hydrogenation. Selectivity is achieved. Although the hydrogenation reaction is possible even when 20 mmol or more is added, using more catalyst than necessary becomes uneconomical and disadvantageous, such as complicating deashing and removal of the catalyst after the hydrogenation reaction. The preferred amount of catalyst added to quantitatively hydrogenate the unsaturated double bonds of the conjugated diene units of the polymer under selected conditions is 0.05 to 5 mmol per 100 g of the polymer.

本発明の水添反応は元素状水素を用いて行われ、より好
ましくはガス状で被水添物溶液中に導入される。水添反
応は攪拌下で行われるのがより好ましく、導入された水
素を1分迅速に被水添物と接媒させることができる。水
添反応は一般的に0〜150℃の温度範囲で実施される
。0℃以下では触媒の活性が低下し、かつ水添速度も遅
くなり多量の触媒を要するので経済的でなく、また15
0℃以上では副反応や分解、ゲル化を併発し易くなり、
かつ芳香核部分の水添も起こりやすくなって水添選択性
が低下するので好ましくない。さらに好ましくは20〜
120℃の範囲である。
The hydrogenation reaction of the present invention is carried out using elemental hydrogen, more preferably introduced in gaseous form into the hydrogenate solution. It is more preferable that the hydrogenation reaction is carried out under stirring, so that the introduced hydrogen can be brought into contact with the hydrogenated substance within one minute. The hydrogenation reaction is generally carried out at a temperature range of 0 to 150°C. Below 0°C, the activity of the catalyst decreases and the hydrogenation rate slows down, requiring a large amount of catalyst, which is not economical, and
At temperatures above 0°C, side reactions, decomposition, and gelation are likely to occur.
Moreover, hydrogenation of the aromatic nucleus portion is likely to occur, resulting in a decrease in hydrogenation selectivity, which is not preferable. More preferably 20~
The temperature range is 120°C.

水添反応に使用される水素の圧力は1〜100kg/c
trt”が好適である。1 kg/cm”以下では水添
速度が遅くなって実質的に頭打ちとなるので水添率を上
げるのが難しくなり、100 kg/cm2以上では昇
圧と同時に水添反応がほぼ完了し実質的に意味がなく、
不必要な副反応やゲル化を招くので好ましくない。より
好ましい水添水素圧力は2〜30−に9/cttt2で
あるが、触媒添加量等との相関で最適水素圧力は選択さ
れ、実質的には前記好適触媒量が少量になるに従って水
素圧力は高圧側を選択して実施するのが好ましい。
The pressure of hydrogen used in hydrogenation reaction is 1 to 100 kg/c
trt" is preferable. If it is less than 1 kg/cm2, the hydrogenation rate will be slow and will essentially reach a plateau, making it difficult to increase the hydrogenation rate. If it is more than 100 kg/cm2, the hydrogenation reaction will occur at the same time as pressure increase. is almost complete and has no practical meaning,
This is not preferable because it causes unnecessary side reactions and gelation. A more preferable hydrogenation pressure is 2 to 30-9/cttt2, but the optimum hydrogen pressure is selected in correlation with the amount of catalyst added, etc., and substantially the hydrogen pressure decreases as the preferred amount of catalyst decreases. It is preferable to select the high pressure side for implementation.

本発明の水添反応時間は通常数秒ないし50時間である
。他の水添反応条件の選択によって水添反応時間は上記
範囲内で適宜選択して実施される。
The hydrogenation reaction time of the present invention is usually several seconds to 50 hours. The hydrogenation reaction time is appropriately selected within the above range by selecting other hydrogenation reaction conditions.

本発明の触媒を用いて水添反応を行った溶液からは、水
添された目的物を蒸留、沈殿等の化学的または物理的手
段で容易に分離することができる。
From a solution subjected to a hydrogenation reaction using the catalyst of the present invention, the hydrogenated target product can be easily separated by chemical or physical means such as distillation or precipitation.

特に、本発明の方法により水添反応を行なった重合体溶
液からは必要に応じて触媒残渣を除去し、水添された重
合体を溶液から容易に単離することができる。例えば、
水添後の反応液にア七トンまたはアルコール等の水添重
合体に対する貧溶媒となる極性溶媒を加えて重合体を沈
殿せして回収する方法、反応液を攪拌下熱湯中に投入後
、溶媒と共に蒸留回収する方法、または直接反応液を加
熱して溶媒を留去する方法等で行なうことができる。
In particular, catalyst residues can be removed from a polymer solution subjected to a hydrogenation reaction by the method of the present invention, if necessary, and the hydrogenated polymer can be easily isolated from the solution. for example,
A method in which the polymer is precipitated and recovered by adding a polar solvent such as acetate or alcohol, which is a poor solvent for the hydrogenated polymer, to the reaction solution after hydrogenation. After the reaction solution is poured into boiling water with stirring, This can be carried out by distilling and recovering together with the solvent, or by directly heating the reaction solution and distilling off the solvent.

本発明の水添方法は使用する水添触媒量が少量である特
徴を有する。従って、水添触媒がそのまま重合体中に残
存しても得られる水添重合体の物性に著しい影響を及ぼ
さず、かつ水添重合体の単離過程において触媒の大部分
が分解、除去され重合体より除かれるので、触媒を脱灰
したり除去したりするための特別な操作は必要とせず、
極めて簡単・なプロセスで実施することができる。
The hydrogenation method of the present invention is characterized in that the amount of hydrogenation catalyst used is small. Therefore, even if the hydrogenation catalyst remains in the polymer, it does not significantly affect the physical properties of the hydrogenated polymer obtained, and most of the catalyst is decomposed and removed during the isolation process of the hydrogenated polymer. Since it is removed from coalescence, no special operations are required to deash or remove the catalyst.
It can be implemented through an extremely simple process.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明の方法により、オレフィン性不飽和
二重結合の水添反応が効率的に可能となり、特にオレフ
ィン性不飽和二重結合を有する重合体を高活性な触媒に
よって温和な条件で水添すること、さらに共役ジエンと
ビニル置換芳香族炭化水素との共重合体の共役ジエン単
位の不飽和二重結合を極めて選択的に水添することが可
能となった。
As described above, the method of the present invention makes it possible to efficiently hydrogenate olefinically unsaturated double bonds, and in particular, it is possible to hydrogenate polymers having olefinically unsaturated double bonds under mild conditions using a highly active catalyst. Furthermore, it has become possible to hydrogenate the unsaturated double bonds of the conjugated diene units of a copolymer of a conjugated diene and a vinyl-substituted aromatic hydrocarbon very selectively.

また、本発明の方法によって得られる水添重合体は、耐
候性、耐酸化性の優れた弾性体、熱可塑性弾性体もしく
は熱可塑性樹脂として使用され、また紫外線吸収剤、オ
イル、フィラー等の添加剤を加えたり、他の弾性体や樹
脂とブレンドして使用され、工業上極めて有用である。
Furthermore, the hydrogenated polymer obtained by the method of the present invention can be used as an elastomer, thermoplastic elastomer, or thermoplastic resin with excellent weather resistance and oxidation resistance, and can also be added with ultraviolet absorbers, oils, fillers, etc. It is used by adding agents or blending it with other elastic bodies or resins, making it extremely useful industrially.

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明するが、本発明
はこれらに限定されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited thereto.

参考例1 攪拌機、−下漏斗および還流冷却器を備えた11三つロ
フラスコに無水エーテル2001Llを加えた。装置を
乾燥ヘリウムで置換し、リチウムワイヤー小i 17.
4 g(2,5モル)をフラスコ中に切す落し、エーテ
ル300J ブロモベンゼン157&(1モル)の溶液
を室温で少量滴下した後、還流下で徐々にブロモベンゼ
ンのエーテル溶液を全量加えた。
Reference Example 1 2001 L of anhydrous ether was added to an 11-three-bottle flask equipped with a stirrer, a lower funnel, and a reflux condenser. Replace the device with dry helium and replace with lithium wire 17.
After dropping 4 g (2.5 mol) into a flask, a small amount of a solution of ether 300J bromobenzene 157 & (1 mol) was added dropwise at room temperature, and then the entire amount of the ether solution of bromobenzene was gradually added under reflux.

反応終了後反応溶液をヘリウム雰囲気下にて一過し、無
色透明なフェニルリチウム溶液を得た。
After the reaction was completed, the reaction solution was passed through a helium atmosphere to obtain a colorless and transparent phenyllithium solution.

乾燥ヘリウムで置換した攪拌機、滴下漏斗を備えた21
三ツロフラスコに、ジクロロメタン(シクロペンタジェ
ニル)チタニウム99.6.9. (0,4モル)およ
び無水エーテル500m13を加えた。先に合成したフ
ェニルリチウムのエーテル溶液を室温攪拌下にて約2時
間で滴下した。反応混合物を空気中で戸別し、不溶部を
ジクロロメタンで洗浄後、p液および洗浄液を合わせ減
圧下にて溶媒を除去した。残留物を少量のジクロロメタ
ンに溶解した後、石油エーテルを加えて再結晶を行なっ
た。得られた結晶を戸別し、E液は再び濃縮させ上記操
作を繰り返しジフェニルビス(η−シクロペンタジェニ
ル)チタニウムを得た。収iは120.9(収率90%
)であった。得られた結晶は橙黄色針状であり、トルエ
ン、シクロヘキサンに対する溶解性は良好であり、融点
147℃、元素分析値: C,79,5;H,6,1;
Ti、 14.4であった。
21 with a stirrer and a dropping funnel replaced with dry helium.
In a Mitsuro flask, add dichloromethane (cyclopentadienyl) titanium 99.6.9. (0.4 mol) and 500 ml of anhydrous ether were added. The previously synthesized ether solution of phenyllithium was added dropwise over about 2 hours while stirring at room temperature. The reaction mixture was separated in the air, and after washing the insoluble portion with dichloromethane, the p solution and washing solution were combined and the solvent was removed under reduced pressure. After dissolving the residue in a small amount of dichloromethane, petroleum ether was added to perform recrystallization. The obtained crystals were separated from each other, and the liquid E was concentrated again, and the above operation was repeated to obtain diphenylbis(η-cyclopentadienyl)titanium. Yield i is 120.9 (yield 90%
)Met. The obtained crystals are orange-yellow needle-shaped, have good solubility in toluene and cyclohexane, melting point 147°C, elemental analysis values: C, 79.5; H, 6.1;
Ti was 14.4.

参考例2 ブロモベンゼンの代りにp−ブロモトルエンを用いた以
外は参考例1と同様に合成し、ジ−ルー−トリルビス(
η−シクロペンタジェニル)チタニウムを得た(収率8
7%)。このものは黄色結晶状テアリ、トルエン、シク
ロヘキサンに対する溶解性は良好であり、融点145℃
、元素分析値:0、80.Oi H,6,7: Ti 
、  13.3であった。
Reference Example 2 Synthesized in the same manner as Reference Example 1 except that p-bromotoluene was used instead of bromobenzene, and di-ru-tolylbis(
η-cyclopentadienyl) titanium was obtained (yield: 8
7%). This product is yellow crystalline, has good solubility in toluene and cyclohexane, and has a melting point of 145°C.
, elemental analysis value: 0, 80. Oi H,6,7: Ti
, it was 13.3.

参考例3 ブロモベンゼンの代すに4−ブロモ−0−キシレンを用
いた以外は参考例1と同様に合成し、ジーm、p−キシ
リルビス(η−シクロペンタジェニル)チタニウムを得
た(収率83%)。このものは黄色結晶状であり、トル
エン、シクロヘキサンに対する溶解性は良好であり融点
155℃、元素分析値:C!、80.6;H,7,2i
’l’i、12.2であった。
Reference Example 3 Synthesis was carried out in the same manner as in Reference Example 1 except that 4-bromo-0-xylene was used in place of bromobenzene to obtain di-m,p-xylylbis(η-cyclopentadienyl)titanium (yield rate 83%). This substance is in the form of yellow crystals, has good solubility in toluene and cyclohexane, has a melting point of 155°C, and has an elemental analysis value of C! ,80.6;H,7,2i
'l'i, it was 12.2.

参考例4 ブロモベンゼンの代すにp−ブロモエチルベンゼンを用
いた以外は参考例1と同様に合成し、ビス(A−エチル
フェニル)ビス(η−シクロ゛ペンタジェニル)チタニ
ウムを得た。(収率8o%)。
Reference Example 4 Bis(A-ethylphenyl)bis(η-cyclopentadienyl)titanium was obtained by synthesizing in the same manner as in Reference Example 1 except that p-bromoethylbenzene was used instead of bromobenzene. (Yield 8o%).

このものは黄色結晶であり、トルエン、シクロヘキサン
に対する溶解性は良好であり、融点154℃、元素分析
値;C,80,4;H,7,3; ’I’i。
This substance is a yellow crystal, has good solubility in toluene and cyclohexane, has a melting point of 154°C, and has an elemental analysis value of C, 80.4; H, 7.3; 'I'i.

12.3であった。It was 12.3.

参考例5 21のオートクレーブ中にシクロヘキサン500.9,
1.3−ブタジェンモノマー100,91n−ブチルリ
チウムo、o s gを加え、攪拌下60℃にて3時間
重合しブタジェン単独重合体を合成した。得られたブタ
ジェン重合体は1,2−ビニル結合を13%含有し、G
PCで測定した重量平均分子量は約15万であった。
Reference Example 5 Cyclohexane 500.9,
100,91 o, o s g of 1,3-butadiene monomer were added, and the mixture was polymerized at 60° C. for 3 hours with stirring to synthesize a butadiene homopolymer. The obtained butadiene polymer contained 13% of 1,2-vinyl bonds and G
The weight average molecular weight measured by PC was about 150,000.

参考例6 1.3−ブタジェンの代りにイソプレンを用いた以外は
参考例1と同様に重合し、1.2−ビニル結合10%、
重量平均分子量約15万のインブレン重合体を得た。
Reference Example 6 Polymerization was carried out in the same manner as Reference Example 1 except that isoprene was used instead of 1,3-butadiene, and 1,2-vinyl bonds were 10%,
An inbrene polymer having a weight average molecular weight of about 150,000 was obtained.

参考例7 シクロヘキサン400 g、1.3−ブタジェンモノマ
ー70g、スチレンモノマー309Xn−ブチルリチウ
ム0.03 gおよびテトラヒドロフラン0.91を同
時にオートクレーブに加え、40℃で2時間重合した。
Reference Example 7 400 g of cyclohexane, 70 g of 1,3-butadiene monomer, 0.03 g of styrene monomer 309Xn-butyllithium, and 0.91 g of tetrahydrofuran were simultaneously added to an autoclave and polymerized at 40° C. for 2 hours.

得られた重合体はブタジェン/スチレンの完全ランダム
共重合体で、ブタジェン単位の1・2−ビニル結合含有
率50%、重量平均分子量20万を有するものであった
The obtained polymer was a completely random copolymer of butadiene/styrene, and had a 1,2-vinyl bond content of butadiene units of 50% and a weight average molecular weight of 200,000.

参考例8 オートクレーブ中にシクロヘキサン4QO17、スチレ
ンモノマー15gとn−ブチルリチウム0.111を加
え、60℃で3時間重合し、次いで1.3−ブタジェン
モノマーを70り加えて60℃で3時間型合した。最後
にスチレンモノマー15.9を添加し、60℃で3時間
重合し、結合スチレン含有量30%、ブロックスチレン
含有量29.5%、ブタジェン単位の1.2−ビニル結
合金有量13%(全重合体換算9%)の重量平均分子量
が約6万であるスチレン−ブタジェン−スチレン型ブロ
ツク共重合体を得た。
Reference Example 8 Cyclohexane 4QO17, 15 g of styrene monomer and 0.111 n-butyllithium were added to an autoclave and polymerized at 60°C for 3 hours, then 70 g of 1,3-butadiene monomer was added and incubated at 60°C for 3 hours. It matched. Finally, 15.9% of styrene monomer was added and polymerized at 60°C for 3 hours, resulting in a bound styrene content of 30%, a blocked styrene content of 29.5%, and a 1.2-vinyl bound gold content of butadiene units of 13% ( A styrene-butadiene-styrene type block copolymer having a weight average molecular weight of about 60,000 (9% in terms of total polymer) was obtained.

参考例9 参考例8において1さらにテトラヒドロフランをn−ブ
チルリチウムに対して35倍モル加えた以外は全く同じ
方法で、結合スチレン含量30%、ブロックスチレン含
量24%、ブタジェン単位の1・2−ビニル結合金有量
39%゛(全重合体換算23%)のスチレン−ブタジェ
ン−スチレン型ブロツク共重合体を合成した。
Reference Example 9 Using the same method as in Reference Example 8, except that 35 times the mole of tetrahydrofuran was added to n-butyllithium, the bonded styrene content was 30%, the blocked styrene content was 24%, and 1,2-vinyl butadiene units were prepared. A styrene-butadiene-styrene type block copolymer with a binder content of 39% (23% in terms of total polymer) was synthesized.

参考例10 オートクレーブ中にシクロヘキサン2000  &。Reference example 10 Cyclohexane 2000 &. in autoclave.

1.3−ブタジェンモノマー65g、n−ブチルリチウ
ム0.75 gおよびテトラヒドロフランをモル比でn
 −BuLi /THF = 40の割合で加え、70
℃で45分重合し、次いでスチレンモノ−=r −10
01%:加えて30分、次いで1,3−ブタジェンモノ
マー235gを加えて75分、そして最後にスチレンモ
ノマー100Iを加えて30分取合し、ブタジェン−ス
チレン−ブタジェン−スチレン型ブロツク共重合体を合
成した。
1.3-butadiene monomer 65 g, n-butyllithium 0.75 g and tetrahydrofuran in molar ratio n
-BuLi/THF = added at a ratio of 40, 70
℃ for 45 minutes, then styrene mono-=r −10
01%: Added for 30 minutes, then added 235 g of 1,3-butadiene monomer for 75 minutes, and finally added 100 I of styrene monomer and mixed for 30 minutes to form a butadiene-styrene-butadiene-styrene type block copolymer. was synthesized.

このものは結合スチレン含有量40%1ブロツクスチレ
ン含有量33%、ブタジェン単位の1,2−ビニル結合
含有!35%(全重合体換算30%)、重量平均分子量
約6万のブロック共重合体であった。゛ 実施例1〜4 1−ヘキセン、シクロヘキセンを7クロヘキサンで希釈
し、濃度15%に調整して水添反応に供した。
This product has a bound styrene content of 40%, a 1-block styrene content of 33%, and a 1,2-vinyl bond of butadiene units! It was a block copolymer with a weight average molecular weight of about 60,000 and a weight average molecular weight of about 60,000. Examples 1 to 4 1-hexene and cyclohexene were diluted with 7-chlorohexane, adjusted to a concentration of 15%, and subjected to hydrogenation reaction.

十分に乾燥した容量21の攪拌器付オートクレーブに、
上記オレフィン化合物溶液1000gを仕込み、減圧脱
気した後水素置換し、攪拌下60’Cに保持した。
In a sufficiently dry autoclave with a capacity of 21 cm and equipped with a stirrer,
1000 g of the above olefin compound solution was charged, degassed under reduced pressure, replaced with hydrogen, and maintained at 60'C with stirring.

次いで触媒成分(A)として参考例1〜4で得られた化
合物を各々4ミリモル含む7クロヘキサン溶液100コ
と触媒成分(B)としてn−ブチルリチウム(本荘ケミ
カル(株)製)8ミリモルを含む7クロヘキサン溶液2
0m1とをO’C,2,0kg/crn2(7)水![
[E下T混合した触媒溶液(Li/Tiモル比=2)全
量をオートクレーブ中へ仕込み、5.0’ky/cm2
の乾燥したガス状水素を供給し攪拌下2時間水添反応を
行なった。・反応液を常温常圧下に戻した後、ガスクロ
マトグラフィー分析により水添率を求めた。
Next, 100 7 chlorohexane solutions each containing 4 mmol of the compounds obtained in Reference Examples 1 to 4 as the catalyst component (A) and 8 mmol of n-butyllithium (manufactured by Honjo Chemical Co., Ltd.) as the catalyst component (B) were added. 7 clohexane solution containing 2
0m1 and O'C, 2,0kg/crn2 (7) water! [
[The entire amount of the mixed catalyst solution (Li/Ti molar ratio = 2) was charged into an autoclave at 5.0'ky/cm2.
A hydrogenation reaction was carried out for 2 hours under stirring by supplying dry gaseous hydrogen. - After returning the reaction solution to normal temperature and pressure, the hydrogenation rate was determined by gas chromatography analysis.

各水添触媒を用いた1−ヘキセン、シクロヘキセンの水
添結果を表■にまとめた。
The results of hydrogenation of 1-hexene and cyclohexene using each hydrogenation catalyst are summarized in Table 2.

表1に示した如く、いずれの水添触媒を用いてもオレフ
ィン性不飽和二重結合はほぼ定量的に水添され、極めて
良好な水添活性を示した。
As shown in Table 1, no matter which hydrogenation catalyst was used, the olefinically unsaturated double bonds were hydrogenated almost quantitatively, showing extremely good hydrogenation activity.

(表 I) 実施例5〜10 参考例5〜10で得られた各種重合体を精製乾燥したシ
クロヘキサンで希釈し、重合体濃度5重量%に調整して
水添反応に供した。
(Table I) Examples 5 to 10 Various polymers obtained in Reference Examples 5 to 10 were diluted with purified and dried cyclohexane, adjusted to a polymer concentration of 5% by weight, and subjected to a hydrogenation reaction.

十分に乾燥した容量2ノの攪拌器付オートクレーブに、
上記各種重合体溶液1000.pを仕込み、減圧脱気復
水累置換し、攪拌下90’Cに保持した。
In a sufficiently dry autoclave with a capacity of 2 liters and equipped with a stirrer,
The above various polymer solutions 1000. P was charged, degassed under reduced pressure, and condensed water was repeatedly replaced, and the temperature was maintained at 90'C with stirring.

次いで参考例2で得られた触媒成分(3)を0.2ミリ
モル含むシクロヘキサン溶液50a/と触媒成分(B)
としてn−ブチルリチウム0.8ミリモルを含むシクロ
ヘキサン溶液10プとを0℃、2.01f/ctn2の
水素圧下で混合した触媒溶液(Li/’I’iモル比=
4)全量をオートクレーブ中へ仕込み、s、Okp、に
肩2の乾燥したガス状水素を供給し攪拌下2時間水添反
応を行なった。反応液を常温常圧に戻してオートクレー
ブより取出し、多量のメタノールを加えてポリマーを沈
殿させ、p別乾燥し、白色の水添ポリマーを得た。得ら
れた水添重合体の水添率を赤外線吸収スペクトルより求
め(水添率の求め方の詳細は特願昭58’−6718、
特願昭58−186983、特願昭59−76614に
記載)表■に示した◇(表 ■) 実施例 参考例10で合成したブタジェン−スチレン−ブタジェ
ン−スチレン型ブロック共重合体を精製乾燥したシクロ
ヘキサンにて希釈し5重量%とし、この溶液1000g
をオートクレーブに仕込み、実施例5と同様にして表■
に示した各種条件で水添した。結果を表■に示した。
Next, cyclohexane solution 50a containing 0.2 mmol of catalyst component (3) obtained in Reference Example 2 and catalyst component (B) were added.
A catalyst solution (Li/'I'i molar ratio =
4) The entire amount was charged into an autoclave, and dried gaseous hydrogen of shoulder 2 was supplied to s, Okp, and a hydrogenation reaction was carried out for 2 hours with stirring. The reaction solution was returned to room temperature and pressure, taken out from the autoclave, and a large amount of methanol was added to precipitate the polymer, which was then dried separately to obtain a white hydrogenated polymer. The hydrogenation rate of the obtained hydrogenated polymer was determined from the infrared absorption spectrum (details on how to determine the hydrogenation rate can be found in Japanese Patent Application No. 58'-6718,
(Described in Japanese Patent Application No. 58-186983 and Japanese Patent Application No. 59-76614) ◇ shown in Table ■ (Table ■) The butadiene-styrene-butadiene-styrene type block copolymer synthesized in Example Reference Example 10 was purified and dried. Diluted with cyclohexane to 5% by weight, 1000g of this solution
was placed in an autoclave and treated in the same manner as in Example 5.
Hydrogenation was carried out under various conditions shown in . The results are shown in Table ■.

また、触媒成分■)のn−ブチルリチウムを用いず、触
媒成分ハ)のみを水添触媒として使用した以外は同様に
表■に示した条件で水添反応を行ない比較例とした。
In addition, a comparative example was prepared in which a hydrogenation reaction was similarly carried out under the conditions shown in Table (2), except that n-butyllithium, which was the catalyst component (1), was not used, and only the catalyst component (C) was used as the hydrogenation catalyst.

手続補正書 昭和59年11月 9日Procedural amendment November 9, 1982

Claims (1)

【特許請求の範囲】 1、オレフィン性不飽和二重結合含有化合物を不活性有
機溶媒中にて水添する方法において、(A)下記(a)
で示されるチタノセンジアリール化合物 ▲数式、化学式、表等があります▼(a) (但し、R_1〜R_6は水素あるいは炭素数1〜4の
アルキル炭化水素基を示し、R_1〜R_3およびR_
4〜R_6のうち1つ以上は水素である。)および、 (B)一般式R−Li(但し、Rは炭素原子数が1〜6
個のアルキル基を示す。)で示されるアルキルリチウム
化合物の少なくとも一種 とからなる触媒の存在下に水素と接触させて、該化合物
中のオレフィン性不飽和二重結合を水添することを特徴
とするオレフィンの水添方法。
[Claims] 1. In a method of hydrogenating an olefinically unsaturated double bond-containing compound in an inert organic solvent, (A) the following (a)
Titanocene diaryl compound represented by ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (a) (However, R_1 to R_6 represent hydrogen or an alkyl hydrocarbon group having 1 to 4 carbon atoms, and R_1 to R_3 and R_
One or more of 4 to R_6 is hydrogen. ) and (B) general formula R-Li (wherein R has 1 to 6 carbon atoms)
represents an alkyl group. 1. A method for hydrogenating olefins, which comprises hydrogenating an olefinically unsaturated double bond in the compound by contacting it with hydrogen in the presence of a catalyst comprising at least one of the alkyllithium compounds represented by the formula.
JP59153034A 1984-07-25 1984-07-25 Method for hydrogenating olefin Granted JPS6133132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59153034A JPS6133132A (en) 1984-07-25 1984-07-25 Method for hydrogenating olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59153034A JPS6133132A (en) 1984-07-25 1984-07-25 Method for hydrogenating olefin

Publications (2)

Publication Number Publication Date
JPS6133132A true JPS6133132A (en) 1986-02-17
JPH0153851B2 JPH0153851B2 (en) 1989-11-15

Family

ID=15553521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59153034A Granted JPS6133132A (en) 1984-07-25 1984-07-25 Method for hydrogenating olefin

Country Status (1)

Country Link
JP (1) JPS6133132A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104610U (en) * 1991-02-19 1992-09-09 旭光学工業株式会社 Mounting structure of photometric element
WO1996018660A1 (en) * 1994-12-12 1996-06-20 The Dow Chemical Company Hydrogenation of unsaturated polymers using divalent non-aromatic anionic dienyl-containing group iv metal catalysts
JP2001270913A (en) * 2000-03-24 2001-10-02 Asahi Kasei Corp Effective hydrogenation method of conjugated diene polymer
US6815509B2 (en) 2000-06-30 2004-11-09 Asahi Kasei Kabushiki Kaisha Method for hydrogenation of polymer
WO2009119592A1 (en) 2008-03-25 2009-10-01 旭化成ケミカルズ株式会社 Elastomer composition and storage cover for airbag system
US7794807B2 (en) 2004-09-07 2010-09-14 Denki Kagaku Kogyo Kabushiki Kaisha Conductive composite sheeting
WO2014046017A1 (en) 2012-09-21 2014-03-27 旭化成ケミカルズ株式会社 Catalyst composition for hydrogenation and hydrogenation method using catalyst composition for hydrogenation
WO2014046016A1 (en) 2012-09-21 2014-03-27 旭化成ケミカルズ株式会社 Hydrogenation catalyst composition and hydrogenation method using said hydrogenation catalyst composition
WO2014065283A1 (en) 2012-10-24 2014-05-01 旭化成ケミカルズ株式会社 Method of producing hydrogenation catalyst composition and hydrogenation catalyst composition
US9139722B2 (en) 2009-03-12 2015-09-22 Asahi Kasei Chemicals Corporation Polypropylene-based resin composition, molded article thereof, and automobile interior or exterior material using the same
WO2017090714A1 (en) 2015-11-27 2017-06-01 旭化成株式会社 Catalyst composition for hydrogenation, method for producing same, hydrogenated polymer and method for producing hydrogenated polymer

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347205C (en) 2001-04-11 2007-11-07 旭化成株式会社 Hydrogenated polymer and process for producing the same
WO2003008466A1 (en) 2001-07-18 2003-01-30 Asahi Kasei Chemicals Corporation Modified block copolymer
ATE519810T1 (en) 2005-05-19 2011-08-15 Mitsui Chemicals Inc RESIN COMPOSITION FOR FOAM AND USE THEREOF
EP1942120B1 (en) 2005-09-22 2012-03-07 Asahi Kasei Chemicals Corporation Conjugated diene polymer and process for production thereof
CN102344512B (en) 2006-07-24 2013-10-16 旭化成化学株式会社 Modified conjugated diene polymer and method for producing same
WO2008084512A1 (en) 2006-12-26 2008-07-17 Asahi Kasei E-Materials Corporation Radiating material and radiating sheet molded from radiating material
CN101616985B (en) 2007-02-20 2012-06-13 旭化成化学株式会社 Impact absorber composition
EP2138516B1 (en) 2007-03-28 2011-11-23 Asahi Kasei Chemicals Corporation Process for production of modified conjugated diene polymer, compositions comprising the polymer, and tires containing the compositions
EP2277949B1 (en) 2008-04-30 2015-03-04 Asahi Kasei E-materials Corporation Resin composition and sheet using the same
WO2011040312A1 (en) 2009-10-02 2011-04-07 旭化成ケミカルズ株式会社 Production method for modified conjugated diene polymer, modified conjugated diene polymer, and modified conjugated diene polymer composition
KR101572776B1 (en) 2010-03-08 2015-11-27 아사히 가세이 케미칼즈 가부시키가이샤 Foam composition, method for producing same, and foam
KR101432412B1 (en) 2010-04-16 2014-08-20 아사히 가세이 케미칼즈 가부시키가이샤 Process for producing modified conjugated diene polymer, modified conjugated diene polymer, and composition of modified conjugated diene polymer
MX2012013869A (en) 2010-06-09 2013-05-09 Asahi Kasei Chemicals Corp Thermoplastic elastomer composition and molded articles thereof.
WO2013031599A1 (en) 2011-08-26 2013-03-07 旭化成ケミカルズ株式会社 Method for producing denatured conjugated diene polymer, denatured conjugated diene polymer, denatured conjugated diene polymer composition, rubber composition, and tire
ES2728528T3 (en) 2014-01-17 2019-10-25 Asahi Chemical Ind Polymer and asphalt composition
JP6634289B2 (en) 2014-01-17 2020-01-22 旭化成株式会社 Polymer and asphalt composition
WO2015111669A1 (en) 2014-01-23 2015-07-30 旭化成ケミカルズ株式会社 Block copolymer composition and adhesive composition
KR102201044B1 (en) 2017-04-28 2021-01-11 아사히 가세이 가부시키가이샤 Modified conjugated diene polymer, polymer composition and rubber composition
CN110734647B (en) 2018-07-20 2021-12-17 旭化成株式会社 Thermoplastic elastomer composition, plug and container
JP2021008565A (en) 2019-07-01 2021-01-28 株式会社ダイセル Cellulose acetate and manufacturing method of cellulose acetate
EP4032735A4 (en) 2019-09-20 2023-09-27 Mitsui Chemicals, Inc. Display device
KR20220144851A (en) 2020-06-22 2022-10-27 아사히 가세이 가부시키가이샤 Hydrogenated copolymers, resin compositions, molded articles and adhesive films
JPWO2023013772A1 (en) 2021-08-06 2023-02-09

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104610U (en) * 1991-02-19 1992-09-09 旭光学工業株式会社 Mounting structure of photometric element
WO1996018660A1 (en) * 1994-12-12 1996-06-20 The Dow Chemical Company Hydrogenation of unsaturated polymers using divalent non-aromatic anionic dienyl-containing group iv metal catalysts
JP2001270913A (en) * 2000-03-24 2001-10-02 Asahi Kasei Corp Effective hydrogenation method of conjugated diene polymer
US6815509B2 (en) 2000-06-30 2004-11-09 Asahi Kasei Kabushiki Kaisha Method for hydrogenation of polymer
US7794807B2 (en) 2004-09-07 2010-09-14 Denki Kagaku Kogyo Kabushiki Kaisha Conductive composite sheeting
WO2009119592A1 (en) 2008-03-25 2009-10-01 旭化成ケミカルズ株式会社 Elastomer composition and storage cover for airbag system
US8592513B2 (en) 2008-03-25 2013-11-26 Asahi Kasei Chemicals Corporation Elastomer composition and storage cover of airbag devices
US9139722B2 (en) 2009-03-12 2015-09-22 Asahi Kasei Chemicals Corporation Polypropylene-based resin composition, molded article thereof, and automobile interior or exterior material using the same
WO2014046016A1 (en) 2012-09-21 2014-03-27 旭化成ケミカルズ株式会社 Hydrogenation catalyst composition and hydrogenation method using said hydrogenation catalyst composition
KR20150038473A (en) 2012-09-21 2015-04-08 아사히 가세이 케미칼즈 가부시키가이샤 Catalyst composition for hydrogenation and hydrogenation method using catalyst composition for hydrogenation
KR20150038472A (en) 2012-09-21 2015-04-08 아사히 가세이 케미칼즈 가부시키가이샤 Hydrogenation catalyst composition and hydrogenation method using said hydrogenation catalyst composition
WO2014046017A1 (en) 2012-09-21 2014-03-27 旭化成ケミカルズ株式会社 Catalyst composition for hydrogenation and hydrogenation method using catalyst composition for hydrogenation
US9522393B2 (en) 2012-09-21 2016-12-20 Asahi Kasei Chemicals Corporation Catalyst composition for hydrogenation and method for hydrogenation using the same
US10016749B2 (en) 2012-09-21 2018-07-10 Asahi Kasei Chemicals Corporation Catalyst composition for hydrogenation and method for hydrogenation using the same
WO2014065283A1 (en) 2012-10-24 2014-05-01 旭化成ケミカルズ株式会社 Method of producing hydrogenation catalyst composition and hydrogenation catalyst composition
WO2017090714A1 (en) 2015-11-27 2017-06-01 旭化成株式会社 Catalyst composition for hydrogenation, method for producing same, hydrogenated polymer and method for producing hydrogenated polymer
KR20180070690A (en) 2015-11-27 2018-06-26 아사히 가세이 가부시키가이샤 Catalyst composition for hydrogenation, production method thereof, and hydrogenated polymer and production method thereof

Also Published As

Publication number Publication date
JPH0153851B2 (en) 1989-11-15

Similar Documents

Publication Publication Date Title
JPS6133132A (en) Method for hydrogenating olefin
JPH0137970B2 (en)
KR100201228B1 (en) Process for hydrogenating living polymers
JPS634841B2 (en)
JP3484155B2 (en) Process for selective hydrogenation of polymers containing conjugated dienes
JPS635401B2 (en)
JPH01275605A (en) Method of hydrogenation of polymer and catalyst
JPS62207303A (en) Hydrogenation of conjugated diene polymer
JPH05271326A (en) Hydrogenation of olefinic unsaturated polymer and hydrogenation catalyst
US7186782B2 (en) Hydrogenation catalyst composition and process for hydrogenation of conjugated diene polymer
KR100267080B1 (en) Method for hydrogenation of conjugated diene polymer
JPH04248815A (en) Preferential hydrogenation of conjugated diolefin polymer
JPH05286870A (en) Olefin hydrogenation procedure
US6881797B2 (en) Process for hydrogenation of conjugated diene polymer
JPS6147706A (en) Hydrogenation of living polymer
JP4265742B2 (en) Hydrogenation method of conjugated diene polymer
JP2903471B1 (en) Method for hydrogenating conjugated diene polymers
JPH02172537A (en) Hydrogenation catalyst and hydrogenation process
JPS62209102A (en) Hydrogenation of polymer
JPH0496904A (en) Hydrogenation of olefinic compound
JP3454922B2 (en) Hydrogenation method for isoprene polymer
JPS6157524A (en) Hydrogenation of olefin
JP2629865B2 (en) Hydrogenation of olefinically unsaturated polymers
JP3651931B2 (en) Hydrogenation of alkyl-substituted conjugated diene polymers
KR100221358B1 (en) New catalyst for hydrogenation of living polymer and hydrogenation process using it

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term