JPS6131947A - Automatic solidifying point measuring instrument - Google Patents

Automatic solidifying point measuring instrument

Info

Publication number
JPS6131947A
JPS6131947A JP15444684A JP15444684A JPS6131947A JP S6131947 A JPS6131947 A JP S6131947A JP 15444684 A JP15444684 A JP 15444684A JP 15444684 A JP15444684 A JP 15444684A JP S6131947 A JPS6131947 A JP S6131947A
Authority
JP
Japan
Prior art keywords
sample liquid
temp
temperature
point
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15444684A
Other languages
Japanese (ja)
Inventor
Toshiaki Okada
岡田 利明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP15444684A priority Critical patent/JPS6131947A/en
Publication of JPS6131947A publication Critical patent/JPS6131947A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
    • G01N25/04Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering of melting point; of freezing point; of softening point

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To make possible the calculation of the solidifying point of a sample liquid with high accuracy by measuring continuously the temp. change of the sample liquid while agitating the same and detecting the point of the time when the temp. change of the sample liquid attains equil. or increases as the latent heat of the solidification of the sample liquid. CONSTITUTION:A vessel 2 into whih the sample liquid 1 is injected is charged into a cooling bath 5 contg. a refrigerant 4 via an outside cylinder 3. While agitating the test liquid 1 by an agitating means 8 consisting of an agitating bar 6 and an agitating bar driver 7, the temp. of the sample liquid 1 is periodically measured by a temp. measuring means consisting of a temp. sensor 9 and a temp. measuring circuit 10. The point of the time when the temp. of the liquid 1 increases or attains the equil. state is detected as the latent heat of solidification by an arithmetic control means 12 and the operation of the means 8 is stopped. The solidification point is calculated by the means 12 and is displayed by a display means 13. The human intervention is eliminated in reading of the temp. in the above-mentioned manner and therefore the solidifying point is determined with high accuracy.

Description

【発明の詳細な説明】 し産業上の利用分野] この発明は液体の凝固点を測定する用に供される自動凝
固点測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an automatic freezing point measuring device used for measuring the freezing point of a liquid.

〔従来の技術〕[Conventional technology]

周知のように、液体の凝固点の測定方法とじては、日本
油化学協会制定の基準油脂分析試験法(JOC52,3
,5,1−71)や、日本工業規格(JISKOO65
)化学製品の、鏝面点測定方法などがある。これらの方
法は、試験管のような容器に入れた試料液を手動でかき
混ぜながら上記容器内の試料液の温度変化を温度計で読
み取り、読み取った値をグラフ用紙にプロットして上記
試料液の凝固点を求めるものである。
As is well known, the method for measuring the freezing point of a liquid is based on the Standard Oil and Fat Analysis Test Method established by the Japan Oil Chemists' Association (JOC52, 3).
, 5, 1-71) and Japanese Industrial Standards (JISKOO65).
) There is a method for measuring the trowel surface point of chemical products. These methods involve manually stirring a sample liquid in a container such as a test tube, reading the temperature change of the sample liquid in the container with a thermometer, and plotting the read value on graph paper. It is used to find the freezing point.

この方法では、試料液の手動によるかき混ぜを凝固点が
分るまで繰り返さなければならず、しかも何回も温度を
読み取ってプロットする必要があり、測定のための煩わ
しさは避けられないうえ、とくに温度変化等を肉眼で観
察するため、誤差も生じ易い欠点があるδ [発明が解決しようとする問題点] この発明は、上記のような従来の問題点、つまり測定の
煩わしさや誤差が生じやすいといった問題点を解消して
、簡単な構成で液体の凝固点を自動的かつ高精度に測定
できる自動凝固点測定装置を提供することを目的とする
In this method, the sample solution must be manually stirred repeatedly until the freezing point is determined, and the temperature must be read and plotted many times. Since changes, etc. are observed with the naked eye, there is a drawback that errors are likely to occur δ [Problems to be solved by the invention] This invention solves the conventional problems as described above, such as the troublesomeness of measurement and the tendency to cause errors. It is an object of the present invention to provide an automatic freezing point measuring device that can solve the problems and automatically and highly accurately measure the freezing point of a liquid with a simple configuration.

し問題点を解決するための手段] この発明者は、上記目的を達成するための検討の中で、
まず冷却状態の液体の温度変化が該液体が凝固潜熱を発
生するものであれば以下の如き特定の規則性を有するも
のであることに注目した。
[Means for Solving the Problems] In the course of consideration to achieve the above object, the inventor discovered the following:
First, we focused on the fact that the temperature change of a liquid in a cooled state has the following specific regularity if the liquid generates latent heat of solidification.

すなわち、液体の冷却状態は、第4図に示されるように
、液体がある温度勾配をもって冷却され、ついで液体が
凝固するときに凝固潜熱が放出されて温度上昇もしくは
平衡状態(a点)が続き、しかるのちに温度は下降する
In other words, as shown in Figure 4, the cooling state of the liquid is such that the liquid is cooled with a certain temperature gradient, and then when the liquid solidifies, the latent heat of solidification is released and the temperature rises or the equilibrium state (point a) continues. , and then the temperature drops.

そこで、この発明者は、上記温度変化の規則性を利用し
た自動凝固点測定装置を得ることによって前記従来の問
題点を解消するべく鋭意検討を続けた結果、試料液をか
き混ぜながら該試料液の温度変化を連続的に測定すると
ともに、試料液の温度変化が平衡もしくは上昇した時点
を試料液の凝固潜熱として検出しこれより凝固点を算出
する自動凝固点測定装置を得ることに成功した。
Therefore, as a result of intensive studies to solve the above-mentioned conventional problems by obtaining an automatic freezing point measuring device that utilizes the regularity of temperature changes, the inventor found that while stirring the sample liquid, the temperature of the sample liquid increases. We succeeded in obtaining an automatic freezing point measurement device that continuously measures changes in temperature, detects the point at which the temperature change of the sample liquid reaches equilibrium or rises as the latent heat of solidification of the sample liquid, and calculates the freezing point from this.

すなわち、この発明の上記装置は、特に試料液の温度を
定期的に測定する温度測定手段と、上記温度測定手段か
らの出方を受けて上記試料液の温度変化が平衡もしくは
上昇した時点を該試料液の凝固潜熱として検出して上記
かき混ぜ手段の作動を停止させるとともに試料液の凝固
点を算出する演算制御手段と、上記凝固点を表示する表
示手段とを具備させたことにより、簡単な構成にして液
体の凝固点を自動的かつ高精度に測定でき、これにより
前記従来の如き問題点をすべて解消できるという特徴を
有するものである。
That is, the above-mentioned apparatus of the present invention includes a temperature measuring means for regularly measuring the temperature of the sample liquid, and a temperature measuring means that measures the temperature of the sample liquid at a time when the temperature change reaches equilibrium or rises depending on the output from the temperature measuring means. The present invention has a simple structure by being equipped with an arithmetic control means that detects the latent heat of solidification of the sample liquid and stops the operation of the stirring means and calculates the freezing point of the sample liquid, and a display means that displays the freezing point. This method is characterized in that the freezing point of a liquid can be measured automatically and with high precision, thereby eliminating all the problems of the conventional methods.

[発明の実施例] 第」図はこの発明に係る自動凝固点測定装置の全体構成
図である。
[Embodiments of the Invention] Figure 1 is an overall configuration diagram of an automatic freezing point measuring device according to the present invention.

この発明に係る装置は、第1図に示すように、試料液1
が注入された円筒試験管のような試料液容器2を外筒3
を介して冷媒4を容した冷却浴5に装入し、かき混ぜ棒
6とかき混ぜ棒駆動装置7とからなるかき混ぜ手段8に
より上記試料液1をかき混ぜながら、温度センサ9と温
度測定回路1゜とからなる温度測定手段11で上記試料
液1の温度を定期的に測定し、演算制御手段12により
上記試料液1の温度が上昇もしくは平衡状態となった時
点を凝固潜熱として検出してがき混ぜ手段8の作動を停
止させるとともに、該演算制御手段12で凝固点を算出
し、表示手段13で表示するように構成されている。
As shown in FIG. 1, the apparatus according to the present invention includes a sample liquid 1
A sample liquid container 2 such as a cylindrical test tube filled with
The sample liquid 1 is charged into a cooling bath 5 containing a refrigerant 4 through a holder, and while being stirred by a stirring means 8 consisting of a stirring rod 6 and a stirring rod driving device 7, a temperature sensor 9 and a temperature measuring circuit 1 are connected to the sample liquid 1. A temperature measuring means 11 consisting of a temperature measuring means 11 periodically measures the temperature of the sample liquid 1, and an arithmetic control means 12 detects the point in time when the temperature of the sample liquid 1 rises or reaches an equilibrium state as latent heat of solidification, and stirring means 8 is stopped, the calculation control means 12 calculates the freezing point, and the display means 13 displays the freezing point.

第2図は第1図の構成をもとに具体化された自動凝固点
測定装置の回路構成を示すブロック図である。この第2
図の例では、2種の試料液の各凝固点を測定できる構成
をとっである。
FIG. 2 is a block diagram showing a circuit configuration of an automatic freezing point measuring device based on the configuration of FIG. 1. This second
In the example shown in the figure, the configuration is such that the freezing points of two types of sample liquids can be measured.

同図において、21.22はそれぞれ一方の温度センサ
9.に対応して設けられた増幅器および定電流回路、2
3.24はそれぞれ他方の温度センサ92に対応して設
けられた増幅器および定電流回路、25は上記増幅器2
1.23からの出方値を周期的に、切換えてアナログ・
デジタル変換器(以下、A/D変換器という)26に入
力させるマルチプレクサで、これらは第1図の温度測定
手段11を構成している。27.28はそれぞれ一方の
かき混ぜ棒6、に対応して設けられたモータ駆動回路お
よびモータ、29.30はそれぞれ他方のかき混ぜ棒6
2に対応して設けられたモータ駆動回路およびモータで
ある。
In the figure, reference numerals 21 and 22 indicate one temperature sensor 9. An amplifier and a constant current circuit provided correspondingly to the 2
3.24 is an amplifier and constant current circuit provided corresponding to the other temperature sensor 92, and 25 is the amplifier 2.
1.23 by periodically switching the output value from analog
This is a multiplexer for inputting to a digital converter (hereinafter referred to as an A/D converter) 26, which constitutes the temperature measuring means 11 in FIG. 27 and 28 are motor drive circuits and motors provided corresponding to one stirring rod 6, respectively, and 29 and 30 are respective stirring rods 6 on the other side.
This is a motor drive circuit and a motor provided corresponding to No. 2.

31はマイクロコンピュータであり、CPU32、メモ
リ33、入力回路34および出力回路35を有し、CP
U32は上記A/D変換器26の出力から試料液10,
1□の温度変化を、たさえば3o秒間隔で検出し、この
温度変化から試料液の凝固点の算出やモータ駆動回路2
7.29の制御を出方回路35を介して行なうものであ
る。36は上記出力回路35に接続された表示器駆動回
路、37は7セグメント=示器、38はプリンタ、39
は報知器である。
31 is a microcomputer, which has a CPU 32, a memory 33, an input circuit 34, and an output circuit 35;
U32 extracts the sample liquid 10 from the output of the A/D converter 26,
A temperature change of 1□ is detected at an interval of 30 seconds, and from this temperature change the freezing point of the sample liquid can be calculated and the motor drive circuit 2
7.29 is controlled via the output circuit 35. 36 is a display drive circuit connected to the output circuit 35, 37 is a 7-segment indicator, 38 is a printer, 39
is an alarm.

つきに、上記構成の動作を第2図および第3図で説明す
る。
At this point, the operation of the above configuration will be explained with reference to FIGS. 2 and 3.

まず、試験管20,2□にそれぞれ試料液1□、12を
注入するとともに、温度センサ91,9□およびかき混
ぜ棒61,6□をセットする。ついで、上記試料液11
.1□の予想凝固点より約15°C低い冷媒4の入った
冷却浴5に各試験管21,2□を装入する。
First, sample solutions 1□ and 12 are injected into test tubes 20 and 2□, respectively, and temperature sensors 91 and 9□ and stirring rods 61 and 6□ are set. Then, the above sample solution 11
.. Each test tube 21, 2□ is placed in a cooling bath 5 containing a refrigerant 4 approximately 15° C. lower than the expected freezing point of 1□.

装置の動作をスタートさせると、マイクロコンピユータ
31からの指令により各モータ駆動回路27.29が0
NL(第3図処理ステップ1o1)、各モータ28,3
0にて駆動されるがき混ぜ棒6、。
When the device starts operating, each motor drive circuit 27, 29 is set to 0 by a command from the microcomputer 31.
NL (Fig. 3 processing step 1o1), each motor 28, 3
Stirring rod 6, driven at 0.

6□で各試料液11山がかき混ぜられる。一方、各温度
センサ90,9□からの温度検出信号はそれぞれ増幅器
21.23で増幅された後、マルチプレクサ25で交互
に切換えられながらA/D変換器26に印加され、A/
D変換器26でディジタル信号に変換されてマイクロコ
ンピュータ31に大刀される。
6□ stirs 11 piles of each sample solution. On the other hand, the temperature detection signals from each temperature sensor 90, 9□ are amplified by amplifiers 21 and 23, and then applied to the A/D converter 26 while being alternately switched by the multiplexer 25.
The signal is converted into a digital signal by the D converter 26 and sent to the microcomputer 31.

CPU32では、上記試料液II、12の温度が下降し
始めてから、まず温度Tnを読み取り(第3図処理ステ
ップ102)、30秒待機した後(第3図処理ステップ
1O3)、温度T(□+1)を読み取り(第3図処理ス
テップ1o4)、30秒秒間前後の温度差ΔTを次式よ
り算出する(第3図処理ステップ105)。
The CPU 32 first reads the temperature Tn after the temperature of the sample liquids II and 12 begins to fall (processing step 102 in FIG. 3), waits for 30 seconds (processing step 1O3 in FIG. 3), and then reads the temperature T ( ) is read (processing step 1o4 in FIG. 3), and the temperature difference ΔT before and after 30 seconds is calculated from the following equation (processing step 105 in FIG. 3).

ΔT=Tn−T(n→−]) 但し、T 温度、n・・・整数、ΔT・温度差上記CP
U32は、上記ΔTが零または負になるまで上記の動作
を繰り返す。
ΔT=Tn-T(n→-]) However, T temperature, n...integer, ΔT/temperature difference above CP
U32 repeats the above operation until the above ΔT becomes zero or negative.

いま、試料液11のΔTがΔT≦0になったとすると、
CPU32はこれを検出しく第3図判断ステップ106
)、上記試料液11のかき混ぜを停止させるためにモー
タ駆動回路27をOFFさせる(第3図処理ステップ1
07)。そして、さらに30秒待機しく第3図処理ステ
ップ108)、再び温度T(n+4)を読み取り(第3
図処理ステップ109)、上記と同様にΔTを算出する
(第3図処理ステップ110)。これは上記ΔTが正に
なるまで繰り返される。上記ΔTが正になると(第3図
判断ステップ111)、このΔTが正になったときの3
0秒前の温度を算出し、試料液11の凝固点としてこれ
を表示器駆動回路36を介して7セグメント表示器37
で表示させる(第3図処理ステップ112)。もちろん
、このとき同時にプリンタ38で記録させたり、ブザー
のような報知器39を作動させてもよい。試料液1゜に
つぃても、上記と同様にして凝固点が求められるもので
、その説明は省略する。
Now, assuming that ΔT of the sample liquid 11 becomes ΔT≦0,
The CPU 32 detects this at judgment step 106 in FIG.
), the motor drive circuit 27 is turned off in order to stop stirring the sample liquid 11 (processing step 1 in Fig. 3).
07). Then, wait another 30 seconds (processing step 108 in FIG. 3) and read the temperature T(n+4) again (step 3).
Figure processing step 109), and ΔT is calculated in the same manner as above (Figure 3 processing step 110). This is repeated until the above ΔT becomes positive. When the above ΔT becomes positive (determination step 111 in FIG. 3), 3 when this ΔT becomes positive
The temperature 0 seconds ago is calculated and this is displayed as the freezing point of the sample liquid 11 on the 7-segment display 37 via the display drive circuit 36.
(processing step 112 in FIG. 3). Of course, at this time, the printer 38 may be used to record or an alarm 39 such as a buzzer may be activated. For a sample liquid of 1°, the freezing point is determined in the same manner as described above, and its explanation will be omitted.

なお、マイクロコンピュータ31の出力回路にD/A変
換器を介して記録計(いずれも図示せず)をセットすれ
ば、凝固潜熱の発生しない試料液の冷却曲線を自動的に
記録させることもできる。
Note that by setting a recorder (none of which is shown) in the output circuit of the microcomputer 31 via a D/A converter, it is possible to automatically record the cooling curve of the sample liquid in which latent heat of solidification does not occur. .

つぎに、種々の化学製品試料液の凝固点を上記装置によ
って測定した結果を表示する。比較のため、従来、行な
われているJIS法(K 0065)による結果も示す
。各測定値は同一試料液について5回ずつ測定して得た
値の平均値である。
Next, the results of measuring the freezing points of various chemical product sample solutions using the above device are displayed. For comparison, results obtained using the conventional JIS method (K 0065) are also shown. Each measured value is the average value obtained by measuring the same sample solution five times.

〔発明の効果〕〔Effect of the invention〕

この発明は、上記測定結果からも明らかなように、試料
液の凝固点を適確に測定でき、しかも試料液を手動でか
き混ぜたり、温度を用紙にプロットするような人的な手
間が省けて能率的な測定を行なえるばかりか、温度の読
み取りに人的介在を排除したため、高い精度でa固点を
求めることができる信頼性の高い自動a固点測定装置を
得ることができる。
As is clear from the above measurement results, this invention can accurately measure the freezing point of a sample liquid, and is more efficient because it eliminates the human effort of manually stirring the sample liquid and plotting the temperature on paper. In addition to being able to perform accurate measurements, since human intervention is eliminated in temperature reading, a highly reliable automatic a-fixing point measuring device that can determine the a-fixing point with high accuracy can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る自動凝固点測定装置の全体構成
図、第2図は第1図の装置の具体的回路構成を示すブロ
ック図、第3図は同装置の動作説明用のフローチャート
、第4図は液体の冷却状態の温度変化を示すグラフであ
る。 1・・試料液、2−容器、5・冷却浴、8・・・かき混
ぜ手段、11 温度測定手段、12・・・演算制御手段
、13・・・表示手段
FIG. 1 is an overall configuration diagram of an automatic freezing point measuring device according to the present invention, FIG. 2 is a block diagram showing a specific circuit configuration of the device in FIG. 1, FIG. 3 is a flowchart for explaining the operation of the device, and FIG. FIG. 4 is a graph showing temperature changes in the cooling state of the liquid. 1. Sample liquid, 2. Container, 5. Cooling bath, 8. Stirring means, 11. Temperature measuring means, 12. Arithmetic control means, 13. Display means.

Claims (1)

【特許請求の範囲】[Claims] (1)試料液が注入されて冷却浴中に装入された試料液
容器と、上記試料液をかき混ぜる試料液かき混ぜ手段と
、上記試料液の温度を定期的に測定する温度測定手段と
、上記温度測定手段からの出力を受けて上記試料液の温
度変化が平衡もしくは上昇した時点を該試料液の凝固潜
熱として検出して上記かき混ぜ手段の作動を停止させる
とともに試料液の凝固点を算出する演算制御手段と、上
記凝固点を表示する表示手段とを具備した自動凝固点測
定装置。
(1) A sample liquid container filled with a sample liquid and placed in a cooling bath, a sample liquid stirring means for stirring the sample liquid, a temperature measuring means for periodically measuring the temperature of the sample liquid, and the above-mentioned Arithmetic control for detecting the point in time when the temperature change of the sample liquid reaches equilibrium or rises in response to the output from the temperature measuring means as the latent heat of solidification of the sample liquid, and stopping the operation of the stirring means and calculating the freezing point of the sample liquid. and display means for displaying the freezing point.
JP15444684A 1984-07-25 1984-07-25 Automatic solidifying point measuring instrument Pending JPS6131947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15444684A JPS6131947A (en) 1984-07-25 1984-07-25 Automatic solidifying point measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15444684A JPS6131947A (en) 1984-07-25 1984-07-25 Automatic solidifying point measuring instrument

Publications (1)

Publication Number Publication Date
JPS6131947A true JPS6131947A (en) 1986-02-14

Family

ID=15584384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15444684A Pending JPS6131947A (en) 1984-07-25 1984-07-25 Automatic solidifying point measuring instrument

Country Status (1)

Country Link
JP (1) JPS6131947A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260862U (en) * 1988-10-28 1990-05-07
CN101839873A (en) * 2010-04-23 2010-09-22 中国建筑材料科学研究总院 Testing device and testing method for thermal performance of phase-change temperature regulation building material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539552A (en) * 1976-07-13 1978-01-28 Philips Nv Information display unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539552A (en) * 1976-07-13 1978-01-28 Philips Nv Information display unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260862U (en) * 1988-10-28 1990-05-07
CN101839873A (en) * 2010-04-23 2010-09-22 中国建筑材料科学研究总院 Testing device and testing method for thermal performance of phase-change temperature regulation building material

Similar Documents

Publication Publication Date Title
Ashcroft et al. Density measurement by oscillating tube. Effects of viscosity, temperature, calibration and signal processing
FR2449437A1 (en) METHOD AND DEVICE FOR DETERMINING THE ALCOHOLIC RATE BY MEASURING THE CONCENTRATION OF ALCOHOL IN EXPIRED AIR
US3916673A (en) System for nondestructively testing vessels
US4949572A (en) Method and apparatus for determining physical properties of liquids
JPS6131947A (en) Automatic solidifying point measuring instrument
US4837750A (en) Apparatus for displaying depth sounding data with nautical range
JPS5746112A (en) Running cource indicator
JPH0229984B2 (en)
US4264328A (en) Method for recording measured values in an automatically performed blood gas analysis
US4114421A (en) Apparatus for measuring the concentration of impurities within a substance
KR910001371A (en) Direct calibration method and confirmation device of equipment industry
CN111044095A (en) Multifunctional sensing device for tank container
JP2721024B2 (en) Method and apparatus for analyzing metal cleaning liquid
GB2169720A (en) Detecting rate of change of signals
Crovetto et al. New detection method for determining phase boundaries
SE7610151L (en) ELECTRONIC MEASUREMENT METER
CN200996964Y (en) Liquid freezing time determiner
RU1770783C (en) Device for determining thermometer dynamic characteristic
SU386642A1 (en) METHOD OF AUTOMATIC CONTROL CONCENTRATION
McDuffie et al. Pressure Viscometer for Viscosities between 1 and 104 P
US5609418A (en) Clapeyron thermometer
SU1198393A1 (en) Method of calibrating differential scanning calorimeter
SU493718A1 (en) Measurement of chemical potential of water
JPS6331735B2 (en)
RU2117927C1 (en) Device measuring density of liquids and interface for it