JPS6131601A - Turbine construction with vanes grouped in bunches - Google Patents

Turbine construction with vanes grouped in bunches

Info

Publication number
JPS6131601A
JPS6131601A JP15312084A JP15312084A JPS6131601A JP S6131601 A JPS6131601 A JP S6131601A JP 15312084 A JP15312084 A JP 15312084A JP 15312084 A JP15312084 A JP 15312084A JP S6131601 A JPS6131601 A JP S6131601A
Authority
JP
Japan
Prior art keywords
wing
blade
leading
shape
vanes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15312084A
Other languages
Japanese (ja)
Inventor
Tetsuo Sasada
哲男 笹田
Kazuo Ikeuchi
和雄 池内
Yoshiaki Yamazaki
義昭 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15312084A priority Critical patent/JPS6131601A/en
Publication of JPS6131601A publication Critical patent/JPS6131601A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To reduce the fluid loss by giving at least either of the leading and trailing vanes, among each bunch of vanes which are coupled together by coupling members, a form different from the other, intermediate vanes, and by forming the leading vane with a throat part of max. thickness greater than the other vanes. CONSTITUTION:This turbine construction with bunches of vanes is so arranged that vanes 1 are installed on a rotary disc at a certain spacing, wherein each bunch of vanes consisting of several vanes are coupled together by a shroud cover, not illustrated, and tie wires 3. Several such bunches constitute a circular string of vanes. Here the central vane (or intermediate vanes) 1-2 and trailing vane 1-3 of each bunch are given the same figure while the leading one 1-1 is formed differently. That is, each vane 1 shall at its back 1a have a bulge 1e in the neighborhood of the front edge 1c, and be approx. straight from the end of said bulge 1e to the rear edge 1d. The bulge thickness D of the leading vane shall be greater than that of the other 1-2, 1-3.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明ハ、蒸気タービン、ガスタービン等の軸流ターボ
機械の回転動翼に係り、特に低圧タービン等に使用され
る長翼に好適なように改良した群翼構造に関するもので
ある。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to rotary blades of axial flow turbo machines such as steam turbines and gas turbines, and is particularly suitable for long blades used in low pressure turbines and the like. This relates to an improved wing structure.

〔発明の背景〕[Background of the invention]

第2図は従来一般に用いられている蒸気タービンの動翼
を示す斜視図である。多数の動翼1が回転車盤4の周囲
に等間隔で配列されて回転翼列を構成しているd)この
ような回転動翼1について、特に低圧タービンなどに使
用される翼長の長い翼では、その振動9強度特性を改善
するためにシュラウドカバー2、タイワイヤ3といった
連結部品で数枚の興を連結し、拝具を構成している。こ
のような構造の動翼は、通常第3図に示すように連結部
材2,3を備えた同一形状の単翼1を複数枚構成して、
溶接等により連結するのが一般的である。
FIG. 2 is a perspective view showing a rotor blade of a steam turbine commonly used in the past. A large number of rotor blades 1 are arranged at equal intervals around a rotary wheel disk 4 to constitute a row of rotor blades.d) Regarding such rotary rotor blades 1, particularly those with a long blade length used in low pressure turbines, etc. In order to improve the vibration intensity characteristics of the wing, several hinges are connected using connecting parts such as a shroud cover 2 and tie wires 3 to form a worship tool. A rotor blade having such a structure usually consists of a plurality of single blades 1 of the same shape each having connecting members 2 and 3, as shown in FIG.
It is common to connect them by welding or the like.

さて、上述のような長翼では流体性能を良好にするため
、第3図に示すように翼根元IRがら翼先端ITに向い
、大きく捩れた形状となっている。
Now, in order to improve the fluid performance of the above-mentioned long blade, the blade root IR faces the blade tip IT and has a largely twisted shape, as shown in FIG.

このように捩れた翼を回転させると、遠心力の作用で翼
長方向に引張られ、翼の捩れがもどる方向の変形を生じ
る。これはアンツイスト現象として良く知られている。
When a blade twisted in this manner is rotated, it is pulled in the blade span direction by the action of centrifugal force, causing deformation in the direction of untwisting the blade. This is well known as the untwist phenomenon.

第4図は、第2図の拝具のA−AI!’i面を示したも
のであるが、アンツイスト現象は、このような拝具にも
発生する。すなわち、第4図(a)に示すように、静止
中は等間隔、同一形状に構成されている翼列1−1〜l
−3及び1′−1〜1′−3が、回転中は第4図(b)
に示すように、連結された1群の翼が、拝具ごとに矢印
6.6ノの如く捩れるような変形を生じる。矢印5は蒸
気流を表わしている。
Figure 4 is A-AI of the worship implement in Figure 2! Although the 'i-side is shown, the untwist phenomenon also occurs in such worship implements. That is, as shown in FIG. 4(a), when at rest, the blade rows 1-1 to 1-l are arranged at equal intervals and have the same shape.
-3 and 1'-1 to 1'-3 are rotating as shown in Figure 4(b)
As shown in , a group of connected wings undergoes twisting deformation as shown by arrow 6.6 for each worship tool. Arrow 5 represents steam flow.

さて、軸流機械の翼列では、航空機のような単独翼と異
なり、個々の翼形状が良好な形状であるばかりでなく、
翼と翼の間に形成される翼間流路の形状が良好に保たれ
ることが、性能上極めて重要である。
Now, in the blade cascade of an axial flow machine, unlike a single blade like an aircraft, the individual blades not only have a good shape;
It is extremely important for performance that the shape of the inter-blade flow path formed between the blades be maintained well.

ところで、第4図(b)に示したよりな拝具変形が生ず
ると、拝具1と拝具l′の間の流路、づなわち、翼1−
3と翼1′−1の翼間流路は計画きれた流路形状から逸
脱し、連結された翼、例えば翼1−1と1−2の間の流
路のように良好な翼間流路を形成し得す、大きな流体損
失を発生して軸流タービンの効率を著しく低下させる原
因となっている。
By the way, when the deformation of the worship implement shown in FIG. 4(b) occurs, the flow path between the worship implement 1 and the worship implement l', that is, the wing 1-
The inter-blade flow path between blades 3 and 1'-1 deviates from the planned flow path shape, and the flow path between blades 1'-1 and 1'-1 deviates from the planned flow path shape, resulting in good inter-blade flow as in the flow path between connected blades, e.g. blades 1-1 and 1-2. This can lead to large fluid losses and significantly reduce the efficiency of axial turbines.

一方、この上うな拝具変形は、全ての翼を連結して、全
周を一つの拝具と成す以外に変形を防止する手段は無い
。また全周を一つの拝具とする構造は強度、振動の面か
らいかなる場會扛も適用可能というわけにもいかないた
め、現在でも多くの翼が、複数拝具よりなる構造となっ
ており、上述の理由で効率を低下させる欠点を有してい
る。
On the other hand, there is no way to prevent this deformation other than connecting all the wings and making the whole circumference a single worship tool. In addition, a structure in which the entire circumference is a single worship tool cannot be applied to any field effect in terms of strength and vibration, so even today, many wings have a structure that consists of multiple worship tools. For the reasons mentioned above, it has the drawback of reducing efficiency.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前述のような拝具構造の回転動翼の拝
具間部に発生する捩れ変形に因る流体損失を低減し、軸
流タービンの効率を向上させようとするものである。
The purpose of the present invention is to reduce the fluid loss caused by the torsional deformation that occurs between the rotor blades of the rotor blades having the above-mentioned rotor structure, and to improve the efficiency of the axial flow turbine. .

〔発明の概要〕[Summary of the invention]

本発明の原理は、従来の拝具が、全く同一形状の翼から
翼列を構成しているのに対し、拝具の端に位置する翼、
即ち拝具の先頭翼と末尾の翼の形状を拝具の中間に位置
する翼とは異なった形状となし、拝具変形後も良好な翼
間流路形状を保って、流体損失の発生を防止し、翼の効
率を改善するも□  のである、この原理に基づいて前
記の目的を達成するため、本発明に係るタービン群翼構
造は、3枚、若しくはそれ以上の翼を連結部材で結合し
て拝具を構成するとともに、複数個の上記拝具を回転車
盤に固定した軸流ターボ機械の回転翼列において、各拝
具を構成している翼の内の先頭翼と未尾翼との少なくと
もいずれが一方の形状を中間翼の形状と異ならしめ、か
つ、前記の先頭翼はのど部を形成する翼の最大厚さ寸法
を他の翼よりも大ならしめたことを特徴とする。
The principle of the present invention is that while conventional worship implements have a row of wings made up of wings of exactly the same shape, the wings located at the end of the worship implement,
In other words, the shape of the leading and trailing wings of the ritual tool is different from the shape of the blade located in the middle of the worship tool, and even after the worship tool is deformed, a good flow path shape between the blades is maintained to prevent fluid loss from occurring. In order to achieve the above object based on this principle, the turbine blade group structure according to the present invention combines three or more blades with a connecting member. In addition, in a rotary blade row of an axial flow turbomachine in which a plurality of the above-mentioned worship tools are fixed to a rotary wheel base, the leading wing and tail wing of the wings constituting each worship tool are At least one of them is characterized in that the shape of one of the blades is different from the shape of the intermediate blade, and the leading blade has a maximum thickness dimension of the blade forming the throat portion larger than that of the other blades.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の1実施例について第1図、並びに第5図
乃至第8図を参照しつつ説明する。
Next, one embodiment of the present invention will be described with reference to FIG. 1 and FIGS. 5 to 8.

本実施例は第2図に示した従来のタービン群翼構造に本
発明を適用して改良したものであって、第2図における
と同様に、回転車盤4上に翼1が複数枚配設されて翼列
を構成し、ている。さらに翼1は連結部品2,3によっ
て数枚ずつ結合されて拝具を構成しており、数組の拝具
から全体の円環翼列が構成されている。拝具と拝具との
間は連結されていない。
In this embodiment, the present invention is applied to the conventional turbine blade group structure shown in FIG. 2 to improve it, and as in FIG. It is set up to form a row of wings. Further, several pieces of the wings 1 are connected by connecting parts 2 and 3 to form a prayer tool, and the entire annular blade row is composed of several sets of prayer tools. There is no connection between the worship implements and the worship implements.

さて、第1図は本考案のタービン翼列構造にっき、第2
図のA−A断面相当の構造図を示す。拝具1−1.1−
2.1−3は、タイワイヤ3によって連結されている。
Now, Figure 1 shows the turbine blade cascade structure of the present invention.
A structural diagram corresponding to the AA cross section in the figure is shown. Worship implements 1-1.1-
2.1-3 are connected by tie wire 3.

また、隣接する拝具1’−1゜1’−2,1’−3も同
様であZoこのうち拝具の中央gi−2と末尾の翼1−
3とは同一形状の翼であるが、先頭具1−1のみは異な
った翼形状の翼とする。即ち、これ等の翼の断面形状の
詳細は第5図に示すように、背側1aと腹側1bから翼
外形を説明すると、腹側1bは翼の前縁ICから後縁1
dに向ってほぼ直線ないしは曲率変化のりるい曲線から
なり、一方の背側1aでは、前縁IC近傍に凸部1eを
有し凸部の終点1gから後縁11でほぼ直線的な形状を
有している。この凸部1eの最高点が同時に翼の最大厚
み部である。
The same goes for the adjacent worship implements 1'-1゜1'-2, 1'-3. Of these, the center gi-2 and the tail wing 1-
3 have the same shape, but only the leading tool 1-1 has a different shape. That is, the details of the cross-sectional shape of these wings are shown in FIG.
It consists of an almost straight line or a smooth curve with a change in curvature toward d, and on one dorsal side 1a, it has a convex part 1e near the leading edge IC, and has a nearly straight shape from the end point 1g of the convex part to the rear edge 11. are doing. The highest point of this convex portion 1e is also the maximum thickness portion of the blade.

さて、第1図の構造では、上述の翼最大厚さ、即ち10
部の厚さDが、先頭具1−1のみ他の1−2゜1−3の
翼より厚くなっている。
Now, in the structure shown in Fig. 1, the maximum blade thickness mentioned above, that is, 10
The thickness D of the leading blade 1-1 is thicker than the other blades 1-2 and 1-3.

以上のような構成で1つの拝具が構成されているわけで
あるが、他の拝具1’−1,1’−2゜1′−3におい
ても全く同様に、先頭具1′−1は厚さDが 中間翼1’−2,未尾翼1−3よりも翼最大、厚い翼形
となっている。本例と異なり、1拝具が3枚でなく、も
つと数多くの翼から構成されている場合も、同様に先頭
具のみ翼最大厚さを厚くした構造とする。
Although one worship implement is constructed with the above configuration, the leading implement 1'-1 is exactly the same in other worship implements 1'-1, 1'-2゜1'-3. The wing has a thickness D that is thicker than the intermediate wing 1'-2 and the non-tail wing 1-3. Unlike this example, even if one worship tool is composed of many wings instead of three, the structure is such that only the leading tool has a thicker maximum blade thickness.

上に述べた実施例の翼列構造による流体損失の低減作用
を第5図及び第6図を用いて説明する。
The effect of reducing fluid loss by the blade cascade structure of the embodiment described above will be explained with reference to FIGS. 5 and 6.

本実施例の翼は第5図に示すような形状を有しているが
、このような翼の隣接する翼間に構成される流路形状の
特徴は、前縁IC,1’Cから流路中が徐々にせばまり
、翼最大厚み部1e、l’eににおいて流路中が最小と
なる。この流路中殻小部8は、のど部と呼ばれる。のど
部8よりも下流側では、流路中は徐々に増大する、即ち
のど部8でせばまり末広流路形状を構成している。この
ようなせばまり末広流路が、翼上流10では蒸気流5の
速度が亜音速であり、翼下流11では超音速流となるい
わゆる遷音速流を得るのに好適な流路形状でおることは
、種々の熱・流体関係の工学書に述べられているとおり
である。
The blade of this embodiment has a shape as shown in FIG. The inside of the flow path becomes narrower gradually, and the inside of the flow path becomes the smallest at the blade maximum thickness portions 1e and 1'e. This channel middle shell small portion 8 is called a throat portion. On the downstream side of the throat portion 8, the flow path gradually increases in size, that is, the throat portion 8 narrows and forms a wide-divergent flow path shape. Such a narrow, wide-ended flow path has a flow path shape suitable for obtaining a so-called transonic flow in which the velocity of the steam flow 5 is subsonic at the blade upstream 10 and supersonic at the blade downstream 11. is as stated in various heat/fluid-related engineering books.

さて、上述の遷音速翼の損失特性は、のど部8の流路幅
Sと、翼出口での流路幅qの寸法eによって特性が決定
付けられる。即ち、第6図の遷音速翼の損失特性に示す
ように、成るs/eの比率を有する翼形には、損失が最
小となる最高効率点14が存在する。この損失最小点1
4以外では、翼の損失が増大する。一方、第1図の翼1
−1と翼1−2、あるいは翼1−2と翼1−3との間に
形成される翼間流路は、従来構造の欠点として述べた拝
具変形を生じても、翼間流路が大きく形を変えることは
なく、のど部8と出口部9の流路幅比S/eも変わらな
いので、計画された性能を発揮する。これに対し、拝具
と拝具の間の流路、即ち拝具の未尾翼1−3とこれに続
く拝具の先頭具1′−1との間の流路は、第7図に示す
ように拝具変形によって、拝具の中間に位置する翼の流
路形路形状とは異なった流路形状となる。この第7図は
、対比参照のため従来の翼形状(運転時、即ち拝具変形
した状態)を1点鎖線で描いである。
Now, the loss characteristics of the transonic blade described above are determined by the flow path width S of the throat portion 8 and the dimension e of the flow path width q at the blade outlet. That is, as shown in the loss characteristics of the transonic airfoil in FIG. 6, an airfoil having the following s/e ratio has a maximum efficiency point 14 at which the loss is minimum. This minimum loss point 1
For values other than 4, the loss of the blade increases. On the other hand, wing 1 in Fig.
-1 and the blade 1-2 or between the blade 1-2 and the blade 1-3. does not change its shape significantly, and the channel width ratio S/e between the throat section 8 and the outlet section 9 does not change either, so the planned performance is exhibited. On the other hand, the flow path between the worship implements, that is, the flow path between the tail wing 1-3 of the worship implement and the leading implement 1'-1 of the worship implement following this, is shown in Figure 7. As a result of the deformation of the worship tool, the shape of the channel becomes different from the flow path shape of the wing located in the middle of the worship tool. In FIG. 7, the conventional blade shape (during operation, that is, in a deformed state) is drawn with a chain line for comparison.

8eは従来のタービン拝具におけるのど部を示す。8e shows the throat part of a conventional turbine worship tool.

破線で示した翼形状は上記従来のタービン拝具の休止時
、即ち拝具変形を生じていない状態を示し、8fはこの
ときののど部である。
The blade shape indicated by the broken line shows the conventional turbine worship tool at rest, that is, the state where the worship tool is not deformed, and 8f is the throat portion at this time.

このような従来形の先頭具(鎖線i’=i)は、稼動中
におけるのど部8eと出口部9との流路幅比が、他の翼
と異なることになる。このため、第6図の一点鎖線で示
したカーブ13のように翼の損失特性がづれて、損失の
大きな部分で作動することになり、効率を低下させる。
In such a conventional leading tool (dashed line i'=i), the flow passage width ratio between the throat portion 8e and the outlet portion 9 during operation is different from that of other blades. For this reason, the loss characteristics of the blade are shifted as shown by the curve 13 shown by the dashed line in FIG. 6, and the blade operates in a portion where the loss is large, resulting in a decrease in efficiency.

一方、本発明の翼(実線1’−1)では、変形後に他の
拝具と同一寸法ののど部8gと出口部9の流路幅比を構
成するよう、翼ののど部を構成する最大厚み部1 e/
の厚さを増加させであるので、運転中の拝具変形後も、
第6図のカーブ12の如く損失最小の最高効率点で作動
するので、従来翼のような効率低下は無く、相対的に効
率を改善することができる。
On the other hand, in the blade of the present invention (solid line 1'-1), the maximum width of the throat part of the blade is set so that the flow passage width ratio between the throat part 8g and the outlet part 9 is the same as that of other worship tools after deformation. Thickness part 1 e/
By increasing the thickness of the worship tool, even after deformation while driving,
Since the blade operates at the highest efficiency point with minimum loss, as shown by curve 12 in FIG. 6, there is no decrease in efficiency as with conventional blades, and the efficiency can be relatively improved.

第8図は前記と異なる実施例を示し、第2図のA−A断
面に相当する図である。本実施例では、拝具を構成する
翼1のうち、先頭具1−1及び1’、−1と末尾の翼1
−3及び1′−3との形状が、中間翼1−2と異なる形
状をしている。なお中間翼の枚数は、本図の如く1枚の
みでなく何枚あっても良い。本実施例(第8図)は、第
2図に示した実施例のように、翼背側1aがのど部8を
形成するような凸部1e、l’eを有し、これよりも下
流側では、流路幅が末広がりになるような背側1aの形
状を有するのみならず、第9図にその詳細を示すように
、腹側1b上で、隣接する翼1′の最大厚み部1 / 
e に相対してのど部8を形成する一点1fから後縁1
dまでの部分が背側に向って傾斜し、背側、腹側の両側
でのど部8以降の末広流路を形成するような翼形で、先
頭翼1−1と中間翼1−2とを構成する。このような翼
形は、前述の第1図の実施例の翼とくらべて、相対的に
短い長さで大きな流路の広がり率が得られる。このため
、翼の重量が強度的に問題となり、なおかつ運転時の蒸
気流出速度により高速を要求される回転数の高い長大具
用として好適である。そして、本実施例においては、第
8図及び第10図に実線で示したように末尾の翼1−3
のみ、実線形状で示したように、腹側ibが直線ないし
は、ゆるやかな曲線からなっており、のど部8から出口
に向って、腹側を傾斜させない翼形とする。
FIG. 8 shows a different embodiment from the above, and is a view corresponding to the AA cross section in FIG. 2. In this embodiment, among the wings 1 constituting the worship tool, the leading tool 1-1, 1', -1 and the trailing wing 1
-3 and 1'-3 have a different shape from the intermediate blade 1-2. Note that the number of intermediate blades is not limited to one as shown in this figure, but may be any number. In this embodiment (FIG. 8), like the embodiment shown in FIG. On the side, not only does the dorsal side 1a have a shape such that the channel width widens towards the end, but also the maximum thickness part 1 of the adjacent wing 1' on the ventral side 1b, as shown in detail in FIG. /
from a point 1f forming the throat 8 opposite to the trailing edge 1
The airfoil has a shape in which the part up to d is inclined toward the dorsal side, and forms a wide flow path after the throat part 8 on both the dorsal and ventral sides, and has a leading wing 1-1 and an intermediate wing 1-2. Configure. Such an airfoil provides a relatively short length and a large flow path expansion ratio compared to the airfoil of the embodiment shown in FIG. 1 described above. For this reason, the weight of the blade is a problem in terms of strength, and it is suitable for use in a long tool with a high rotational speed, which requires high speed due to the steam outflow speed during operation. In this embodiment, as shown by solid lines in FIGS. 8 and 10, the tail wing 1-3 is
However, as shown by the solid line shape, the ventral side ib is a straight line or a gentle curve, and the ventral side is not inclined from the throat portion 8 toward the outlet.

第10図は、本実施例での拝具と拝具間の流路形状と変
形挙動を示したものであり、本図を用いて本実施例の利
点を説明する。
FIG. 10 shows the flow path shape and deformation behavior between the worship implements in this embodiment, and the advantages of this embodiment will be explained using this figure.

説明の便宜上、対比するために、一点1fを設けた翼形
状の拝具変形していない状態を破線で示す。
For convenience of explanation and for comparison, the undeformed state of the wing-shaped worship tool provided with one point 1f is shown by a broken line.

末尾の翼1−3と隣接する拝具の先頭翼1′−1とは、
運転中の拝具変形により一点鎖線で示したような状態と
なる。この際、一点鎖線で示した従来例、即ち全ての翼
が同一形状の翼の場合は、第1O図から容易に理解でき
るように、先頭翼1’ −1の最大厚み部1 / eに
よって絞られた流路断面8aと、未尾翼1−3の一点1
fによって絞られた流路断面8bとの2個所においての
ど部を有するような形状となる。
The trailing wing 1-3 and the adjacent leading wing 1'-1 of the worship tool are:
Due to the deformation of the worship equipment during operation, it will be in the state shown by the dashed-dotted line. At this time, in the conventional example shown by the dashed line, that is, in the case where all the blades have the same shape, as can be easily understood from Figure 1O, the maximum thickness part 1/e of the leading blade 1'-1 is The flow path cross section 8a and one point 1 of the untailed wing 1-3
The shape has throats at two locations, the flow path cross section 8b narrowed by f.

高速流領域で使用される遷音速翼形では、このような流
路形状のくずれは、流れの剥離をひきおこして極めて大
きな流体損失を発生させる。そこで、実線に示す本実施
例では、未尾翼の1−3のみ、腹側の一点1fを設けず
、はぼ直線的な形としであるので、のど部は先頭翼1′
−1の最大厚み部1′eで絞られた8aのみとなるので
流れの剥離も発生せず、翼効率を高めることができる。
In transonic airfoils used in high-speed flow regimes, such distortions in the flow path shape cause flow separation and generate extremely large fluid losses. Therefore, in this embodiment shown by the solid line, only the non-tailed wings 1-3 are not provided with a point 1f on the ventral side, and have a nearly straight shape, so the throat part is the leading wing 1'
Since only the part 8a is narrowed at the maximum thickness part 1'e of -1, flow separation does not occur, and the blade efficiency can be increased.

このような翼構造では、種々の回転数で運転されるよう
なタービンで、拝具変形が一定でなく、のど部の位置が
常に移動するような翼列に適用するに好適である。
Such a blade structure is suitable for application to a blade row in which the blade deformation is not constant and the throat position constantly moves in turbines that are operated at various rotational speeds.

第11図は更に異なる実施例を示す。この実施例が第8
図乃至第9図に示した実施例と異なる点は、未尾翼1−
3も、先頭翼1′−1や、中間翼1−2と同様、腹側に
一点1fを有した形状と、し、かつ、未尾翼のみ一点1
fの位置、即ち出口端からの距離tが他の翼より大きく
、一点1fが上流側に位置しており、実線で示した拝具
変形後の状態において、のど部8が未尾翼1−3の一点
1fと、これに隣接する先頭翼1′−1の最大厚み部1
′e との間に形成され、正常な翼間流路が構成される
ようにしたものである3、本実施例は、定速運転されて
、拝具変形が常に一定であるような翼列に適用するに好
適である。
FIG. 11 shows a further different embodiment. This example is the eighth
The difference from the embodiment shown in FIGS. 9 to 9 is that the untailed wing 1-
3 also has a shape with one point 1f on the ventral side, like the leading wing 1'-1 and the middle wing 1-2, and only the non-tail wing has one point 1f.
The position of f, that is, the distance t from the exit end is larger than the other wings, and one point 1f is located on the upstream side. One point 1f and the maximum thickness part 1 of the leading wing 1'-1 adjacent to this
'e, so that a normal inter-blade flow path is constructed.3.This embodiment is a blade cascade that is operated at a constant speed and whose deformation is always constant. It is suitable for application.

第12図は更に異なる実施例を示す。第13図は対比参
照の為に示した従来装置を示す。これらの第12図、第
13図は第2図のB−B面に相当する面で切断しである
。従来は第3図に示すような、連結部材、即ちシュラウ
ドカバー2やタイワイヤ3を含めて、革具状態で全く同
一形状に製作された翼を、溶接にて連結する。したがっ
て第13図に示すように、拝具の端に位置する翼1−1
゜1−3には、連結されないタイワイヤ3a、3bが突
出している。本実施例では、第12図に示すように、先
頭翼1−1と末尾の翼1−3とは、タイワイヤ3が突出
していない形状としている。これにより、翼連結のみが
目的のタイワイヤが、流路中に突出しているために発生
する流体損失を防止して翼効率を高めることが可能でお
る。
FIG. 12 shows a further different embodiment. FIG. 13 shows a conventional device shown for comparison reference. These FIGS. 12 and 13 are cut along a plane corresponding to the plane BB in FIG. 2. Conventionally, as shown in FIG. 3, wings that are manufactured in exactly the same shape as leather fittings, including the connecting members, that is, the shroud cover 2 and the tie wires 3, are connected by welding. Therefore, as shown in Figure 13, the wing 1-1 located at the end of the worship implement
1-3, unconnected tie wires 3a and 3b protrude. In this embodiment, as shown in FIG. 12, the leading wing 1-1 and the trailing wing 1-3 are shaped so that the tie wire 3 does not protrude. This makes it possible to prevent fluid loss caused by the tie wire, whose only purpose is to connect the blades, protruding into the flow path, thereby increasing blade efficiency.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明のタービン群翼構造は、3
枚又はそれ以上の翼と連結部材で結合して拝具を構成す
るとともに、複数個の上記拝具を回転車盤に固定した軸
流ターボ機械の回転翼列において、各拝具を構成してい
る翼の内の先頭翼と未尾翼との少なくともいずれか一方
の形状を中間翼の形状と異ならしめ、かつ、前記の先頭
翼はのど部を形成する翼の最大厚さ寸法を他の翼よりも
大きくすることにより、回転動翼の拝具間に発生する捩
れ変形に因る流体損失を低減し、軸流ター予ンの効率を
向上せしめることができる。
As detailed above, the turbine blade structure of the present invention has three
A worship implement is constructed by combining one or more blades with a connecting member, and each worship implement is configured in a rotary blade row of an axial flow turbomachine in which a plurality of the above-mentioned worship implements are fixed to a rotary wheel base. The shape of at least one of the leading wing and the non-tailing wing is made to be different from the shape of the intermediate wing, and the leading wing has a maximum thickness dimension of the wing forming the throat part that is larger than that of the other wings. By increasing the diameter of the rotor blade, fluid loss due to torsional deformation occurring between the rotor blades can be reduced, and the efficiency of the axial flow turbine can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のタービン群翼構造の1実施例の翼列の
展開図である。第2図は従来のタービン翼の全体構造の
斜視図、第3図は学独翼状態のタービン翼を示す斜視図
、第4図は第2図のA−A断面を示す展開図である。第
5図は前記実施例の翼断面形状を示し、第1図の一部詳
細図でおる。 第6図は遷音速翼の損失特性を示す図表である。 第7図は第1図の一部詳細図で、拝具の端の部分金示す
説明図である。第8図は前記と異なる実施例の翼列を示
す展開図、第9図及び第10図は第8図の部分詳細図で
ある。第11図は及び第12図はそれぞれ更に異なる実
施例の説明図でおる。 第13図は対比の為に示した従来装置の拝具構造の断面
図である。 1・・・動翼、1a・・・翼背側、1b・・・翼腹側、
1c・・・翼前縁、1d・・・翼後縁、1e・・・翼最
大厚み部、1f・・・腹側のど部または、曲点、1g・
・・背側出口流路幅部、l−1・・・拝具の先頭翼、1
−2・・・拝具の中間翼、1−3・・・拝具の未尾翼、
2・・・シュラウドカバー、3・・・タイワイヤ、4・
・・回転車盤、訃・・蒸気流、6・・・拝具変形方向、
7・・・回転方向、8・・・のど部、9・・・出口流路
部、10・・・翼上流領域、11・・・翼下光領域、1
2・・・中間翼及び本考案翼の損失曲線、13・・・従
来の拝具端部の翼の損失曲線、14・・・最高効率点。
FIG. 1 is a developed view of a blade row of an embodiment of the turbine blade group structure of the present invention. FIG. 2 is a perspective view of the overall structure of a conventional turbine blade, FIG. 3 is a perspective view of the turbine blade in a state of independent blade, and FIG. 4 is a developed view taken along the line AA in FIG. 2. FIG. 5 shows the cross-sectional shape of the blade of the above embodiment, and is a partially detailed view of FIG. 1. FIG. 6 is a chart showing the loss characteristics of a transonic blade. FIG. 7 is a partially detailed view of FIG. 1, and is an explanatory view showing the partial metal at the end of the worship implement. FIG. 8 is a developed view showing a blade row of a different embodiment from the above, and FIGS. 9 and 10 are partial detailed views of FIG. 8. FIG. 11 and FIG. 12 are explanatory diagrams of further different embodiments, respectively. FIG. 13 is a sectional view of the structure of a conventional device for comparison. 1... Moving blade, 1a... Wing dorsal side, 1b... Wing ventral side,
1c... Wing leading edge, 1d... Wing trailing edge, 1e... Wing maximum thickness, 1f... Ventral throat or curved point, 1g...
・Dorsal outlet channel width part, l-1 ・Top wing of worship tool, 1
-2...middle wing of the worship tool, 1-3...untail wing of the worship tool,
2... Shroud cover, 3... Tie wire, 4...
・・Rotating wheel plate, ・・Steam flow, 6.・Direction of deformation of the worship tool,
7... Rotation direction, 8... Throat part, 9... Outlet channel part, 10... Blade upstream area, 11... Wing under light area, 1
2...Loss curve of the intermediate wing and the wing of the present invention, 13...Loss curve of the conventional wing at the tip end, 14...The highest efficiency point.

Claims (1)

【特許請求の範囲】 1、3枚若しくはそれ以上の翼を連結部材で結合して群
翼を構成するとともに、複数個の上記群翼を回転車盤に
固定した軸流ターボ機械の回転翼列において、各群翼を
構成している翼の内の先頭翼と未尾翼との少なくともい
ずれか一方の形状を中間翼の形状と異ならしめ、かつ、
前記の先頭翼はのど部を形成する翼の最大厚さ寸法を他
の翼よりも大ならしめたことを特徴とするタービン群翼
構造。 2、前記ののど部は、タービン翼の最大厚み部の背側の
膨出部と、該膨出部に対向する隣接タービン翼の腹側の
曲点部の間に形成され、かつ、上記腹側の曲点部から翼
後縁に向かう腹側の形状は、未尾翼のみほぼ直線状をな
し先頭翼及び中間翼はその翼後縁の付近に作動流体の下
流に向かつて拡開せしめる方向の傾斜を付したことを特
徴とする特許請求の範囲第1項に記載のタービン群翼構
造。 3、前記の翼は、それぞれ腹側に凸形の曲点を有する形
状とし、かつ、未尾翼における上記の曲点と翼後縁との
間の距離を、先頭翼及び中間翼における曲点と翼後縁と
の間の距離よりも大きくしたことを特徴とする特許請求
の範囲第1項若しくは同第2項に記載のタービン群翼構
造。 4、前記の連結部材はタイワイヤを含み、かつ、上記の
タイワイヤは先頭翼が隣接翼群に対向する面から突出し
ないように切断除去するとともに、未尾翼が隣接翼群に
対向する面から突出しないように切断除去したことを特
徴とする特許請求の範囲第1項に記載のタービン群翼構
造。
[Scope of Claims] A rotary blade row of an axial flow turbomachine in which one, three or more blades are connected by a connecting member to form a group of blades, and a plurality of the blades are fixed to a rotary wheel disk. The shape of at least one of the leading wing and the tail wing of the wings constituting each wing group is made different from the shape of the intermediate wing, and
A turbine blade group structure characterized in that the leading blade has a maximum thickness larger than that of the other blades. 2. The throat portion is formed between a bulge on the dorsal side of the maximum thickness portion of the turbine blade and a curved point on the ventral side of the adjacent turbine blade opposite to the bulge, and The shape of the ventral side from the curved point on the side to the trailing edge of the wing is that only the non-tailed wing has a nearly straight shape, and the leading wing and intermediate wing have a shape near the trailing edge of the wing that extends toward the downstream of the working fluid. The turbine blade structure according to claim 1, characterized in that the turbine blade structure is inclined. 3. The above-mentioned wings each have a shape with a convex curved point on the ventral side, and the distance between the above-mentioned curved point on the untailed wing and the trailing edge of the wing is equal to the curved point on the leading wing and the middle wing. The turbine blade structure according to claim 1 or 2, characterized in that the distance is greater than the distance between the blade and the trailing edge of the blade. 4. The connecting member includes a tie wire, and the tie wire is cut and removed so that the leading wing does not protrude from the surface facing the adjacent blade group, and the non-tail wing does not protrude from the surface facing the adjacent blade group. The turbine blade structure according to claim 1, wherein the turbine blade structure is cut and removed as follows.
JP15312084A 1984-07-25 1984-07-25 Turbine construction with vanes grouped in bunches Pending JPS6131601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15312084A JPS6131601A (en) 1984-07-25 1984-07-25 Turbine construction with vanes grouped in bunches

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15312084A JPS6131601A (en) 1984-07-25 1984-07-25 Turbine construction with vanes grouped in bunches

Publications (1)

Publication Number Publication Date
JPS6131601A true JPS6131601A (en) 1986-02-14

Family

ID=15555407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15312084A Pending JPS6131601A (en) 1984-07-25 1984-07-25 Turbine construction with vanes grouped in bunches

Country Status (1)

Country Link
JP (1) JPS6131601A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498136A (en) * 1993-09-17 1996-03-12 Hitachi, Ltd. Fluid machinery having blade apparatus and blade apparatus for fluid machinery
JP2010096180A (en) * 2008-10-14 2010-04-30 General Electric Co <Ge> Steam turbine rotor blade for low pressure section of steam turbine engine
JP2013032772A (en) * 2011-06-29 2013-02-14 Hitachi Ltd Supersonic turbine moving blade and axial-flow turbine
JP2016008592A (en) * 2014-06-26 2016-01-18 三菱重工業株式会社 Turbine rotor blade row, turbine stage, and axial-flow turbine
JP2017122406A (en) * 2016-01-07 2017-07-13 三菱重工業株式会社 Axial flow turbine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498136A (en) * 1993-09-17 1996-03-12 Hitachi, Ltd. Fluid machinery having blade apparatus and blade apparatus for fluid machinery
JP2010096180A (en) * 2008-10-14 2010-04-30 General Electric Co <Ge> Steam turbine rotor blade for low pressure section of steam turbine engine
JP2013032772A (en) * 2011-06-29 2013-02-14 Hitachi Ltd Supersonic turbine moving blade and axial-flow turbine
JP2016008592A (en) * 2014-06-26 2016-01-18 三菱重工業株式会社 Turbine rotor blade row, turbine stage, and axial-flow turbine
US11220909B2 (en) 2014-06-26 2022-01-11 Mitsubishi Heavy Industries, Ltd. Turbine rotor blade row, turbine stage, and axial-flow turbine
JP2017122406A (en) * 2016-01-07 2017-07-13 三菱重工業株式会社 Axial flow turbine

Similar Documents

Publication Publication Date Title
JP3578769B2 (en) Flow orientation assembly for the compression region of rotating machinery
US4012172A (en) Low noise blades for axial flow compressors
US10718215B2 (en) Airfoil with stepped spanwise thickness distribution
US5088892A (en) Bowed airfoil for the compression section of a rotary machine
US2435236A (en) Superacoustic compressor
JP5911677B2 (en) Turbine assembly having end wall profiled airfoils and selective clocking
US2660401A (en) Turbine bucket
JP4942244B2 (en) Curved compressor airfoil
JP5909057B2 (en) Turbine nozzle with contoured band
USRE45689E1 (en) Swept turbomachinery blade
JP2906939B2 (en) Axial compressor
JP2001355405A (en) Blade for turbo machine
US3837761A (en) Guide vanes for supersonic turbine blades
JP4484396B2 (en) Turbine blade
GB2164098A (en) Improvements in or relating to aerofoil section members for turbine engines
US4368005A (en) Rotary compressors
WO2005040559A1 (en) High lift rotor or stator blades with multiple adjacent airfoils cross-section
KR20010062118A (en) Double bowed compressor airfoil
US20210372288A1 (en) Compressor stator with leading edge fillet
US3128939A (en) Szydlowski
JPS6131601A (en) Turbine construction with vanes grouped in bunches
JP2017125501A (en) Gas turbine blade and manufacturing method
US5641268A (en) Aerofoil members for gas turbine engines
US3477795A (en) Bladed rotor for a fluid flow machine
JPH0960501A (en) Turbine moving blade