JPS6131959B2 - - Google Patents

Info

Publication number
JPS6131959B2
JPS6131959B2 JP55167712A JP16771280A JPS6131959B2 JP S6131959 B2 JPS6131959 B2 JP S6131959B2 JP 55167712 A JP55167712 A JP 55167712A JP 16771280 A JP16771280 A JP 16771280A JP S6131959 B2 JPS6131959 B2 JP S6131959B2
Authority
JP
Japan
Prior art keywords
core
laminate
impeder
magnetic flux
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55167712A
Other languages
Japanese (ja)
Other versions
JPS5790894A (en
Inventor
Hiroshi Takechi
Takaaki Yamamoto
Mitsuo Yoshizawa
Hiroshi Nokata
Hirohisa Ichihara
Hiroshi Kumai
Takashi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Kinzoku Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Kinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Kinzoku Co Ltd filed Critical Nippon Steel Corp
Priority to JP16771280A priority Critical patent/JPS5790894A/en
Priority to CA000391103A priority patent/CA1174294A/en
Priority to EP19810109972 priority patent/EP0053769B1/en
Priority to DE8181109972T priority patent/DE3167229D1/en
Priority to KR1019810004627A priority patent/KR860001382B1/en
Publication of JPS5790894A publication Critical patent/JPS5790894A/en
Publication of JPS6131959B2 publication Critical patent/JPS6131959B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は帯状スケルプを連続して管状に成形
し、管状に成形されたスケルプのエツジ部を加熱
し溶接する高周波電縫造管におけるインピーダに
関する。 高周波電縫造管、例えば高周波誘導溶接造管工
程における溶接部を第1図に示す。 管状に成形されたスケルプ1はワークコイル2
に高周波電流を流すことにより発生する渦電流に
より加熱され、溶接ロール3で加圧溶接される。
渦電流を溶接点に集中させることにより溶接熱効
率を向上させる目的で使用されるインピーダは絶
縁物であるインピーダケース4及び磁性材料であ
るコア5から成り、マンドレル6につなぎこまれ
ている。コア5は造管中その性能を維持するため
にマンドレル6から供給される冷却水によつて冷
却されている。ワークコイル2に流れる高周波電
流によつてコア5を励磁することによつて溶接熱
効率を向上ささせることがインピーダ使用の目的
であるが、インピーダの性能は概ねコア5の特性
によつて決定され、その特性としては透磁率が高
く、かつ飽和磁束密度の大きいことが要求され
る。 即ち、電縫造管の溶接熱効率を向上させるには
インピーダのコア5によりたくさんの磁束を通す
ことが必要である。コア5を通過する磁束量Φは
磁束密度Bと断面積Aの積、即ち1式で表わされ
る。 Φ=B×A ………(1) 従来のインピーダのコア5としては第2図に示
すように粉末酸化物を焼結した酸化物磁性材料で
あるフエライトコア5′を用いていた。 高周波電縫造管の場合、溶接電流が高周波大電
流であるためフエライトコア5′の磁束密度は飽
和に達し、特に造管寸法が小径になるとフエライ
トコア5′の断面積A′も小さくなり、小さい溶接
電流で飽和磁束密度に達するようになる。この場
合(1)式からわかるように通過磁束量も飽和し溶接
熱効率が低下する。 この対策としてフエライトコアメーカによりフ
エライトコアの飽和磁束密度B′sを高めるべく材
質的検討がなされB′s=0.5T程度の特性が得られ
るようになつたが、未だ満足すべき状態にはほど
遠い。 フエライトコアよりも飽和磁束密度の高い材料
としては、珪素鋼又は非晶質合金鋼の金属磁性材
料があり、商用周波数(50〜60Hz)においては厚
さ0.3〜0.35mmに圧延・熱処理した金属磁性材料
をトランスなどの鉄芯として使用している。 高周波電縫造管の場合、溶接電流が高周波大電
流ぜあるため、インピーダは高周波の高磁束密度
下にさらされることになり、コアにも大きな渦電
流が発生して温度が上昇する。又発生する渦電流
は磁束密度の2乗、ならびに周波数の2乗に比例
し、周波数が=10〜500KHzにも達する高周
波電縫造管においてはコアの発熱量は商用周波数
での使用にくらべると極めて大きい。このため、
渦電流による発熱の大きい金属磁性材料の場合、
通常工業的に行ないうる冷却水を流す程度の冷却
ではインピーダのコアの温度をキユリー点以下に
保持することができないため強磁性が消失しイン
ピーダのコアとして使用できなかつた。このこと
が高周波電縫造管において、高周波域での渦電流
による発熱の少ない、フエライトコアを用いてい
た理由である。 本発明は高周波電縫造管における溶接熱効率の
良いインピーダを提供することを目的とする。 本発明は厚さ0.1mm以下の極薄金属性材料を絶
縁接着剤により断面50mm2以下に積層した積層体を
高周波電縫造管におけるインピーダのコアとして
用いたことを特徴とするものである。 以下本発明の構成を説明する。 第3図にインピーダのコアとして使用される金
属磁性材料の積層体7を示す。積層体7はフエラ
イトコアよりも飽和磁束密度の高い珪素鋼又は非
晶質合金鋼の極薄板(以下金属箔という)71お
よび互に隣り合う金属箔71を電気的に絶縁し接
着するためのガラス質被膜、エポキシ樹脂などの
絶縁接着剤72で構成されている。金属箔71は
厚さt0.1mm以下に圧延されており、幅wは10mm以
下にスリツトされていることが望ましく、実用的
には金属箔の厚さt0.005〜0.1mm、幅1〜10mm程
度が望ましい。積層体7の積層厚さhは金属箔7
1の幅wが5mm以上のときは積層体7の断面積s
(=w×h)が50mm2以下となるような積層厚さh
にするものであり、実用的には2〜50mm2が望まし
い。 又積層体7を構成する金属箔71をそれぞれ完
全に絶縁するのは工業技術的に困難であるが本目
的に対しては積層体7の層間抵抗はIKΩ程度以
上であればよい。なお金属薄71の幅wは狭い方
が、厚さtは薄い方が望ましく、積層体7の積層
厚さhは薄い方が、層間抵抗は大きい方が望まし
い。 なお、本発明において望ましいとした範囲につ
いては冷却の容易性、即ち発熱量および磁気特性
を検討考慮して設定した。第4図にその検討例を
示す。 第4図は本発明における周波数100KHz、冷却
水量18/mmの時の金属箔の厚さに対する冷却水
温および磁束密度との関係を示す図であるが金属
箔71の厚さtについては、金属箔71の厚さt
が厚くなると、積層体を通過する磁束量は減少し
積層体の発熱量は指数関数的に上昇する。金属箔
71の厚さtはt=0.15mm程度にした場合、現用
のフエライトコアの飽和磁束密度の約2倍の磁束
密度が得られるが、積層体7の発熱量が大きくな
り、インピーダとしての使用に耐え得なくなる。 一方、金属箔71の厚さtがt=0.1mmの場合
は、現用フエライトコアの飽和磁束密度の約2.7
倍程度の磁束密度が得られ、かつ積層体7の発熱
も工業的に行ないうる水を冷媒とする冷却法によ
つて充分インピーダとして使用し得る程度であ
る。また第5図に1例を示すようにインピーダケ
ース4内における積層体7の配置については、積
層体7,7,7…はその表面ができる限り冷却水
と接触するように配置することが望ましい。 インピーダケース4内において第6図a,b,
cに示すように互に隣り合う積層体7,7が接触
して見掛け上1個の積層体(以下見掛けの積層体
という)7′を構成する場合、見掛けの積層体
7′の一辺の長さ(h′又はw′)が5mm以上10mm未
満であるとき他の辺の長さ(w′又はh′)は見掛け
の積層体7′の断面積(s)(=h′×w′)が50mm2
下となるような長さにすることが望ましく、一辺
の長さ(h′又はw′)が10mm以上であるときは他の
辺の長さ(w′又はh′)は5mm以下が望ましい。 なお第7図a,b,cに示すように積層体7の
一辺の一部分と他の積層体7の辺が接触してL字
型、T字型などの見掛けの積層体7′を構成する
場合、見掛けの積層体7′の断面積s′は制限され
ない。(1)式から知られるようにインピーダを通過
する磁束量Φは磁束密度Bが飽和に達するような
磁界のもとではコアの断面積Aが大きい方が多く
なる。従つて積層体7は数多くインピーダケース
4に内装する方が溶接熱効率上有利となる。積層
体7の集合体である本発明のコア(以下メタルコ
アという)を使用して従来法よりも溶接熱効率を
良くするために必要なメタルコアの断面積A′は
(2)式で表わされる。 A″>(A′/α)×(B′s/B″s) ………(2) ここでA′は フエライトコアの断面積 αは メタルコアの断面積(A″)に占め
る金属箔71の断面積の割合 B′sは フエライトコアの飽和磁束密度 B″sは メタルコアの飽和磁束密度 を表わす。 磁束密度が飽和に達している場合はメタルコア
の断面積A″を大きくすることが溶接熱効率上有
利であるが、ワークコイル2に流れる高周波電流
がつくりだす磁界に対して断面積A″が充分大き
くメタルコアが飽和磁束密度に達していない場合
は断面積A″を大きくして溶接熱効率は向上しな
い。この場合は磁束密度が飽和に達しない範囲で
メタルコアの断面積A″を減することが経済的に
も作業性の面からも有利となる。 なおメタルコアを構成する各積層体のインピー
ダケース内の配置については、上記した如く冷却
が充分行われ、かつ(2)式を満足する個数が配置さ
れていれば良く、配置位置については特に規定し
なくても、即ちランダムに配置しても溶接効率は
向上する。また積層体の断面形状は第3図に例示
した形状に限定されず、第8図a,b,cの符号
8で示す如く弧状、平行四辺形状断面であつても
積層体の幅w、厚さhおよび断面積sは第3図の
場合と同様に扱われる。 以上述べた如く本発明においては金属磁性材料
の厚さt、幅wを極めて小さくとること、および
積層体の層間抵抗を大きくし、更に積層体の断面
積sを制限することによりコアの発熱を著しく抑
制しその冷却効率を高め、通常工業的に行ないう
る冷却水を流す程度の冷却でコアの温度をキユリ
ー点以下に保持することが可能となり、溶接熱効
率が著しく向上した。 次に本発明の実施例とその効果を従来法との比
較において説明する。 実施の内容は第1表の如くである。
The present invention relates to an impeder in high-frequency electric resistance welding pipe manufacturing in which band-shaped skelps are continuously formed into a tubular shape, and the edges of the skelps formed into the tubular shape are heated and welded. FIG. 1 shows a welded part in a high frequency electric resistance welding pipe manufacturing process, for example, a high frequency induction welding pipe manufacturing process. Skelp 1 formed into a tubular shape is a work coil 2
They are heated by eddy currents generated by passing a high-frequency current through them, and are pressure welded by welding rolls 3.
An impeder used for the purpose of improving welding thermal efficiency by concentrating eddy currents at the welding point consists of an impeder case 4 made of an insulator and a core 5 made of a magnetic material, and is connected to a mandrel 6. The core 5 is cooled by cooling water supplied from the mandrel 6 to maintain its performance during pipe making. The purpose of using an impeder is to improve the welding thermal efficiency by exciting the core 5 with the high-frequency current flowing through the work coil 2, but the performance of the impeder is generally determined by the characteristics of the core 5. Its properties require high magnetic permeability and high saturation magnetic flux density. That is, in order to improve the welding thermal efficiency of the electric resistance welded pipe, it is necessary to pass more magnetic flux through the core 5 of the impeder. The amount of magnetic flux Φ passing through the core 5 is expressed by the product of the magnetic flux density B and the cross-sectional area A, that is, the formula 1. Φ=B×A (1) As the core 5 of a conventional impeder, a ferrite core 5', which is an oxide magnetic material made of sintered powdered oxide, was used as shown in FIG. In the case of high-frequency electric resistance welded pipes, the welding current is a high-frequency large current, so the magnetic flux density of the ferrite core 5' reaches saturation, and especially when the pipe size becomes small, the cross-sectional area A' of the ferrite core 5' also becomes small. The saturation magnetic flux density is reached with a small welding current. In this case, as can be seen from equation (1), the amount of passing magnetic flux also becomes saturated and the welding thermal efficiency decreases. As a countermeasure to this problem, ferrite core manufacturers have conducted material studies to increase the saturation magnetic flux density B's of the ferrite core, and have been able to obtain a property of approximately B's = 0.5T, but this is still far from a satisfactory state. . Materials with higher saturation magnetic flux density than ferrite cores include metal magnetic materials such as silicon steel or amorphous alloy steel. At commercial frequencies (50 to 60 Hz), metal magnetic materials rolled and heat-treated to a thickness of 0.3 to 0.35 mm are used. The material is used as an iron core for transformers, etc. In the case of high-frequency electric resistance welded pipes, the welding current is a high-frequency large current, so the impeder is exposed to a high frequency and high magnetic flux density, and a large eddy current is also generated in the core, causing a rise in temperature. Furthermore, the generated eddy current is proportional to the square of the magnetic flux density and the square of the frequency, and in high-frequency electric resistance welded pipes where the frequency reaches 10 to 500 KHz, the amount of heat generated by the core is greater than that when used at commercial frequencies. Extremely large. For this reason,
In the case of metallic magnetic materials that generate a large amount of heat due to eddy currents,
The temperature of the impeder core cannot be maintained below the Curie point by cooling it by flowing cooling water, which is usually done industrially, so the ferromagnetism disappears and it cannot be used as an impeder core. This is the reason why ferrite cores, which generate less heat due to eddy currents in the high frequency range, are used in high frequency electric resistance welded pipes. An object of the present invention is to provide an impeder with good welding thermal efficiency in high-frequency electric resistance welded pipe manufacturing. The present invention is characterized in that a laminate in which extremely thin metallic materials with a thickness of 0.1 mm or less are laminated with an insulating adhesive to have a cross section of 50 mm 2 or less is used as the core of an impeder in a high frequency electric resistance welded pipe. The configuration of the present invention will be explained below. FIG. 3 shows a laminate 7 of metal magnetic materials used as the core of the impeder. The laminate 7 includes an ultra-thin plate (hereinafter referred to as metal foil) 71 of silicon steel or amorphous alloy steel that has a higher saturation magnetic flux density than the ferrite core, and glass for electrically insulating and bonding the adjacent metal foils 71. It is made of an insulating adhesive 72 such as a plastic film or epoxy resin. The metal foil 71 is rolled to a thickness of 0.1 mm or less, and preferably slit to a width of 10 mm or less. Practically, the metal foil has a thickness of 0.005 to 0.1 mm and a width of 1 to 10 mm. degree is desirable. The laminated thickness h of the laminated body 7 is the metal foil 7
When the width w of 1 is 5 mm or more, the cross-sectional area s of the laminate 7
Lamination thickness h such that (=w x h) is 50 mm 2 or less
Practically speaking, a range of 2 to 50 mm 2 is desirable. Although it is industrially difficult to completely insulate each of the metal foils 71 constituting the laminate 7, for this purpose, the interlayer resistance of the laminate 7 may be approximately IKΩ or more. Note that it is desirable that the width w of the thin metal 71 be narrow, and the thickness t be thin, and it is desirable that the lamination thickness h of the laminate 7 be thin, and the interlayer resistance be large. Note that the desirable range in the present invention was determined by considering the ease of cooling, that is, the amount of heat generated, and the magnetic properties. Figure 4 shows an example of this study. FIG. 4 is a diagram showing the relationship between the cooling water temperature and magnetic flux density with respect to the thickness of the metal foil when the frequency of the present invention is 100KHz and the amount of cooling water is 18/mm. 71 thickness t
As the thickness increases, the amount of magnetic flux passing through the laminate decreases, and the amount of heat generated by the laminate increases exponentially. When the thickness t of the metal foil 71 is set to approximately 0.15 mm, a magnetic flux density approximately twice as high as the saturation magnetic flux density of the currently used ferrite core can be obtained, but the heat generation amount of the laminate 7 increases, making it difficult to use as an impeder. It becomes unbearable to use. On the other hand, when the thickness t of the metal foil 71 is 0.1 mm, the saturation magnetic flux density of the currently used ferrite core is approximately 2.7 mm.
The magnetic flux density is about twice as high as that of the laminate 7, and the heat generation of the laminate 7 is sufficiently high enough to be used as an impeder by an industrial cooling method using water as a refrigerant. Furthermore, as an example is shown in FIG. 5, regarding the arrangement of the laminates 7 in the impeder case 4, it is desirable that the laminates 7, 7, 7, etc. be arranged so that their surfaces are in contact with the cooling water as much as possible. . Inside the impeder case 4, Fig. 6 a, b,
When adjacent laminates 7, 7 are in contact with each other to apparently constitute one laminate (hereinafter referred to as an apparent laminate) 7' as shown in c, the length of one side of the apparent laminate 7' is When the length (h' or w') is 5 mm or more and less than 10 mm, the length of the other side (w' or h') is the apparent cross-sectional area (s) of the laminate 7' (= h' x w') It is desirable that the length is 50 mm 2 or less, and if the length of one side (h' or w') is 10 mm or more, the length of the other side (w' or h') is 5 mm or less. is desirable. As shown in FIGS. 7a, b, and c, a portion of one side of the laminate 7 and another side of the laminate 7 come into contact to form an apparent laminate 7' such as an L-shape or a T-shape. In this case, the apparent cross-sectional area s' of the laminate 7' is not limited. As is known from equation (1), the amount of magnetic flux Φ passing through the impeder increases when the core cross-sectional area A is large under a magnetic field where the magnetic flux density B reaches saturation. Therefore, it is advantageous in terms of welding heat efficiency to incorporate a large number of laminates 7 into the impeder case 4. The cross-sectional area A′ of the metal core required to improve welding thermal efficiency than the conventional method using the core of the present invention (hereinafter referred to as metal core), which is an aggregate of the laminates 7, is
It is expressed by equation (2). A″>(A′/α)×(B′s/B″s) ………(2) Here, A′ is the cross-sectional area of the ferrite core α is the metal foil 71 occupied by the cross-sectional area of the metal core (A″) The ratio of the cross-sectional area of B′s is the saturation magnetic flux density of the ferrite core, and B″s is the saturation magnetic flux density of the metal core. When the magnetic flux density has reached saturation, increasing the cross-sectional area A'' of the metal core is advantageous in terms of welding thermal efficiency. If the magnetic flux density has not reached the saturation magnetic flux density, increasing the cross-sectional area A'' will not improve the welding thermal efficiency. In this case, it is economical to reduce the cross-sectional area A'' of the metal core as long as the magnetic flux density does not reach saturation. It is also advantageous in terms of workability. Regarding the arrangement of each of the laminated bodies constituting the metal core within the impeder case, it is sufficient that sufficient cooling is achieved as described above, and the number of laminated bodies that satisfy equation (2) is arranged, and the arrangement position is not particularly stipulated. Welding efficiency can be improved even if there are no such elements, that is, even if they are arranged randomly. Moreover, the cross-sectional shape of the laminate is not limited to the shape illustrated in FIG. The height h and the cross-sectional area s are treated in the same way as in FIG. As described above, in the present invention, heat generation in the core is reduced by making the thickness t and width w of the metal magnetic material extremely small, increasing the interlayer resistance of the laminate, and limiting the cross-sectional area s of the laminate. It has become possible to maintain the core temperature below the Curie point by cooling to the level of cooling water that is normally carried out industrially, and the welding thermal efficiency has been significantly improved. Next, embodiments of the present invention and their effects will be explained in comparison with conventional methods. The details of the implementation are shown in Table 1.

【表】 以上2種類のインピーダによる溶接熱効率を前
記溶接条件における所要電力(発振管陽極電圧:
Epと陽極電流:Ipの積)で比較すると第2表の
通りである。
[Table] The welding thermal efficiency using the above two types of impeders is calculated by the required power (oscillator tube anode voltage:
A comparison of Ep and anode current (product of Ip) is shown in Table 2.

【表】 すなわち、本発明のコアを使用することによつ
て大幅に溶接熱効率を向上させることができ約25
%の電力を節約することが出来た。以上に述べた
ように本発明のインピーダを用いることにより高
周波電縫造管における溶接熱効率は大幅に向上
し、特に管内径が小さいためにインピーダ断面積
の小さい小径管の製造においてはその効果は顕著
である。又フエライトコアにおいては使用中にそ
の材質の劣化が生じる場合があつたが、本発明の
コアにおいては材質の劣化が極めて少ないので、
電縫溶接の安定化およびインピーダの長寿命化等
の効果を得ることが出来る。
[Table] In other words, by using the core of the present invention, the welding thermal efficiency can be significantly improved by approx.
% of electricity could be saved. As described above, by using the impeder of the present invention, the welding thermal efficiency in high-frequency electric resistance welded pipe manufacturing is greatly improved, and this effect is particularly noticeable in the manufacture of small diameter pipes where the impeder cross-sectional area is small due to the small inner diameter of the pipe. It is. In addition, in the case of ferrite cores, there were cases where the material deteriorated during use, but in the core of the present invention, the material deterioration is extremely small, so
It is possible to obtain effects such as stabilizing electric resistance welding and extending the life of the impeder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高周波誘導溶接工程の簡単な斜視図、
第2図はフエライトコアを用いた場合の第1図に
おけるA−A′に相当する断面図、第3図は本発
明における積層体の簡単な斜視図、第4図は本発
明における金属箔の厚さと冷却水温および磁束密
度との関係を示す説明図、第5図は本発明のコア
を用いた場合の第1図におけるA−A′に相当す
る断面図、第6図a,b,cおよび第7図a,
b,cは第5図において内装された積層体の接触
状態を表わす図、第8図a,b,cは積層体の断
面形状を示す図である。 1……管状に成形されたスケルプ、2……ワー
クコイル、3……溶接ロール、4……インピーダ
ケース、5……コア、5′……フエライトコア、
6……マンドレル、7……積層体、71……金属
箔、72……絶縁接着剤、7′……見掛け積層
体、8……積層体の断面、t……金属箔の厚さ、
w……金属箔、h……積層厚さ、s……積層体の
断面積、h′,w′……見掛けの積層体の辺の長さ、
s′……見掛けの積層体の断面積。
Figure 1 is a simple perspective view of the high frequency induction welding process.
Fig. 2 is a cross-sectional view corresponding to A-A' in Fig. 1 when a ferrite core is used, Fig. 3 is a simple perspective view of the laminate according to the present invention, and Fig. 4 is a cross-sectional view of the metal foil according to the present invention. An explanatory diagram showing the relationship between thickness, cooling water temperature, and magnetic flux density, Figure 5 is a cross-sectional view corresponding to A-A' in Figure 1 when the core of the present invention is used, Figures 6 a, b, c and Figure 7a,
b and c are diagrams showing the contact state of the laminated body in FIG. 5, and FIG. 8 a, b, and c are diagrams showing the cross-sectional shape of the laminated body. 1... Skelp formed into a tubular shape, 2... Work coil, 3... Welding roll, 4... Impeder case, 5... Core, 5'... Ferrite core,
6... Mandrel, 7... Laminate, 71... Metal foil, 72... Insulating adhesive, 7'... Apparent laminate, 8... Cross section of laminate, t... Thickness of metal foil,
w...metal foil, h...laminate thickness, s...cross-sectional area of the laminate, h', w'...apparent side length of the laminate,
s′...apparent cross-sectional area of the laminate.

Claims (1)

【特許請求の範囲】[Claims] 1 厚さ0.1mm以下の極薄金属磁性材料を絶縁接
着剤により断面積50mm2以下に積層した積層体をコ
アとして用いたことを特徴とする高周波電縫造管
用インピーダ。
1. An impeder for high-frequency electric resistance welded pipes, characterized by using as a core a laminate in which ultra-thin magnetic metal materials with a thickness of 0.1 mm or less are laminated with an insulating adhesive to have a cross-sectional area of 50 mm 2 or less.
JP16771280A 1980-11-28 1980-11-28 Impeder for high frequency electric sewing tube Granted JPS5790894A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16771280A JPS5790894A (en) 1980-11-28 1980-11-28 Impeder for high frequency electric sewing tube
CA000391103A CA1174294A (en) 1980-11-28 1981-11-27 Impeder for electric resistance tube welding
EP19810109972 EP0053769B1 (en) 1980-11-28 1981-11-27 Impeder for electric resistance tube welding
DE8181109972T DE3167229D1 (en) 1980-11-28 1981-11-27 Impeder for electric resistance tube welding
KR1019810004627A KR860001382B1 (en) 1980-11-28 1981-11-28 Impeder for make the electric welding pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16771280A JPS5790894A (en) 1980-11-28 1980-11-28 Impeder for high frequency electric sewing tube

Publications (2)

Publication Number Publication Date
JPS5790894A JPS5790894A (en) 1982-06-05
JPS6131959B2 true JPS6131959B2 (en) 1986-07-23

Family

ID=15854800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16771280A Granted JPS5790894A (en) 1980-11-28 1980-11-28 Impeder for high frequency electric sewing tube

Country Status (1)

Country Link
JP (1) JPS5790894A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114157U (en) * 1989-02-23 1990-09-12

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4892248A (en) * 1972-03-09 1973-11-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4892248A (en) * 1972-03-09 1973-11-30

Also Published As

Publication number Publication date
JPS5790894A (en) 1982-06-05

Similar Documents

Publication Publication Date Title
KR860001382B1 (en) Impeder for make the electric welding pipe
EP0108574A1 (en) Radio frequency induction heating device
WO2022131131A1 (en) Induction heating type heat treatment device for wound core and heat treatment method therefor
US20040155031A1 (en) Impeder for manufacturing welded pipe
KR102399960B1 (en) A high efficiency transformer with graphene conductor
JPS6131959B2 (en)
JP3689331B2 (en) Heating method for cylindrical metal coil
JP2021005645A (en) Laminated iron core and manufacturing method thereof, and electrical device using laminated iron core
JPS6366045B2 (en)
JPH0714557B2 (en) Impeder for ERW pipe manufacturing
EP0053769A1 (en) Impeder for electric resistance tube welding
JP2021114811A (en) Lamination core
WO2013054473A1 (en) Wound element coil and wound element
JP2002313623A (en) Welded iron core having superior iron loss characteristic
JPH03258468A (en) Impeder for tube manufacture welding
JPS6137925A (en) Heat treatment of iron core
JP2002194429A (en) Heating device of metal coiled in ring or cylindrical form
JPH0469401B2 (en)
JPH07201549A (en) Inductor element
JPS58385A (en) Producing device for electric welded pipe
JPS5952027B2 (en) Impeder for pipe welding equipment using amorphous metal alloy
JPS6229875B2 (en)
JP2000052059A (en) Impeder for welding pipe manufacture
JPH07235429A (en) Inductor element
JP3890769B2 (en) High frequency welding equipment