JPS6131972B2 - - Google Patents

Info

Publication number
JPS6131972B2
JPS6131972B2 JP54108179A JP10817979A JPS6131972B2 JP S6131972 B2 JPS6131972 B2 JP S6131972B2 JP 54108179 A JP54108179 A JP 54108179A JP 10817979 A JP10817979 A JP 10817979A JP S6131972 B2 JPS6131972 B2 JP S6131972B2
Authority
JP
Japan
Prior art keywords
seedlings
soil
bed soil
acid
artificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54108179A
Other languages
Japanese (ja)
Other versions
JPS5632921A (en
Inventor
Kazuo Kimura
Goro Shimamori
Kichigoro Sato
Atsushi Suezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Kenkyusho KK
Original Assignee
Kimura Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Kenkyusho KK filed Critical Kimura Kenkyusho KK
Priority to JP10817979A priority Critical patent/JPS5632921A/en
Publication of JPS5632921A publication Critical patent/JPS5632921A/en
Publication of JPS6131972B2 publication Critical patent/JPS6131972B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、イネ育苗用人工床土構成材に関する
ものである。更に詳しくは、本発明は可溶性珪酸
およびアルカリ分を含む水砕鉱物を、水の存在
下、硫酸、または硫酸およびニトロフミン酸もし
くはその塩類で処理し、次いで乾燥してなるイネ
育苗用人工床土構成材に関するものである。 先に本発明者は、製鉄の際に高炉より副生する
溶融鉱滓を水で急冷して得た多孔性の鉱滓を、砂
れき状に破砕してなる植物栽培用培地構成材(特
許第909970号)および該鉱滓にニトロフミン酸を
混合してなる植物栽培用培地構成材(特開昭53−
48829号)を提案した。本発明は、これら先に提
案した培地構成材を特にイネ育苗に際してさらに
改良された箱育苗用人工床土構成材に関するもの
である。すなわち、本発明の改良点は、基材とし
て使用される水砕鉱物は、製鉄の際に得られる鉱
滓一種に限定されず、広く各種合金鉄を精錬する
際に副生する水砕鉱滓およびこの目的のために1
種または2種以上の鉱物を配合し、熔融して水砕
した鉱物なども含まれ、その適用範囲が広く、一
方化学成分では可溶性珪酸およびアルカリ分を含
有していることが肝要であること、また該水砕鉱
物を、水の存在下、硫酸または硫酸およびニトロ
フミン酸もしくはその塩類で処理し、次いで乾燥
することなどであつてこれらの改良点があいまつ
て、深さが僅かに2.5cm〜3.0cmに過ぎないイネの
箱育苗用人工床土構成材としての効果が著しく向
上するのである。 現在、わが国全米作付面積約250万haのうち80
%以上でイネ苗の箱育苗−機械田植えが行われて
いる。これに要する育苗用床土は想像以上に莫大
な量である。そうして今日では数百ha分もの育
苗を集中して行う大規模の共同育苗センターが出
現するに至つた。一般に天然土壌の床土では育苗
箱1箱当り4.5〜5.5Kg使用するが、10a当り稚苗
で20箱、中苗で35箱として90Kg〜190Kg、原土の
歩留りを50%とすると180Kg〜380Kgとなるから、
たとえば100ha分では180t〜380tもの土壌が必要
となる。しかも品質が均一でないと大規模育苗が
困難であるので、かかる大量の品質均一の床土の
安定的確保はイナ作上の重大問題である。 これに対し、従来種々の提案がなされている
が、そのほとんどが山土など各地に産する天然土
壌を主材として、これに若干の補助資材を加えた
り、団粒化するなどした程度の軽い加工を加えた
ものである。しかるところ、天然土壌は品質一定
のものを年々大量に確保することは極めて困難で
あり、よしんば一時的にある程度の量が獲得でき
たとしても、これを堀り出し、砕土し、ふるい分
け、補助資材を配合し、消毒するというような工
程を農作業として行い、床土を自給することはあ
まりにも困難な作業である。 また天然土壌によらない天然または人工の繊維
物質や化学合成品などを加工した人工培地が数種
提案され、取り扱い上の便利さが強調されてい
る。これらの化学合成品は勿論のこと、イネわら
や製紙屑なども植物栽培上必須の栄養素が不足す
る点などで、育苗成績が天然土壌の床土に及ばな
いことは必然である。したがつて、これらは天然
土壌の不足を補うための補助資材となしうる程度
のものに過ぎない。 また、イナ作で大量に副生するもみがらをくん
炭化して床土に利用することが提案されている。
しかし、これまでの育苗成績では、もみがらくん
炭に天然土壌を容量で50%以上混合しないと育苗
成績が上らないことは周知の通りである。容量で
こそ50%であるが、両者の比重を考慮に入れる
と、もみがらくん炭は天然土壌の増量材になつて
いるに過ぎない。 以上のごとく、従来の提案は、天然土壌の床土
にせよ、合成培地にせよ、繊維などを加工した人
工培地にせよ、もみがらくん炭培地にせよ、いず
れにも一長一短があるが、よしんばそれらが育苗
成績がある程度優れたもの、使用上便利なもの、
あるいは自給できる農業副産物であるにしても、
しよせん育苗用床土ないしその代用品であるに留
る。 本発明者は、これら従来公用のイネ育苗用床土
の難点を全て解消し、かつ今日重大化している土
作り問題を解決することを念頭において、育苗成
績の優れた人工床土構成材であると同時に本田の
珪酸を主とする地力増強効果を併せもつ人工床土
構成材を開発すべく鋭意研鑽の結果本発明を完成
するに至つた。 すなわち、本願の第1の発明は、1種または2
種以上の鉱物を配合して熔融し、水で急冷して微
粉または砂れき状に破砕した、可溶性珪酸および
アルカリ分を含有する水砕鉱物を、水の存在下、
硫酸で処理し、次で乾燥してなるイネ育苗用人工
床土構成材に関するものである。 本発明の人工床土構成材の基材である水砕鉱物
はそれ自体を目的として製造することもできる
が、実用上は製鉄は各種合金鉄を精錬する際に、
年々大量に副生する鉱滓を熔融状で水で急冷して
砂れき状に破砕した多孔性のガラス質の鉱物を利
用するのがもつとも経済的であるので、以下水砕
鉱滓の利用について述べる。 第1表に掲げる各鉱滓の化学成分の組成ならび
に第2表に示されている物理性によつて明らかな
ように、鉱滓の種類によつて多少の差異はある
が、いずれの鉱滓も化学性においても物理性にお
いても植物栽培用倍地として、一般の天然土壌に
優る物性を備えており、とくにイネ作上もつとも
多量に必要とする可溶性珪酸を始めとして、その
他の無機要素をまんべんなく含有している。 珪酸石灰肥料は、上記鉱滓のうち可溶性珪酸を
20%以上アルカリ分を35%以上含有するものを軽
破砕して製造したものである。そうして、肥料で
あるためには、溶解性が良好であることが必要で
あるので、粒度ができるだけ細目であることが好
ましく、微粉であることがもつとも好ましい。し
たがつて、公定の珪酸石灰肥料の粒度は2000ミク
ロンの網目ふるいを全通し、水砕品の外は590ミ
クロンの網目ふるいを60%以上通過することと制
限されている。 一方、本発明の人工床土構成材は、イネの幼苗
が床土の中に根を伸長し、養分と水と酸素を取り
入れ、かつ植物体を支持する物理性が第一義的に
問題であつて、通気性と排水性と保水性が良好で
なければならない。そのためには該人工床土構成
材の基材である水砕鉱滓の粒度は、粒径0.5mm〜
3.0mmのものが60%〜70%程度占めることが好ま
しい。ただし、本発明においては、後述するよう
に人工床土構成材の製造過程において、団粒を形
成するので、珪酸石灰肥料のように細目に破砕し
た水砕鉱滓であつても充分に使用することができ
る。 なお、上述のごとく本発明の人工床土構成材の
基材である水砕鉱滓は、化学成分の組成では第1
表にみる通り珪酸石灰肥料と同等であつて異ると
ころは第2表でみる通り珪酸石灰肥料より若干粗
目の粒分が多少混在する点である。そうして、野
菜その他を栽培する一般の培地では可溶性珪酸を
含むことはとくに必要としないが本発明の人工床
土構成材は、窒素の10培もの珪酸を吸収する代表
的珪酸植物であるイネの苗を育苗するという特定
の目的をもつものであるから、多量に可溶性珪酸
を含んであることがとくに肝要である。 従来の床土には上述のような肝要な点が全く考
慮されていない。本発明においては、このような
観点から可溶性珪酸および石灰分を含む水砕鉱
物、実用的には水砕鉱滓、なかんずく水砕高炉鉱
滓をイネ育苗用人工床土構成材の基材としたので
ある。 そうして本発明においては、水砕鉱滓を水の存
在下、硫酸で処理し、次いで乾燥するのである
が、通常水砕鉱滓を希硫酸溶液と均一に混合し、
混合後自然乾燥または温風乾燥など、それ自体公
知の方法で乾燥する、このとき使用する硫酸の添
加量は、使用する水砕鉱滓の種類によつても異る
が、通常95%の濃硫酸として、水砕鉱滓の1〜10
重量%程度で充分である。 かくしてえられた本発明の人工床土構成材を顕
微鏡で観察すると、硫酸と水砕鉱滓の成分の一部
とがある種の化学反応を起して生成したと思われ
る微粒子物質が、水砕鉱滓の単粒の表面に蝟集被
覆接着して団粒化し(1次団粒)、さらにこの1
次団粒が複数個集結して、さらに粒径の大きい団
粒(2次団粒)を形成している。この1次団粒は
強靭な団粒であり、2次団粒の結合の強さは比較
的軽度である。ただし、団粒助剤を添加すること
によつて、該2次団粒の結合の強度を調整するこ
とができる。このように水砕鉱滓を、水の存在
下、硫酸で処理し、次いで乾燥した本発明の人工
床土構成材でイネの苗を育成すると、育苗当初よ
り珪酸を充分に吸収した受光姿勢のよい、根量の
多い、耐病虫害性・耐環境性の強い健苗を育成す
ることができるのみか、該土付苗を本田に田植え
すると、本田の珪酸地力を増強することができ、
なお、育苗に使用する本発明の人工床土構成材の
量と本田の自然的その他の条件によつては、珪酸
石灰肥料を別に施用する必要がなくなるという意
外な効果を奏する。 元来無処理の水砕鉱滓100%を床土としてイネ
を育苗すると、生育な比較的遅く、草丈は短く、
葉色が薄くなる傾向がある。然るところ同じ水砕
鉱滓を、水の存在下、硫酸で処理し、次いで乾燥
した本発明の人工床土構成材で育苗すると、実施
例で示すように、成育は極めてよく、草丈が伸
び、乾物重量が重くなり、乾物重量を草丈で除し
た重長化の大きい充実した、葉色の良い、極めて
良質の健苗を育成することができる。そうして、
育苗成績は稚苗のときに優れている以上に中苗に
おいてとくに優れている。 公知のごとく、イネの生育は公用の床土ではPH
が4.5〜5.5においてもつとも良好で、6.0以上にな
ると生育、耐病虫害性ともに格段と悪くなる。然
るところ本発明の人工床土構成材はPHがたとえ
6.0以上7.0であつても、PH4.5〜5.5の公用の床土
で育苗した苗に優る健苗を育成することができ
る。 このような結果が何故に起るのか、その理由の
詳細は明らかでないが、概略以下のようなことは
充分に考えられる。 上述のように、本発明の人工床土構成材は、硫
酸で処理するのであるから、当然にPHが下る。し
かしPHが下つたことだけが育苗成績の良好になつ
た理由でないことは、本発明の人工床土構成材で
は、たとえPHが6.0〜7.0であつても、実施例に示
すように良質の健苗を育苗できることによつて明
らかである。 水砕鉱滓を、水の存在下、硫酸で処理し、次い
で乾燥すると、前述のように1次団粒と2次団粒
を形成するが、該2次団粒は、は種から発芽し稚
苗が発育する初期においては団粒を維持し、育苗
後期になるに従つて、潅水によつて漸次崩解する
というイネ育苗上極めて好都合な性質をもつてい
る。このような本発明の人工床土構成材のイネ育
苗上極めて良好な物理性が、健苗育成の原因の一
つであることも想像にかたくない。 さらに水砕鉱滓を硫酸で処理すると、驚くべき
ことに、単にPHが下がるばかりでなく、塩基置換
容量が著しく上昇する。一例をあげると、水砕高
炉鉱滓1Kgを、95%濃硫酸50gを10倍の水に薄め
た希硫酸で処理して乾燥すると、処理前は塩基置
換容量が1.5me/100gであつたものが、処理後は
15.2me/100gと10倍以上にも上昇する。このこ
とは、処理前はアンモニア性窒素を置換する性能
がほとんどなかつた水砕鉱滓が、処理後はイネ育
苗上もつとも肥効のあるアンモニア性窒素を置換
するに充分な性能を具備するに至つたことを示す
ものである。このこともまた良苗育成上の重要な
要因の一つであると考えられる。 塩基置換容量が1.5me/100gではアンモニア性
窒素を元肥として施用することができないので、
硝酸性窒素をしばしば追肥として施用しなければ
ならないが、15.2me/100gになるとアンモニア
性窒素を元肥として施用することができる。この
点はイネ育苗上重要である。 また、本発明の人工床土構成材で育苗したイネ
の稚苗は、公用の床土で育苗した稚苗より多量の
珪酸を吸収する。一例をあげると、本発明の人工
床土で育苗した3.2令の稚苗は、珪酸を6%以上
吸収している。この値は公用の床土で育苗した同
じ稚苗の吸収している珪酸2.5%程度に対し2倍
以上に当る。このことは本発明の人工床土構成材
のPHがたとえ6.0以上7.0であつても、通説と異つ
て耐病虫害性・耐環境性の勝れた健苗が育成でき
る主要因の一つであると考えられる。 概略以上の如くであつて、本発明の人工床土構
成材による育苗が際立つて優れている決定的理由
の詳細はなお明かでないが、上述した諸事実やそ
の他何等か未知の現象などの相乗効果によるもの
であろう。 以上によつて、本発明における水砕鉱滓の硫酸
処理が、公用の床土における硫酸処理の如く単な
る床土のPHの調整と同例でないことが極めて明ら
かである。 本発明の人工床土構成材は、イネ苗の育苗とと
もに本田の珪酸を主とする地力の増強、なお進ん
では珪酸石灰肥料の施用に代替することを発明の
目的とするのであるから、実際の育苗に当つて、
該人工床土構成材100%で育苗することが、上記
本発明の目的にもつとも適合している。しかし、
本発明の人工床土構成材には粘土や泥炭その他の
腐植物質などを添加配合することもできる。これ
らの物質は各々の特性によつて該人工床土構成材
に下記のような効果をもたらす。 たとえば粘土を添加すると、床土の弾力性を増
大するので、マツトの成形上効果がある。また、
塩基置換容量の大きい粘土を添加すると床土の保
肥力を増大する。しかし多量に添加すると、床土
中に水砕鉱滓の占める量が減少するので、本発明
の主目的の一つである本田の地力増強効果をそれ
だけ減殺することになる。また塩基置換容量が比
較的小さい粘土では多量に添加しないと床土の塩
基置換容量を増大する効果がなく、とくに前述の
例のように硫酸処理によつて塩基置換容量が
15.2me/100gにまで増大している本発明の人工
床土構成材に、これ以下の塩基置換容量の粘土を
添加したのでは、むしろマイナス効果となる。か
れこれ勘案すると粘土の添加混合は、塩基置換容
量50me/100g以上の粘土を水砕鉱滓の20%まで
に止めることが好ましい。 また、泥炭とくに良質のピートモスを添加する
と床土の保肥力を増大するとともに、床土の膨軟
性を増す効果がある。しかし、ピートモスは仮比
重が約0.1であつて水砕鉱滓の仮比重1.0前後の約
10分の1に過ぎない。したがつてピートモスは野
菜などの育苗用の床土の配合用としては良質の資
材ではあるが、本発明のイネの育苗用人工床土構
成材の配合資材としては、添加量を余程制限しな
いと膨軟に過ぎることになる。たとえば水砕鉱滓
に10重量%のピートモスを配合すると、配合後の
床土の仮比重は0.6〜0.7程度になり、水砕鉱滓の
床土中に占める割合が非常に小さくなるので、本
田の珪酸を主とする地力増強効果がはなはだしく
減殺される。かれこれ勘案すると、ピートモスの
配合割合は水砕鉱滓の5重量%までに止めること
が好ましい。 また、その他各種の腐植物質も本発明の人工床
土構成材の添加配合物質として使用することがで
き、ピートモスに似た効果がある。 然るところ、以上のような添加配合物質には、
上述のような効果はあるが、イネ苗の成育上の効
果に関する限りでは、本願第1の発明の人工床土
構成材100%をもつてする育苗成績を格段と上廻
るような顕著な効果は通常あまり期待できない。
しかるところ、人工の腐植酸であるニトロフミン
酸またはその塩類は、上述のような各種添加配合
物質とは、極めて特異の存在であつて、イネ苗の
成育上顕著に優れた効果を有する。したがつて、
ニトロフミン酸またはその塩類については、本願
第1の発明に加えて第2の発明として以下続いて
詳細に説明する。 本願の第2の発明は、1種または2種以上の鉱
物を配合して溶融し、水で急冷して微粉または砂
れき状に破砕した可溶性珪酸およびアルカリ分を
含有する水砕鉱物を、水の存在下、硫酸およびニ
トロフミン酸またはその塩類で処理し、次いで乾
燥してなるイネ育苗用人工床土構成材に関する。
すなわち、本願第2の発明は、前記した第1の発
明に係る人工床土構成材に、更にニトロフミン酸
またはその塩類を水砕鉱物の表面に、以下述べる
ように、本発明における特殊な形態で、密接に蝟
集接着してなるイネ育苗用人工床土に関する。 かくて第2の発明においては、第1の発明にお
いて述べた、硫酸と水砕鉱滓の成分の一部とのあ
る種の化学反応によつて生ずると思われる微粒子
生成物と、ニトロフミン酸またはその塩類とが、
相互に密接して水砕鉱滓の表面に均一に蝟集接着
し、第1の発明の場合と同様に強靭な1次団粒を
生じ、更に1次団粒が複数個集結して、イネの箱
育苗において好ましい程度の比較的軽度の2次団
粒を形成していることが顕微鏡観察によつて認め
られる。またこの場合水に団粒助剤を添加するこ
とによつて、2次団粒の結合の強度を調整できる
ことは、第1の発明における場合と同様である。 本願の第一の発明における人工床土構成材は、
前述の如く従来のイネ育苗用床土では全くみられ
なかつた、珪酸の多量吸収その他の総合効果によ
つて、極めて優れたイネ苗を育成することができ
るとともに、土付苗を本田に田植えすることによ
つて、珪酸石灰肥料を施用すると同じ効果が期待
できるというそれ自体既に全く新規なイネ育苗用
人工床土構成材であつた。 然るところ、本願の第2の発明における、水砕
鉱滓を硫酸とニトロフミン酸またはその塩類で処
理して乾燥してなる人工床土構成材においては、
前記第1の発明の人工床土構成材および該構成材
に粘土や泥炭などを添加混合した場合とは著しく
異り、以下述べるように際立つて特殊な効果を奏
する。 ニトロフミン酸は、若年炭を硝酸で処理して得
た、塩基置換容量250me〜500me/100g、PH3.0程
度の濃黒褐色の粉末である。ニトロフミン酸を水
砕高炉鉱滓に添加混合すると、植物の成長が良好
な培地構成材となることは、本発明者がさきに出
願した、特開、昭53−48829において明らかであ
る。しかるところ、同発明においては、水砕高炉
鉱滓に、ニトロフミン酸またはその塩類を混合し
たものであつた。 一方、本願の第2の発明である人工床土構成材
においては、前述のように、水砕鉱物−実用上水
砕鉱滓を、水の存在下、硫酸およびニトロフミン
酸またはその塩類で処理し、次いで乾燥する。そ
うすると、硫酸と水砕鉱滓の成分の一部とがある
種の化学反応を起して生じたかに思われる微粒子
生成物と該ニトロフミン酸またはその塩類とが密
着ないし結合し、更に水砕鉱滓の表面に密接に蝟
集接着被覆して1次団粒を形成し、更に該1次団
粒の複数個が集結して大粒の2次団粒を形成す
る。 この場合ニトロフミン酸またはその塩類の添加
量は、水砕鉱滓に対し、通常遊離のニトロフミン
酸では0.1重量%〜5.0重量%で、ニトロフミン酸
塩ではたとえばニトロフミン酸アンモニウム塩ま
たは同カリウム塩の場合は0.05重量%〜100重量
%である。 このようにして得られた第2の発明における人
工床土構成材は、前記第1の発明における人工床
土構成材に粘土あるいは泥炭などを添加した場合
とは異り、イネの育苗上極めて著しく特徴のある
効果を発揮する。 第2の発明の人工床土構成材では、ニトロフミ
ン酸またはその塩類の添加量の大小に応じて種モ
ミの発芽が遅れる。すなわち、第1の発明におけ
る人工床土構成材100%には種した種モミの発芽
は、公用の発芽方法で、公用の床土には種した種
モミの発芽と変らないが、たとえば水砕鉱滓に対
し0.5%のニトロフミン酸を添加した第2の発明
における人工床土構成材には種した種モミの発芽
は、約6時間〜8時間遅れ、また5%のニトロフ
ミン酸を添加したときは約24時間遅れる。1%、
2%、3%、4%のニトロフミン酸をそれぞれ添
加したときは、それぞれ上記の時間内でニトロフ
ミン酸の添加量の多い方が少ない方より遅れる。 上述のように発芽が遅れるに従つて、稚苗の初
期生育もまた遅れるかにみえる。しかるところ、
育苗日数が経過するに従つて、ニトロフミン酸の
添加量の多い順に、発芽の遅れによる初期生育の
遅れを取り返す。すなわち、は種後7日目頃から
は、ニトロフミン酸を添加した人工床土構成材に
は種した苗は、目にみえて生育が旺盛となり、10
日〜15日目の2.0令〜2.5令期には、該ニトロフミ
ン酸を添加した人工床土構成材で育苗したすべて
の稚苗の草丈は、公用の床土で育苗した稚苗の草
丈に追いつき、更に20日〜23日目の3.0令〜3.5令
期には、ニトロフミン酸の添加量の多い順に草丈
が高くなり、公用の床土で育苗した稚育苗追い越
すに至る。 また、育苗期間30日以上に渉る4.5令〜5.0令期
の中苗の育苗においては、ニトロフミン酸を添加
した効果は一層顕著に現われ、公用の床土は勿論
第1の発明の人工床土構成材で育苗した中苗の生
育をもはるかに凌駕する。 ニトロフミン酸を添加して処理した場合は上述
のごとく地上部の発育が顕著である特徴がある
が、一方ニトロフミン酸塩類なかんづくアンモニ
ウム塩を添加して処理した場合には、地上部はニ
トロフミン酸にはやや及ばないが、根の発育が極
めて旺盛であつて、非常に強い弾力性のある苗マ
ツトを形成する著しい特徴がある。 以上の如くである。なお、第2の発明の人工床
土構成材においても、粘土や泥炭その他の腐蝕物
質などを添加することのできるのは、第1の発明
の人工床土構成材におけると全く同様である。 なお、本発明においては、第1の発明第2の発
明ともに酸処理は硫酸で行なわなければならな
い。鉱酸に硫酸の外に燐酸・硝酸・塩酸がある
が、床土の処理に有効な鉱酸は硫酸だけであつ
て、その他の酸で処理すると苗の生育は極めて不
良である。このことは、本発明における硫酸処理
が単なるPHの調整でないことの証左でもある。な
お、上記硫酸処理には硫黄処理を含む。 ちなみに、珪酸石灰肥料の施用適量は一般に
「肥効がいちじるしく認められる水田での施用量
は1a当り10Kg〜20Kg(10a当り100Kg〜200Kg)く
らいである。」(農学大事典、野口弥吉編、養賢堂
1323頁)これに対し、前述のごとく、10a分のイ
ネ苗の育苗用に必要な育苗箱数は稚苗で20箱、中
苗で35箱であり、1箱に必要な本発明の人工床土
構成材は、該人工床土構成材100%で育苗する
と、1箱分5Kg必要であるから、10a分では100Kg
〜175Kgとなる。すなわち、本田10a当りに施用す
る珪酸石灰肥料の必要量と10a当りの育苗上必要
とする本発明の人工床土構成材中に含まれる水砕
鉱滓の量とは、添加物質を差引いても実用上一致
する。なお、珪酸石灰肥料の公定粒度は水砕鉱滓
を原料とする場合は2000ミクロンの網目ふるいを
全通する粒度であるが、これに対し本発明の人工
床土構成材の基材である現在セメント向けに市販
されている水砕鉱滓の粒度は、第2表の例でみる
ごとく、粒径2mm以下が66.5%〜97.6%を占めて
いる。この点においても粗目の珪酸石灰肥料とセ
メント向けの水砕鉱滓とは実用上さしたる差はな
い。なお、本発明においては珪酸石灰肥料の網目
粒分も人工床土構成材の基材として使用しうるこ
とは前述の通りである。 従来は、珪酸石灰肥料と育苗用床土とは全く別
物であつて両方を必要とした。然るところ、珪酸
石灰肥料は10a当り100Kg以上もの多量を施用しな
ければならず、甚だ困難な作業であるため、必要
と知りつつ労力不足などのためになかなか実行さ
れていない。かくて年々地力は減退し、みすみす
冷害による損害を甘受しているというのが現状で
ある。 しかるところ、本願発明の人工床土構成材をも
つてイネ苗を育苗し、土付苗を田植えすることに
よつて、従来珪酸石灰肥料と床土との両方に要し
た原価は半減すると同時に農作業は大巾に省力化
されることになる。 次に、水砕鉱滓の種類と成分組成表および水砕
鉱滓の物理性の分析表を掲げる。
The present invention relates to an artificial bed soil constituent material for raising rice seedlings. More specifically, the present invention provides an artificial bed soil composition for raising rice seedlings, which is obtained by treating granulated minerals containing soluble silicic acid and alkali with sulfuric acid, or sulfuric acid and nitrofumic acid or its salts in the presence of water, and then drying. It is related to materials. Previously, the present inventor developed a plant cultivation medium constituent material (Patent No. 909970), which is made by crushing porous slag into gravel shapes obtained by quenching molten slag by-product from a blast furnace during iron manufacturing with water. ) and a plant cultivation medium constituent material made by mixing nitrofumic acid with the slag (Japanese Unexamined Patent Application Publication No. 1989-1989)
No. 48829) was proposed. The present invention relates to an artificial soil constituting material for raising seedlings in boxes, which is a further improved medium constituting material proposed above, particularly for raising rice seedlings. In other words, the improvement of the present invention is that the granulated mineral used as a base material is not limited to a type of slag obtained during iron manufacturing, but can be broadly used as a by-product when refining various ferroalloys and granulated slag. for the purpose 1
It includes minerals made by blending seeds or two or more minerals, melting and pulverizing them, and has a wide range of applications.On the other hand, it is important that the chemical components contain soluble silicic acid and alkali. In addition, the granulated mineral is treated with sulfuric acid or sulfuric acid and nitrofumic acid or its salts in the presence of water, and then dried. This significantly improves the effectiveness of this material as an artificial bed soil component for raising rice seedlings in boxes, which is only a cm thick. Currently, 80 of the approximately 2.5 million hectares of cultivated area in the United States
More than % of rice seedlings are raised in boxes and mechanically planted. The amount of soil required for raising seedlings is much larger than expected. Today, large-scale cooperative seedling-raising centers have emerged that concentrate on raising hundreds of hectares of seedlings. Generally, 4.5 to 5.5 kg is used per box for raising seedlings in the bed of natural soil, but 20 boxes for young seedlings and 35 boxes for medium seedlings per 10 a is 90 kg to 190 kg, and if the yield of original soil is 50%, 180 kg to 380 kg. Therefore,
For example, 100 hectares requires 180 to 380 tons of soil. Furthermore, unless the quality is uniform, it is difficult to raise seedlings on a large scale, so stably securing a large amount of bed soil of uniform quality is a serious problem in rice cultivation. In response, various proposals have been made in the past, but most of them use natural soil found in various places, such as mountain soil, as the main material, and add some auxiliary materials to it, or make it agglomerated. It is processed. However, it is extremely difficult to secure large quantities of natural soil of constant quality year after year, and even if a certain amount of natural soil can be obtained temporarily, it must be excavated, crushed, sifted, and used as auxiliary materials. It is extremely difficult to carry out the process of blending and disinfecting soil as part of agricultural work, and to be able to supply the bedding soil by oneself. In addition, several types of artificial culture media made from natural or artificial fibers or chemically synthesized products that are not based on natural soil have been proposed, and their convenience in handling has been emphasized. Not only these chemically synthesized products, but also rice straw, paper waste, and the like lack essential nutrients for plant cultivation, so it is inevitable that the seedling growth performance will not be as good as that of natural soil. Therefore, these materials can only be used as supplementary materials to compensate for deficiencies in natural soil. It has also been proposed to carbonize rice husks, which are produced in large quantities during rice cultivation, and use them as bed soil.
However, it is well known that seedling-raising results to date do not improve unless 50% or more of natural soil is mixed with rice husk charcoal. The capacity is 50%, but if you take into account the specific gravity of both, rice husk charcoal is nothing more than a filler for natural soil. As mentioned above, the conventional proposals, whether it is a bed of natural soil, a synthetic medium, an artificial medium made from processed fibers, or a rice husk charcoal medium, all have their advantages and disadvantages. Those that have somewhat excellent seedling-raising results, those that are convenient to use,
Or even if it is a self-sufficient agricultural by-product,
It is limited to bedding soil for raising Shiyosen seedlings or a substitute thereof. The present inventor has created an artificial bed soil composition material with excellent seedling-raising results, with the aim of eliminating all the drawbacks of the conventionally used bed soil for raising rice seedlings and solving the soil preparation problems that are becoming more serious today. At the same time, Honda conducted intensive research to develop an artificial bed soil constituent material that is mainly composed of silicic acid and has the effect of increasing soil fertility, and as a result, the present invention was completed. That is, the first invention of the present application is based on one or two types of
In the presence of water, granulated minerals containing soluble silicic acid and alkali are prepared by blending and melting minerals, quenching them in water, and crushing them into fine powder or gravel.
This invention relates to an artificial bed soil component for raising rice seedlings that is treated with sulfuric acid and then dried. Although the granulated minerals that are the base material of the artificial bed soil composition material of the present invention can be produced for the purpose of their own use, in practical terms, iron manufacturing is performed when refining various ferroalloys.
Since it is economical to use porous glassy minerals obtained by quenching molten slag with water and crushing it into gravel-like pieces, the slag that is produced in large quantities year after year as a by-product is very economical, so the use of granulated slag will be described below. As is clear from the chemical composition of each slag listed in Table 1 and the physical properties shown in Table 2, although there are some differences depending on the type of slag, all slags have chemical properties. It has physical properties that are superior to general natural soil as a soil for plant cultivation, both in terms of soil and physical properties.In particular, it evenly contains soluble silicic acid, which is required in large quantities for rice cultivation, as well as other inorganic elements. There is. Lime silicate fertilizer uses soluble silicic acid in the slag mentioned above.
Manufactured by light crushing of products containing 20% or more alkaline content and 35% or more. In order to be a fertilizer, it is necessary to have good solubility, so it is preferable that the particle size is as fine as possible, and it is also preferable that it be a fine powder. Therefore, the official particle size of silicate lime fertilizer is limited to 100% passing through a 2000 micron mesh sieve, and at least 60% of the granulated product passing through a 590 micron mesh sieve. On the other hand, the primary problem with the artificial bed soil composition material of the present invention is the physical property of allowing young rice seedlings to extend their roots into the bed soil, take in nutrients, water, and oxygen, and support the plant body. It must also have good ventilation, drainage, and water retention. For this purpose, the particle size of the granulated slag, which is the base material of the artificial bed soil component, must be 0.5 mm to 0.5 mm.
It is preferable that 3.0 mm accounts for about 60% to 70%. However, in the present invention, aggregates are formed during the manufacturing process of the artificial bed soil component as described later, so even finely crushed granulated slag, such as silicate lime fertilizer, can be used sufficiently. I can do it. As mentioned above, the granulated slag, which is the base material of the artificial bed soil component of the present invention, has the highest chemical composition.
As shown in the table, it is similar to silicate lime fertilizer, but the difference is that, as shown in Table 2, it contains slightly coarser grains than silicate lime fertilizer. Although it is not particularly necessary to contain soluble silicic acid in a general medium for growing vegetables and other crops, the artificial bed soil composition material of the present invention is suitable for rice, a typical silicic acid plant that absorbs 10 times more silicic acid than nitrogen. Since it has a specific purpose of growing seedlings, it is particularly important that it contains a large amount of soluble silicic acid. Conventional soil beds do not take into account the above-mentioned important points. From this point of view, in the present invention, granulated minerals containing soluble silicic acid and lime, practically granulated slag, and above all granulated blast furnace slag, are used as the base material for the artificial bed soil constituent material for raising rice seedlings. . In the present invention, the granulated slag is treated with sulfuric acid in the presence of water and then dried, but normally the granulated slag is uniformly mixed with a dilute sulfuric acid solution.
After mixing, dry by a method known per se, such as natural drying or hot air drying. The amount of sulfuric acid used at this time varies depending on the type of granulated slag used, but it is usually 95% concentrated sulfuric acid. As, 1 to 10 of granulated slag
About % by weight is sufficient. When the artificial bed soil constituent material of the present invention obtained in this way was observed under a microscope, it was found that fine particulate matter, which is thought to have been produced by a certain chemical reaction between sulfuric acid and some of the components of the granulated slag, was found in the granulated soil. The slag is coated and adhered to the surface of a single grain of slag to form agglomerates (primary agglomerates).
A plurality of secondary aggregates gather to form aggregates (secondary aggregates) with a larger particle size. The primary aggregates are strong aggregates, and the bonding strength of the secondary aggregates is relatively weak. However, by adding an agglomerate aid, the bonding strength of the secondary agglomerates can be adjusted. When rice seedlings are grown in the artificial soil material of the present invention that has been treated with sulfuric acid in the presence of water and then dried, the rice seedlings have a good light-receiving posture and have absorbed enough silicic acid from the beginning of the seedlings. Not only is it possible to grow healthy seedlings with a large amount of roots and strong resistance to pests and diseases, but when the seedlings are planted in rice fields, it is possible to increase the silicate fertility of the rice fields.
Furthermore, depending on the amount of the artificial soil constituting material of the present invention used for seedling raising and the natural and other conditions of Honda, there is a surprising effect that there is no need to separately apply lime silicate fertilizer. When rice seedlings are raised using 100% untreated granulated slag as bed soil, the growth is relatively slow and the plant height is short.
Leaf color tends to become lighter. However, when the same granulated slag was treated with sulfuric acid in the presence of water and then grown in the dried artificial bed soil composition material of the present invention, as shown in the examples, the plants grew extremely well and the plant height increased. It is possible to grow extremely high-quality, healthy seedlings that have a heavy dry matter weight, a large increase in length calculated by dividing the dry matter weight by the plant height, and have good leaf color. Then,
The results of raising seedlings are not only excellent for young seedlings, but also especially excellent for medium-sized seedlings. As is well known, rice grows at a PH level in public soil.
When the value is 4.5 to 5.5, it is very good, and when it is 6.0 or more, both growth and disease and insect resistance become significantly worse. However, the PH of the artificial bed soil constituent material of the present invention is
Even if the pH is between 6.0 and 7.0, it is possible to grow healthy seedlings that are superior to seedlings grown in public bed soil with a pH of 4.5 to 5.5. Although the details of why such a result occurs are not clear, the following is a possible explanation. As mentioned above, since the artificial bed soil constituent material of the present invention is treated with sulfuric acid, the pH naturally decreases. However, the fact that the lower pH is not the only reason for the improved seedling performance is that the artificial bed soil component of the present invention can produce good quality healthy seedlings even if the pH is between 6.0 and 7.0, as shown in the examples. This is evident from the ability to grow seedlings. When granulated slag is treated with sulfuric acid in the presence of water and then dried, primary aggregates and secondary aggregates are formed as described above, and the secondary aggregates germinate from seeds and become young. It has extremely advantageous properties for raising rice seedlings, such as maintaining aggregates in the early stage of seedling development and gradually disintegrating them by watering in the later stages of seedling growth. It is not hard to imagine that the extremely good physical properties of the artificial bed soil constituent material of the present invention for raising rice seedlings are one of the reasons for the growth of healthy seedlings. Surprisingly, when granulated slag is treated with sulfuric acid, it not only lowers the pH but also significantly increases the base substitution capacity. For example, when 1 kg of granulated blast furnace slag is treated with diluted sulfuric acid (50 g of 95% concentrated sulfuric acid diluted 10 times as much water) and dried, the base displacement capacity before treatment was 1.5 me /100 g. , after processing
It increases more than 10 times to 15.2 me /100g. This means that the granulated slag, which had almost no ability to replace ammonia nitrogen before treatment, now has sufficient performance to replace ammonia nitrogen, which is effective as a fertilizer for raising rice seedlings after treatment. This shows that. This is also considered to be one of the important factors in raising good seedlings. If the base replacement capacity is 1.5 me /100g, ammonia nitrogen cannot be applied as a base fertilizer.
Nitrate nitrogen must often be applied as top dressing, but at 15.2 me /100g ammonia nitrogen can be applied as base fertilizer. This point is important for raising rice seedlings. In addition, rice seedlings grown using the artificial bed soil constituent material of the present invention absorb a larger amount of silicic acid than seedlings grown using public bed soil. For example, 3.2-year-old seedlings grown in the artificial bed soil of the present invention absorb 6% or more of silicic acid. This value is more than double the 2.5% silicic acid absorbed by the same seedlings grown in public soil. This is one of the main reasons why, contrary to popular belief, healthy seedlings with excellent pest and disease resistance and environmental resistance can be grown even if the pH of the artificial bed soil component of the present invention is 6.0 or more and 7.0. it is conceivable that. Although the above outline is as follows, the details of the decisive reason why seedling raising using the artificial bed soil component of the present invention is outstandingly superior are still not clear, but the synergistic effect of the above-mentioned facts and some other unknown phenomenon is likely. This is probably due to From the above, it is extremely clear that the sulfuric acid treatment of granulated slag in the present invention is not the same as simply adjusting the PH of the bed soil, such as the sulfuric acid treatment of public soil beds. The purpose of the artificial bed soil composition material of the present invention is to raise rice seedlings, increase the soil fertility mainly using Honda's silicic acid, and furthermore, to replace the application of lime silicate fertilizer. When raising seedlings,
Raising seedlings using 100% of the artificial bed soil constituent material is also suitable for the purpose of the present invention. but,
Clay, peat, and other humic substances can also be added to the artificial bed soil constituent material of the present invention. These substances bring the following effects to the artificial bed soil constituent material depending on their respective characteristics. For example, adding clay increases the elasticity of the bed soil, which is effective in shaping the pine. Also,
Adding clay with a large base replacement capacity increases the fertilizer retention capacity of the bed soil. However, if a large amount is added, the amount of granulated slag in the bed soil will be reduced, which will reduce the effect of increasing Honda's soil fertility, which is one of the main objectives of the present invention. In addition, for clays with a relatively small base replacement capacity, unless a large amount is added, there is no effect of increasing the base replacement capacity of the bed soil.
Adding clay with a base replacement capacity lower than this to the artificial bed soil constituent material of the present invention, which has increased to 15.2 me /100g, will have a rather negative effect. Taking this into account, it is preferable to limit the clay addition/mixing to 20% of the granulated slag with a base displacement capacity of 50 me /100g or more. Furthermore, adding peat, especially high-quality peat moss, has the effect of increasing the fertilizer retention capacity of the bed soil and increasing the swelling and softness of the bed soil. However, peat moss has a tentative specific gravity of about 0.1, and the tentative specific gravity of granulated mine slag is around 1.0.
It's only 1/10th. Therefore, although peat moss is a good quality material for mixing soil for raising seedlings of vegetables, etc., the amount of peat moss added should not be restricted too much when used as a material for mixing artificial soil for raising seedlings of rice according to the present invention. This will make it too bloated. For example, when 10% by weight of peat moss is mixed with granulated slag, the tentative specific gravity of the bed soil after mixing will be around 0.6 to 0.7, and the proportion of granulated slag in the bed soil will be very small, so Honda's silicic acid The effect of increasing soil fertility, mainly due to , is drastically reduced. Considering this, it is preferable to limit the blending ratio of peat moss to 5% by weight of the granulated slag. In addition, various other humic substances can also be used as additives in the artificial bed soil constituent material of the present invention, and have effects similar to those of peat moss. However, the above additive compound substances,
Although there are the above-mentioned effects, as far as the effect on the growth of rice seedlings is concerned, there is no remarkable effect that significantly exceeds the seedling growth results obtained with the 100% artificial bed soil component of the first invention of the present application. Usually you can't expect much.
However, nitrofumic acid or its salts, which are artificial humic acids, are extremely unique from the various additives mentioned above, and have a significantly superior effect on the growth of rice seedlings. Therefore,
Nitrohumic acid or its salts will be described in detail below as a second invention in addition to the first invention of the present application. The second invention of the present application is to melt a granulated mineral containing soluble silicic acid and an alkali content, which is obtained by blending one or more minerals, melting the mixture, quenching it in water, and crushing it into fine powder or gravel. The present invention relates to an artificial soil constituting material for raising rice seedlings, which is treated with sulfuric acid and nitrofumic acid or its salts in the presence of sulfuric acid, and then dried.
That is, the second invention of the present application is to add nitrofumic acid or its salts to the surface of the granulated mineral in the artificial bed soil constituent material according to the first invention, as described below, in a special form of the present invention. This invention relates to artificial bed soil for raising rice seedlings, which is formed by closely adhering grains. Thus, in the second invention, a particulate product that is thought to be produced by a certain chemical reaction between sulfuric acid and some of the components of granulated slag, and nitrofumic acid or its With salts,
They stick to each other closely and uniformly on the surface of the granulated slag, producing strong primary aggregates as in the case of the first invention, and furthermore, a plurality of primary aggregates aggregate to form a rice box. It was confirmed by microscopic observation that relatively light secondary aggregates were formed to a preferable level during seedling raising. Further, in this case, by adding an agglomerate aid to the water, the bonding strength of the secondary agglomerates can be adjusted, as in the case of the first invention. The artificial bed soil constituent material in the first invention of the present application is
As mentioned above, due to the absorption of a large amount of silicic acid and other comprehensive effects that were not observed in conventional bed soil for raising rice seedlings, extremely excellent rice seedlings can be grown, and the seedlings with soil can be planted in rice fields. In particular, it was already a completely new artificial bed soil constituent material for raising rice seedlings, which could be expected to have the same effect when applied with lime silicate fertilizer. However, in the artificial bed soil component formed by treating granulated slag with sulfuric acid and nitrofumic acid or its salts and drying it in the second invention of the present application,
This is significantly different from the artificial bed soil constituent material of the first invention and the case where clay, peat, etc. are added and mixed to the constituent material, and as described below, a remarkable special effect is produced. Nitrohumic acid is a dark brown powder with a base displacement capacity of 250 me to 500 me /100g and a pH of about 3.0, obtained by treating young charcoal with nitric acid. It is clear from Japanese Patent Laid-Open Publication No. 1988-48829, which the present inventor previously filed, that when nitrofumic acid is added and mixed with granulated blast furnace slag, it becomes a medium constituting material that facilitates plant growth. However, in the same invention, nitrofumic acid or its salts were mixed with granulated blast furnace slag. On the other hand, in the artificial bed soil constituent material which is the second invention of the present application, as mentioned above, granulated minerals - practically granulated slag is treated with sulfuric acid and nitrofumic acid or its salts in the presence of water, Then dry. Then, the nitrofumic acid or its salts come into close contact with or combine with the fine particle products that appear to have been produced by some kind of chemical reaction between sulfuric acid and some of the components of the granulated slag, and further The surface is closely coated with adhesive to form primary aggregates, and a plurality of primary aggregates are further aggregated to form large secondary aggregates. In this case, the amount of nitrofumic acid or its salts added is usually 0.1% to 5.0% by weight in the case of free nitrofumic acid, and 0.05% in the case of nitrohumic acid ammonium salt or potassium salt thereof, based on the granulated slag. % to 100% by weight. The thus obtained artificial bed soil constituent material in the second invention is different from the case where clay or peat is added to the artificial bed soil constituent material in the first invention, and is extremely effective in raising rice seedlings. Demonstrates a distinctive effect. In the artificial bed soil constituent material of the second invention, the germination of fir seeds is delayed depending on the amount of nitrofumic acid or its salts added. In other words, the germination of seed fir seeded in 100% artificial bed soil constituent material in the first invention is the official germination method, which is the same as the germination of seed fir seeded in public bed soil, but, for example, water granulation is used. In the artificial bed soil component of the second invention, in which 0.5% nitrofumic acid was added to the slag, the germination of fir seeds was delayed by about 6 to 8 hours, and when 5% nitrofumic acid was added, Approximately 24 hours delay. 1%,
When 2%, 3%, and 4% of nitrofumic acid are added, the amount of nitrofumic acid added is longer than the amount of nitrofumic acid added within the above-mentioned time periods. As germination is delayed as described above, the initial growth of seedlings also appears to be delayed. However,
As the number of days for raising seedlings passes, the amount of nitrofumic acid added is increased in order to recover from the delay in initial growth due to delay in germination. In other words, from around 7 days after seeding, seedlings planted in the artificial soil material containing nitrofumic acid began to grow visibly and vigorously, and after 10 days.
At the 2.0 to 2.5 instar stage on days 1 to 15, the plant heights of all seedlings grown in the artificial bed soil material containing the nitrofumic acid caught up with the plant height of seedlings grown in public bed soil. Furthermore, at the 3.0 to 3.5 instar stage on the 20th to 23rd day, the plant height increases as the amount of nitrofumic acid added increases, reaching the point where it surpasses the seedlings grown in public soil. In addition, when raising seedlings in the 4.5 to 5.0 instar stage over a period of 30 days or more, the effect of adding nitrofumic acid is even more pronounced, and the effect of adding nitrofumic acid is even more pronounced in the artificial bed soil of the first invention as well as the official bed soil. The growth far exceeds that of medium-sized seedlings grown using constituent materials. When treated with the addition of nitrofumic acid, the growth of above-ground parts is remarkable as mentioned above, but on the other hand, when treated with the addition of nitrofumic acid salts, especially ammonium salts, the above-ground parts are not affected by nitrofumic acid. Although it is not as good as this, it has the remarkable feature of extremely vigorous root growth and the formation of very strong and resilient seedling pines. The above is as above. It should be noted that clay, peat, and other corrosive substances can be added to the artificial bed soil constituent material of the second invention, just as in the artificial bed soil constituent material of the first invention. In addition, in the present invention, the acid treatment must be performed with sulfuric acid in both the first invention and the second invention. In addition to sulfuric acid, there are mineral acids such as phosphoric acid, nitric acid, and hydrochloric acid, but sulfuric acid is the only mineral acid that is effective for treating bed soil, and seedling growth is extremely poor when treated with other acids. This also proves that the sulfuric acid treatment in the present invention is not just a pH adjustment. Note that the sulfuric acid treatment includes sulfur treatment. By the way, the appropriate amount of lime silicate fertilizer to apply is generally ``In paddy fields where the fertilizer effect is most noticeable, the amount applied is about 10Kg to 20Kg per 1a (100Kg to 200Kg per 10a)'' (Encyclopedia of Agriculture, edited by Yakichi Noguchi, Kendo
On the other hand, as mentioned above, the number of seedling boxes required for raising rice seedlings for 10 a is 20 boxes for young seedlings and 35 boxes for medium seedlings, and the artificial bed of the present invention required for one box. If you raise seedlings using 100% of the artificial bed soil component, you will need 5kg for one box, so 100kg for 10a.
~175Kg. In other words, the required amount of lime silicate fertilizer to be applied per 10 hectares of Honda and the amount of granulated slag contained in the artificial bed soil component of the present invention required for raising seedlings per 10 hectares are the same for practical use even after subtracting additives. Match above. The official particle size of silicate lime fertilizer is the particle size that allows it to pass through a 2000 micron mesh sieve when it is made from granulated slag. As shown in the example in Table 2, 66.5% to 97.6% of the grain size of granulated slag commercially available for the industry is 2 mm or less. In this respect as well, there is no practical difference between coarse silicate lime fertilizer and granulated slag for cement. As mentioned above, in the present invention, the mesh granules of lime silicate fertilizer can also be used as a base material for the artificial bed soil constituent material. Conventionally, silicate lime fertilizer and bed soil for raising seedlings were completely different things, and both were required. However, silicate lime fertilizer must be applied in large amounts of over 100kg per 10a, which is extremely difficult work, so even though people know it is necessary, it is not carried out due to lack of labor. As a result, the soil's fertility is decreasing year by year, and the current situation is that the soil is suffering damage from cold weather. However, by raising rice seedlings using the artificial bed soil constituent material of the present invention and planting the seedlings with soil, the cost conventionally required for both silicate lime fertilizer and bed soil can be halved, and at the same time, agricultural work can be reduced. This will save a lot of labor. Next, we will list the types and composition of granulated slag, as well as an analysis table of the physical properties of granulated slag.

【表】【table】

【表】【table】

【表】 第2表は、セメント向けの水砕鉱滓として現在
市販されているものを分析したものであるがこの
ままでも本発明のイネ苗の育苗用人工床土構成材
の基材として充分使用することができる。なお、
人工床土構成材として一層適した物理性を望む場
合には、溶融鉱滓の温度、急冷するために使用す
る水の温度・量・水速などの作業条件を変えるこ
とによつて水砕鉱滓の粒度を望み通りに変更する
ことは容易に可能である。 因に、第2表の分析では、例外的に混入する粒
径5.0mm以上のれきは除いて分析した。なお、本
イネ育苗用人工床土はイネの育苗のみに限らずそ
の他の植物、特に野菜栽培用の培地として使用す
ることができる。 以下実施例により本発明を更に具体的に説明す
る。 実施例 (1) 日本鋼管製の水砕鉱滓10Kgに95%濃硫酸700
gを4の水に薄めた希硫酸を加えてまんべん
なく撹拌し、温風乾燥機で乾燥して、次のごと
きイネ育苗用人工床土構成材をえた。 半透明の薄い褐色であつたガラス質の水砕鉱
滓の表面に、硫酸と水砕鉱滓の成分の一部とが
化合してできたと思われる微粒子が蝟集してま
んべんなく被覆接着した不透明で白色の粒径
0.5mmから粒径50mmに及ぶ各粒径の1次団粒と
2次団粒とが混在していた。 2次団粒は複数個の1次団粒が集結したもの
で、粒径50mm前後の団塊も含む各種粒径の混在
物である。これを軽破砕して粒径3mm以下の粒
度にした。 なお、得られた人工床土構成材のPHは、乾燥
直後は5.5であつたが、1日後には6.0、2日後
には6.8となり以後ほぼ同値で落ちついた。 (2) (1)と同じ日本鋼管製の水砕鉱滓10Kgに95%濃
硫酸700gを4の水で薄めた希硫酸を加え、
更にニトロフミン酸100gを加えてまんべくな
く撹拌し、次いで温風乾燥機で乾燥してイネ育
苗用人工床土構成材をえた。 かくして得られた人工床土構成材を顕微鏡で
観察したところ、半透明の薄い褐色のガラス質
の水砕鉱滓の表面に、硫酸と水砕鉱滓の成分の
一部とが化合して生成したかに思われる微粒子
物質とニトロフミン酸の粉末とが密着して、ま
んべんなく蝟集被覆接着した不透明の濃グレー
の1次団粒と2次団粒とが混在していた。 2次団粒は、複数個の1次団粒が軽度に集結
した粒径50mm前後の大きな団塊も混在する各種
粒径の団粒の混在物であるので、これを軽度に
破砕して粒径3mm以下の粒度にした。 得られた人工床土構成材のPHは、乾燥直後は
5.3であつたが、1日後には5.8、2日後には6.7
となり以後ほぼ同値で落ちついた。 (3) (1)と同じ日本鋼管製の水砕鉱滓10Kgに95%濃
硫酸700gを4の水で薄めた希硫酸とニトロ
フミン酸アンモニウム20gとお添加し、まんべ
んなく撹拌し、温風機で乾燥してイネ育苗用人
工床土構成材をえた。 かくして得られた人工床土構成材を顕微鏡で
観察したところ、半透明の薄い褐色のガラス質
の水砕鉱滓の表面に、硫酸と水砕鉱滓の成分の
一部とが化合して得られたと思われる微粒子生
成物とニトロフミン酸アンモニウムとが結合し
て、まんべんなく蝟集被覆接着した不透明の薄
い褐色(元の水砕鉱滓よりやや濃い)の1次団
粒と2次団粒とが混在していた。なおこの場合
硫酸と水砕鉱滓の成分の一部とが化合したと思
われる微粒子生成物とニトロフミン酸アンモニ
ウムとは、単なる混合ではなく何等かの理化学
的結合をしている模様である。 2次団粒は、1次団粒が軽度に集結した粒径
50mm前後の大きい大塊も混在する各種粒径の団
粒の混在物なので、これを軽度に破砕して粒径
5mm以下の粒度にした。 該人工床土構成材のPHは、乾燥直後は5.4で
あつたが、1日後には5.9、2日後には7.0とな
り、以後ほぼ同値で落ちついた。 実施例 2 以下述べるA〜Nの14種類の床土を用いて各2
連制で公用の育苗箱により3.2令の稚苗の育苗試
験を行つた。 A 水砕高炉鉱滓10Kgを95%の濃硫酸700gを4
の水で薄めた希硫酸で処理し、次いで乾燥し
たイネ育苗用人工床土構成材のみの床土。 B Aの床土構成材に1Kgの粘土を添加した床
土。 C Aの床土構成材に500gのピートモスの細砕
品を添加した床土。 D 水砕高炉鉱滓10Kgを、95%の濃硫酸700gを
4の水で薄めた希硫酸とニトロフミン酸の粉
末50gを添加して処理し、次いで乾燥したイネ
育苗用人工床土構成材のみの床土。 E Dのニトロフミン酸が100gである同床土構
成材のみの床土。 F Dのニトロフミン酸が300gである同床土構
成材のみの床土。 G 水砕高炉鉱滓10Kgを、95%の濃硫酸700gを
4の水で薄めた希硫酸と20gのニトロフミン
酸アンモニウムとを添加して処理し、次いで乾
燥したイネ育苗用人工床土構成材のみの床土。 H 水砕シリコマンガン鉱滓10Kgを、95%の濃硫
酸700gを4の水で薄めた希硫酸で処理し、
次いで乾燥したイネ育苗用人工床土構成材のみ
の床土。 I 水砕シリコマンガン鉱滓10Kgを、95%の濃硫
酸700gを4の水で薄めた希硫酸と30gのニ
トロフミン酸アンモニウムとを添加して処理
し、次いで乾燥したイネ育苗用人工床土構成材
のみの床土。 J 水砕高炉鉱滓100%をもつてする比較例の床
土。 K 水砕高炉鉱滓10Kgにピートモス500gを混合
した比較例の床土。 L 水砕高炉鉱滓10Kgに粘土20Kgを混合した比較
例の床土。 M I社製市販の粘土を主材とする比較例の床
土。 N 褐色火山灰土を団粒化した比較例の床土。 以上の各床土にチツソ・リンサン・カリ各成分
を1.2g/箱元肥として混入し(但しMは予め肥
料を混入してあつた。)公用の育苗箱(30cm×60
cm×3cm)に各5Kg(但しCとKとは4Kg)を入
れて、品種キヨニシキを鳩胸状に催芽して、180
g/箱まき、2.0令のときに上記各要素0.5gを追
肥として施し、3.2令の稚苗を育苗した。育苗成
績は次のごとくであつた。
[Table] Table 2 is an analysis of currently commercially available granulated slag for cement, which is sufficient to be used as a base material for the artificial bed soil composition material for raising rice seedlings of the present invention. be able to. In addition,
If you want physical properties that are more suitable for use as an artificial bed soil component, you can improve the properties of granulated slag by changing working conditions such as the temperature of the molten slag and the temperature, amount, and speed of the water used for rapid cooling. It is easily possible to change the particle size as desired. Incidentally, in the analysis shown in Table 2, debris with a particle size of 5.0 mm or more, which was included in the analysis, was excluded. The present artificial bed soil for raising rice seedlings can be used not only for raising rice seedlings, but also as a medium for growing other plants, especially vegetables. The present invention will be explained in more detail with reference to Examples below. Example (1) 95% concentrated sulfuric acid 700g to 10kg of granulated slag manufactured by Nippon Koukan Co., Ltd.
Diluted sulfuric acid diluted in 4 g of water was added, stirred evenly, and dried in a hot air dryer to obtain the following artificial bed soil constituent material for raising rice seedlings. On the surface of the glassy granulated slag, which is translucent and light brown, fine particles, which are thought to have been formed by the combination of sulfuric acid and some of the components of the granulated slag, are collected and evenly coated and adhered to form an opaque, white surface. Particle size
There were primary aggregates and secondary aggregates of various particle sizes ranging from 0.5 mm to 50 mm. Secondary aggregates are agglomeration of multiple primary aggregates, and are a mixture of various particle sizes, including aggregates with particle diameters of around 50 mm. This was lightly crushed to a particle size of 3 mm or less. The pH of the resulting artificial bed soil component was 5.5 immediately after drying, but it became 6.0 after one day, 6.8 after two days, and remained at almost the same value thereafter. (2) Add dilute sulfuric acid made by diluting 700 g of 95% concentrated sulfuric acid with water from step 4 to 10 kg of the same Nippon Koukan slag as in (1).
Further, 100 g of nitrofumic acid was added, thoroughly stirred, and then dried with a hot air dryer to obtain an artificial bed soil constituent material for raising rice seedlings. When the thus obtained artificial bed soil constituent material was observed under a microscope, it was found that sulfuric acid was formed on the surface of the translucent light brown glassy granulated slag by a combination of sulfuric acid and some of the components of the granulated slag. The fine particulate matter that appeared to be mixed with the nitrofumic acid powder was mixed with opaque dark gray primary and secondary aggregates that were evenly coated and bonded. Secondary aggregates are a mixture of aggregates of various particle sizes, including large aggregates with particle diameters of around 50 mm, which are agglomeration of multiple primary aggregates. The particle size was set to 3 mm or less. Immediately after drying, the pH of the obtained artificial bed soil constituent material is
It was 5.3, but after 1 day it was 5.8 and after 2 days it was 6.7.
Since then, the price has stabilized at almost the same level. (3) Add 700 g of 95% concentrated sulfuric acid, diluted sulfuric acid diluted with water in step 4, and 20 g of ammonium nitrofuminate to 10 kg of granulated slag made by Nippon Koukan as in (1), stir evenly, and dry with a hot air blower. We have created an artificial bed soil component for raising rice seedlings. When the thus obtained artificial bed soil constituent material was observed under a microscope, it was found that it was obtained by combining sulfuric acid and some of the components of the granulated slag on the surface of the translucent light brown glassy granulated slag. There was a mixture of opaque light brown (slightly darker than the original granulated slag) primary and secondary aggregates that were evenly coated and bonded by the likely fine particle products and ammonium nitrofuminate. . In this case, it appears that the fine particle product, which is thought to be a combination of sulfuric acid and some of the components of the granulated slag, and ammonium nitrofuminate are not simply mixed, but have some kind of physical and chemical bond. Secondary aggregates are a particle size in which primary aggregates are slightly aggregated.
Since it was a mixture of aggregates of various particle sizes including large lumps of around 50 mm, this was lightly crushed to a particle size of 5 mm or less. The pH of the artificial bed soil constituent material was 5.4 immediately after drying, but it became 5.9 after one day, 7.0 after two days, and then settled at almost the same value. Example 2 Using 14 types of bed soil A to N described below, 2 each
Seedling-raising tests of 3.2-year-old seedlings were conducted in a series of public seedling boxes. A: 10kg of granulated blast furnace slag and 700g of 95% concentrated sulfuric acid
An artificial bedding soil for raising rice seedlings that is treated with diluted sulfuric acid and then dried. B A bed soil made by adding 1 kg of clay to the bed soil constituent material of A. C A bed soil made by adding 500g of crushed peat moss to the bed soil component of A. D. 10 kg of granulated blast furnace slag was treated by adding 700 g of 95% concentrated sulfuric acid diluted with 4 parts of water and 50 g of nitrofuminic acid powder, and then dried to create a bed made only of artificial bed soil components for raising rice seedlings. soil. A bed soil containing only the same bed soil constituent materials containing 100g of nitrofumic acid. FD A bed soil containing only the same bed soil constituent materials with 300g of nitrofumic acid. G. 10kg of granulated blast furnace slag was treated by adding 700g of 95% concentrated sulfuric acid diluted with 4 parts of water and 20g of ammonium nitrofuminate. bed soil. H. Treat 10kg of granulated silicomanganese slag with diluted sulfuric acid made by diluting 700g of 95% concentrated sulfuric acid with 4 parts of water.
Next, we made a bed soil consisting only of dry artificial bed soil components for raising rice seedlings. I. 10kg of granulated silicomanganese slag was treated by adding 700g of 95% concentrated sulfuric acid, diluted sulfuric acid diluted with 4 parts of water, and 30g of ammonium nitrofuminate, and then dried only as an artificial bedding material for raising rice seedlings. bed soil. J Comparative example bed soil with 100% granulated blast furnace slag. K Comparative example bed soil made by mixing 10 kg of granulated blast furnace slag with 500 g of peat moss. L Comparative example bed soil in which 10 kg of granulated blast furnace slag and 20 kg of clay were mixed. Comparative example of bed soil made from commercially available clay made by MI. N Comparative example bed soil made of agglomerated brown volcanic ash soil. Each of the above bed soils was mixed with 1.2 g of Chitsuso, Rinsan, and Potassium as base fertilizer per box (however, fertilizer had been mixed in M beforehand).
cm x 3 cm), put 5 kg each (however, 4 kg for C and K), germinate the variety Kiyonishiki into a pigeon-breast shape, and germinate 180
At 2.0 years of age, 0.5 g of each of the above elements was applied as top dressing, and seedlings of 3.2 years of age were raised. The results of seedling raising were as follows.

【表】 従来、育苗成績の考察に際し、出芽揃い、覆土
の持ち上り、二階苗、葉色、ガツチリ苗その他が
判断の基準になつているが、現在では技術の進歩
によつてガツチリ苗のほかはほとんど解決される
に至つた。ガツチリ苗という基準は、もつとも重
要な判定基準の一つであるが、ガツチリという抽
象的表現では客観性がない。そこで本発明者は、
苗の乾物重量(100本の平均1本のmg数)を苗の
丈(100本の平均1本のcm数)で除した商を重長
比として算出し、これを苗の充実度を現す指数と
することがもつとも合理的であると考える。 そうして本発明者は、育苗試験を何十回となく
繰り返えして行つた結果、葉令3.2令の稚苗の場
合、4月〜5月項の関東関部の気温において、草
丈が12cm〜15cm、葉・茎・根の合計乾物重が25mg
以上であつて、重長比が2.00以上である場合、そ
の苗は優れて健苗であつて、田植後の成績も極め
て良好であることを見出した。 この基準は、従来の床土による育苗では極めて
厳しい要求である。ちなみにイネ苗の学理的研究
者である現東北大学の星川博士は、その著「稚
苗・中苗の生理と技術」の112頁において理想的
な稚苗の8条件をあげ、その中で「(1)草丈は12cm
〜15cm、(2)苗令3.2令、(8)苗の1個体の乾物重
(茎・葉・根の全体)は20mg以上で、最大可能限
界は27mgくらいと思われる。」と記述されてい
る。これによつてみると3.2令の稚苗の合格する
重長比は20(mg)÷15(cm)=1.33以上であつて、
最大可能限界は27(mg)÷12(cm)=2.25というこ
とになる。 然るところ、上表でみる通り水砕鉱滓を硫酸で
処理し、または硫酸とニトロフミン酸またはその
塩で処理して乾燥した本発明のイネ育苗用人工床
土構成材で育苗した稚苗は、すべて本発明者の判
定基準に合格し、かつ上記星川博士の最大可能限
界を越えるかまたはこれに近接する値を示してい
る。もつて本発明の人工床土構成材が、如何に飛
跳的に優れているかを知ることができる。一方比
較例の床土では、K・L・M・Nは星川博士の基
準には合格していたが、本発明者の判定基準に合
格するものはなかつた。 また、以上の育苗は発芽後から2.5令期までは
ビニールハウス内で行い、それ以後は露天にだし
て硬化した。然るところ水砕鉱滓を基材としたA
〜Lには全く異常はなかつたが、市販の床土Mの
1箱と、山土を用いた床土Nの2箱とはムレ苗を
生じた。 なお、一般の常識ではイネ苗の育苗はPH4.5〜
5.5が適当で6.0以上では発育が劣り耐環境性が悪
く5℃以下の気温にあうとムレ苗や病苗を生ずる
というのであるが、上記の事実は水砕鉱滓を基材
とする床土ではこのような懸念のないことを示し
ていると同時に他の床土ではたとえPHが4.5〜5.5
であつてもムレ苗や病害にかかる懸念のあること
を示唆している。 実施例 3 本発明のイネ育苗用人工床土構成材の床土で育
苗したイネの稚苗と公用の床土で育苗した稚苗に
イモチ苗を接種して耐病性試験を行つた。試供品
種はイモチ病にとくに弱いササニシキを用いた。 A 水砕高炉鉱滓10Kgを、95%濃硫酸500gを3
の水で薄めた希硫酸で処理して乾燥したイネ
育苗用人工床土構成材のみの床土。PH6.8、元
肥NPK各1.2g、2箱。 B 水砕高炉鉱滓10Kgを、95%濃硫酸350gを水
3で薄めた希硫酸とニトロフミン酸粉末10g
とで処理して乾燥したイネ育苗用人工床土構成
材のみの床土。PH7.0g、元肥NPK各1.2g、2
箱。 C I社製の市販床土、PH5.0、元肥は混入済
み、2箱。 D 赤黄色火山灰土を団粒化した天然土壌床土。
PH4.5、元肥NPW各1.2g、2箱。 以上のうち、AとBとは本発明の実施例の床
土、CとDとは比較例の床土である。 上記4種の床土各々約5Kgを詰めた公用の育苗
箱に、6月20日鳩胸状に催芽した品種ササニシキ
の種150g/箱をまき、公用の育苗方法によつ
て、2.0令に育苗した稚苗にイモチ苗(本田で罹
病しているイネの葉より採取)を接種した。 その結果、AとBの本発明のイネ育苗用人工床
土構成材を床土として育苗した稚苗では、一部分
が僅かに罹病したが、その後病勢は進まず4箱と
も健全に成育した。 一方、CとDの床土で育苗した比較例では、各
箱ともほとんどの苗が罹病し、とくにCの1箱と
Dの2箱の苗の罹病は強度であつて、到底本田に
田植えできる状態ではなくなつた。 実施例 4 水砕鉱滓1Kgにつき硫酸(95%)・塩酸(塩化
水素含量35%)・燐酸(85%)・硝酸(60%)を
各々30c.c.の割合で、各鉱酸を10倍の水に薄めて水
砕鉱滓を処理し、次いで乾燥し各々を床土として
イネの種子を鳩胸状に催芽してまき、公用の方法
で育苗した。なお比較例として無処理の水砕鉱滓
による育苗を加えた。 第1図の写真は、向つて左から右え、無処理の
水砕鉱滓・本発明の硫酸で処理した水砕鉱滓・塩
酸で処理した水砕鉱滓・燐酸で処理した水砕鉱
滓・硝酸で処理した水砕鉱滓の各床土で育苗した
は種後7日目(昭和54年8月7日)の稚苗の姿で
ある。 本発明の硫酸処理の床土で育苗した稚苗は最も
生育がよく、無処理の床土の稚苗がこれに次ぎ、
その外の成績は極めて不良であつて、塩酸処理の
床土では極めてまばらにしか発芽生育せず、燐酸
処理の床土では草丈は硫酸処理の床土に次ぐが葉
は黄色で緑気はほとんどなくて弱々しく、硝酸処
理の床土では発芽が少なく葉は細くて薄緑色であ
つた。
[Table] Traditionally, when considering the performance of seedlings, the criteria for judgment were uniformity of germination, lifting of soil cover, second-story seedlings, leaf color, firm seedlings, etc., but now with advances in technology, other than firm seedlings. It was almost resolved. The criterion of "solid seedlings" is one of the most important criteria, but the abstract expression "solid seedlings" lacks objectivity. Therefore, the inventor
The quotient of the dry weight of the seedlings (the average number of mg per 100 plants) divided by the height of the seedlings (the average number of cm per 100 plants) is calculated as the weight-length ratio, and this represents the fullness of the seedlings. We believe that it is reasonable to use it as an index. As a result of repeated seedling-raising tests dozens of times, the present inventor found that in the case of seedlings at 3.2 leaf age, the plant height at temperatures in the Kanto-Kanbe region from April to May was The total dry weight of leaves, stems, and roots is 25 mg.
As described above, it has been found that when the weight-to-length ratio is 2.00 or more, the seedlings are excellently healthy and the performance after rice transplantation is also extremely good. This standard is an extremely strict requirement for raising seedlings using conventional bed soil. By the way, Dr. Hoshikawa, currently at Tohoku University, who is a scientific researcher on rice seedlings, listed eight conditions for ideal seedlings on page 112 of his book ``Physiology and Technology of Young and Medium-sized Seedlings'', and among them: (1) Plant height is 12cm
~15cm, (2) Seedling age 3.2 years old, (8) The dry weight of each seedling (total of stems, leaves, and roots) is over 20 mg, and the maximum possible limit is thought to be about 27 mg. ” is described. According to this, the passing weight-to-length ratio of 3.2-year-old seedlings is 20 (mg) ÷ 15 (cm) = 1.33 or more,
The maximum possible limit is 27 (mg) ÷ 12 (cm) = 2.25. However, as shown in the above table, seedlings grown using the artificial bed soil constituent material for raising rice seedlings of the present invention, which is made by treating granulated slag with sulfuric acid or by treating it with sulfuric acid and nitrofumic acid or its salt and drying it, are as follows: All of them passed the inventor's criteria and showed values exceeding or close to Dr. Hoshikawa's maximum possible limit. It can be seen how excellent the artificial bed soil constituent material of the present invention is in terms of jump performance. On the other hand, among the bed soils of comparative examples, K, L, M, and N passed Dr. Hoshikawa's criteria, but none of them passed the inventor's criteria. In addition, the above seedlings were raised in a plastic greenhouse from germination until the 2.5 instar stage, and after that they were taken out into the open air to harden. However, A using granulated slag as a base material
There was no abnormality at all in ~L, but one box of commercial soil M and two boxes of soil N using mountain soil produced stuffy seedlings. Generally speaking, rice seedlings should be raised at a pH of 4.5 or higher.
5.5 is appropriate; anything over 6.0 will result in poor growth and poor environmental resistance, resulting in stuffy or diseased seedlings if exposed to temperatures below 5°C. This shows that there is no such concern, and at the same time, even if other bed soils have a pH of 4.5 to 5.5,
Even so, this suggests that there is a concern about stuffy seedlings and diseases. Example 3 A disease resistance test was conducted by inoculating rice seedlings grown in the bed soil of the artificial bed soil constituent material for raising rice seedlings of the present invention and seedlings grown in public bed soil with potato seedlings. The sample variety used was Sasanishiki, which is particularly susceptible to rice blast disease. A: 10 kg of granulated blast furnace slag, 500 g of 95% concentrated sulfuric acid, 3
An artificial bedding soil for raising rice seedlings that has been treated with diluted sulfuric acid and dried. PH6.8, Genhi NPK 1.2g each, 2 boxes. B 10 kg of granulated blast furnace slag, diluted sulfuric acid made by diluting 350 g of 95% concentrated sulfuric acid with 3 parts of water, and 10 g of nitrofumic acid powder.
Artificial bed soil for raising rice seedlings that has been treated and dried with only constituent materials. PH7.0g, Genhi NPK each 1.2g, 2
box. Commercial bed soil made by CI company, PH5.0, base fertilizer already mixed, 2 boxes. D. Natural soil bed soil made from agglomerated red-yellow volcanic ash soil.
PH4.5, Genki NPW 1.2g each, 2 boxes. Among the above, A and B are bed soils of examples of the present invention, and C and D are bed soils of comparative examples. On June 20th, 150g/box of Sasanishiki seeds, which were germinated in the shape of a dove-breast, were sown in a public seedling box filled with approximately 5 kg of each of the four types of bed soil mentioned above, and the seedlings were raised to 2.0 years of age using the public seedling raising method. The young seedlings were inoculated with potato seedlings (collected from leaves of rice plants affected by the disease in Honda). As a result, in the seedlings A and B, which were grown using the artificial bed soil constituent material for raising rice seedlings of the present invention as bed soil, some of them were slightly infected, but the disease did not progress after that and all four boxes grew healthy. On the other hand, in a comparative example in which seedlings were raised in the bed soil of C and D, most of the seedlings in each box were infected, and the disease in the seedlings in one box of C and two boxes of D was particularly severe, making it impossible for them to be planted in Honda rice fields. It is no longer a state. Example 4 Sulfuric acid (95%), hydrochloric acid (hydrogen chloride content 35%), phosphoric acid (85%), and nitric acid (60%) were each added at a rate of 30 c.c. per 1 kg of granulated slag, and each mineral acid was added 10 times more. The slag was treated by diluting it with water, then dried and used as bed soil to germinate rice seeds in a pigeon breast shape and raise seedlings using the official method. As a comparative example, seedlings were raised using untreated granulated slag. The photographs in Figure 1 are, from left to right, untreated granulated slag, granulated slag treated with the sulfuric acid of the present invention, granulated slag treated with hydrochloric acid, granulated slag treated with phosphoric acid, and granulated slag treated with nitric acid. Seedlings grown in each bed of treated granulated slag are shown on the 7th day after seeding (August 7, 1978). Seedlings grown in the soil treated with sulfuric acid of the present invention had the best growth, followed by seedlings grown in untreated soil.
Other results were extremely poor, with only sparse germination and growth in the hydrochloric acid-treated bed soil, and plant height in the phosphoric acid-treated bed soil was second only to that in the sulfuric acid-treated bed soil, but the leaves were yellow and there was almost no greenery. In the soil treated with nitric acid, there was little germination, and the leaves were thin and pale green.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、各酸によつて処理した床土で育苗し
た7日苗の状況を示す写真。 向つて左より右へ、無処理区、硫酸処理区、塩
酸処理区、燐酸処理区、硝酸処理区。
Figure 1 is a photograph showing the condition of 7-day-old seedlings grown in bed soil treated with each acid. From left to right: untreated area, sulfuric acid treated area, hydrochloric acid treated area, phosphoric acid treated area, and nitric acid treated area.

Claims (1)

【特許請求の範囲】 1 1種または2種以上の鉱物を配合して熔融
し、水で急冷して微粉ないし砂れき状に破砕し
た、可溶性珪酸およびアルカリ分を含有する水砕
鉱物を、水の存在下、硫酸で処理し、次いで乾燥
してなることを特徴とするイネ育苗用人工床土構
成材。 2 1種または2種以上の鉱物を配合して熔融
し、水で急冷して微粉ないし砂れき状に破砕し
た、可溶性珪酸およびアルカリ分を含有する水砕
鉱物を、水の存在下、硫酸およびニトロフミン酸
またはその塩類で処理し、次いで乾燥してなるこ
とを特徴とするイネ育苗用人工床土構成材。
[Scope of Claims] 1. A granulated mineral containing soluble silicic acid and an alkali, which is prepared by blending one or more minerals, melting the mixture, quenching it with water, and crushing it into fine powder or gravel. An artificial bed soil constituent material for raising rice seedlings, characterized in that it is treated with sulfuric acid in the presence of sulfuric acid and then dried. 2. A granulated mineral containing soluble silicic acid and alkali, which is obtained by blending one or more minerals, melting the mixture, quenching it with water, and crushing it into fine powder or gravel, is mixed with sulfuric acid and nitrofumin in the presence of water. An artificial bed soil constituent material for raising rice seedlings, characterized by being treated with an acid or its salts and then dried.
JP10817979A 1979-08-27 1979-08-27 Artificial bed soil constituent material for growing rice plant Granted JPS5632921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10817979A JPS5632921A (en) 1979-08-27 1979-08-27 Artificial bed soil constituent material for growing rice plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10817979A JPS5632921A (en) 1979-08-27 1979-08-27 Artificial bed soil constituent material for growing rice plant

Publications (2)

Publication Number Publication Date
JPS5632921A JPS5632921A (en) 1981-04-02
JPS6131972B2 true JPS6131972B2 (en) 1986-07-24

Family

ID=14477988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10817979A Granted JPS5632921A (en) 1979-08-27 1979-08-27 Artificial bed soil constituent material for growing rice plant

Country Status (1)

Country Link
JP (1) JPS5632921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514941Y2 (en) * 1987-07-10 1993-04-20

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58149908U (en) * 1982-03-31 1983-10-07 尼崎製罐株式会社 Fastener
JP5465147B2 (en) * 2010-10-13 2014-04-09 産業振興株式会社 Mineral replenishment material and manufacturing method thereof
CN105028074A (en) * 2015-07-03 2015-11-11 山东省水稻研究所 Rice mechanical dry direct sowing culture method for yellow river delta saline-alkali soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514941Y2 (en) * 1987-07-10 1993-04-20

Also Published As

Publication number Publication date
JPS5632921A (en) 1981-04-02

Similar Documents

Publication Publication Date Title
CN102972232B (en) Rice machine seedling transplanting matrix for chaff ash basis
AU703273B2 (en) Cultivation substrate and method of preparing the same
CN103563612A (en) Planting method for rhizoma atractylodis macrocephalae
CN105123330A (en) Seedling culturing substrate containing Chinese medicine residues and application of seedling culturing substrate in salt golden cypress bonsai seedling culturing
CN102172153A (en) Method for transplanting crop seedlings cultivated by matrix of soil in factory mode
CN108314524A (en) A kind of liquid fertilizer prepared as raw material using charcoal
CN106258404A (en) A kind of method for growing vegetables
JPH0153013B2 (en)
CN112194522B (en) Seaweed rice seedbed conditioner and preparation method thereof
Mann et al. The role of Prosopis cineraria in an agropastoral system in Western Rajasthan
JP5401656B2 (en) Clay heat treatment granular material
JPS6131972B2 (en)
JPH07118636A (en) Soil-improving auxiliary agent
CN107318427A (en) A kind of asparagus bean cultural method
CN111109029A (en) High-calcium rice planting method
CN109896897A (en) A kind of rice nursery substrate and preparation method thereof of cold-resistant drought resisting
CN108450076A (en) The method that salt-soda soil plants fig and improves clay fertilizer situation
JP4864466B2 (en) Transplanting nursery
JPH01312934A (en) Culture medium for plant cultivation
JPS6149924B2 (en)
JP3882142B2 (en) Disintegrating granular plaster
JPH02135027A (en) Cultivation of high mineral rice
JPH0446990A (en) Soil conditioner
JPH04126014A (en) Culture medium for raising paddy rice seedling and method for raising paddy rice seedling with the same
CN108863609A (en) A kind of rice breeding special production-increase slow release fertilizer