JPS6130604A - Stainless steel powder for powder metallurgy - Google Patents

Stainless steel powder for powder metallurgy

Info

Publication number
JPS6130604A
JPS6130604A JP15138484A JP15138484A JPS6130604A JP S6130604 A JPS6130604 A JP S6130604A JP 15138484 A JP15138484 A JP 15138484A JP 15138484 A JP15138484 A JP 15138484A JP S6130604 A JPS6130604 A JP S6130604A
Authority
JP
Japan
Prior art keywords
steel powder
stainless steel
powder
nitrogen
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15138484A
Other languages
Japanese (ja)
Inventor
Shinkichi Koike
小池 伸吉
Akira Kimura
木村 皓
Yoshiyuki Katou
欽之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Kinzoku KK
Pacific Metals Co Ltd
Original Assignee
Taiheiyo Kinzoku KK
Pacific Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Kinzoku KK, Pacific Metals Co Ltd filed Critical Taiheiyo Kinzoku KK
Priority to JP15138484A priority Critical patent/JPS6130604A/en
Publication of JPS6130604A publication Critical patent/JPS6130604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the compressibility, formability and sinterability of stainless steel powder and the corrosion resistance of a sintered body of the steel powder by reducing the nitrogen and oxygen contents in the stainless steel powder. CONSTITUTION:This stainless steel powder for powder metallurgy has <=0.0150 wt% nitrogen content and <=0.1wt% oxygen content. In the composition of the stainless steel powder, the reduced amount of nitrogen reduces the hardness of the steel powder itself and inhibits the formation of chromium nitride. The reduced amount of oxygen inhibits the surface oxidation of the steel powder. By the synergistic effect the compressibility, formability and sinterability of the stainless steel powder and the corrosion resistance of a sintered body of the steel powder are improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はステンレス鋼粉に関するものであり、さらに詳
しくは窒素含有量及び酸素含有量を極めて低い水準に規
制することにより、圧縮性、成形性、焼結性が優れ、且
つ該銅粉の焼結体の耐食性を向上せしめた、水噴霧によ
シ製造する、粉末冶金用ステンレス鋼粉に関するもので
ある。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to stainless steel powder, and more specifically, by regulating the nitrogen content and oxygen content to extremely low levels, the present invention improves compressibility and formability. The present invention relates to a stainless steel powder for powder metallurgy, which is produced by water spraying and has excellent sinterability and improved corrosion resistance of a sintered body of the copper powder.

(従来の技術) 近年、粉末冶金の分野において、ステンレス鋼焼結部品
の利用範囲が一般焼結部品から、より使用条件の厳しい
分野へ拡大しているが、これに伴い焼結晶自体の高密度
化及びこれを可能にする原料鋼粉の材質向上が求められ
ている。
(Prior art) In recent years, in the field of powder metallurgy, the scope of use of stainless steel sintered parts has expanded from general sintered parts to fields with more severe usage conditions. There is a need to improve the quality of the raw material steel powder that makes this possible.

しかしながらステンレス鋼粉は、粉末粒子の硬度が高く
、鉄粉や低合金鋼粉に比較して圧縮性及び成形性が劣っ
ていること、粉末表面に酸化被膜を形成し易く、これが
成形性を阻害していること、ステンレス鋼の構成元素で
あるクロムとステンレス鋼の精錬過程で侵入してくる窒
素がクロム窒化物の生成を促進し、これが圧縮性、成形
性、焼結性を阻害すること、これらが要因となって焼結
晶の耐食性低下を招いていること等、種々の問題を有し
ている。
However, stainless steel powder has high powder particle hardness and is inferior in compressibility and formability compared to iron powder and low-alloy steel powder.It also tends to form an oxide film on the powder surface, which impedes formability. Chromium, which is a constituent element of stainless steel, and nitrogen that enters during the refining process of stainless steel promote the formation of chromium nitride, which inhibits compressibility, formability, and sinterability. These factors cause various problems, including a decrease in the corrosion resistance of the fired crystals.

(発明が解決すべき問題点) 上記ノごときステンレス鋼粉の焼結に伴う問題を解決す
るため、下記イル二の様な対策が従来より講じられてき
た。すなわち、 イ)成形圧力の増大 口)焼結温度の上昇及び焼結時間の延長ハ)  81等
の銅粉表面酸化防止効果を有する元素の過剰添加 二)粒度構成の適性化 しかしながら、これらの対策は、イ)については金型寿
命の低下、大型プレス設置の必要性に起因する問題、口
)については焼結炉寿命の低下、作業性の低下に起因す
る問題、ノ9については成形性が劣化する問題等、解決
を必要とする種々の問題があり、さらに、二)について
も、粒度の構成によっては歩留が低下する等、銅粉製造
上、種々の制約がある。
(Problems to be Solved by the Invention) In order to solve the above-mentioned problems associated with sintering of stainless steel powder, the following countermeasures have been conventionally taken. In other words, a) Increasing the compacting pressure) Increasing the sintering temperature and extending the sintering time c) Excessive addition of elements that have the effect of preventing oxidation on the surface of copper powder such as 81, and b) Optimizing the particle size structure.However, these measures should be taken. For (a), there are problems caused by a decrease in mold life and the need to install a large press.For (b), problems are caused by a decrease in sintering furnace life and a decrease in workability, and for No.9, there are problems caused by poor formability. There are various problems that need to be solved, such as the problem of deterioration.Furthermore, with regard to 2), there are various restrictions on the production of copper powder, such as a decrease in yield depending on the particle size configuration.

(問題点を解決するだめの手段) 本発明者らは上記のごときステンレス鋼粉及びステンレ
ス鋼粉焼結体製造に伴う問題を解決するため、鋭意研究
を重ねた結果、ステンレス鋼粉の窒素及び酸素含有量を
低下せしめれば、圧縮性、成形性、焼結性が優れ、さら
に該銅粉を焼結して得られる焼結体の耐食性も向上する
銅粉が得られることを見いだし、本発明に至ったもので
ある。
(Another Means to Solve the Problems) In order to solve the above-mentioned problems associated with the production of stainless steel powder and stainless steel powder sintered bodies, the inventors of the present invention have conducted intensive research and found that the nitrogen and We have discovered that by lowering the oxygen content, we can obtain copper powder that has excellent compressibility, formability, and sinterability, and also improves the corrosion resistance of the sintered body obtained by sintering the copper powder. This led to the invention.

すなわち、本発明は窒素及び酸素含有量を低下せしめる
ことにより、圧縮性、成形性、焼結性及び焼結体の耐食
性を向上せしめたステンレス鋼粉を提供することを目的
とするものである。
That is, an object of the present invention is to provide a stainless steel powder that has improved compressibility, formability, sinterability, and corrosion resistance of a sintered body by reducing the nitrogen and oxygen contents.

一般にステンレス鋼粉は、高周波誘導炉、電気アーク炉
等の溶解炉を用いて原料を溶解・精錬した後、該溶湯を
細孔より流出させ、その溶湯流に水流ジェットを作用さ
せることによって溶湯流を飛散させ、粉末化する、いわ
ゆる水噴霧法によって製造されているが、本発明による
ステンレス鋼粉はその溶解・精錬工程において、いわゆ
るAOD炉(^rgon Oxygen Deearb
urization V@5selアルゴン酸素脱炭炉
)またはAO[)炉と真空加熱・脱ガス炉(例えばAS
EA−8KF炉のごとき炉)との組み合わせを使用する
ことが好ましい。これはAOD炉を用いることによりス
テンレス鋼溶湯の窒素及び酸素の除去が他の溶解・精錬
炉より容易に達成できるからであり、さらに真空加熱・
脱ガス炉を組み合わせ使用することにより、脱ガスがさ
らに完璧なものになるとともに、温度、成分を極めて狭
い範囲に制御できるため、極めて均質で且つ品質良好な
銅粉が得られるからである。
Generally, stainless steel powder is produced by melting and refining the raw material using a melting furnace such as a high-frequency induction furnace or an electric arc furnace, and then flowing the molten metal through pores and applying a water jet to the molten metal flow. Stainless steel powder according to the present invention is produced by the so-called water spray method, in which the stainless steel powder is dispersed and pulverized.
urization V@5sel argon oxygen decarburization furnace) or AO[) furnace and vacuum heating/degassing furnace (e.g. AS
It is preferred to use a combination with a furnace (such as an EA-8KF furnace). This is because by using an AOD furnace, it is easier to remove nitrogen and oxygen from molten stainless steel than with other melting and refining furnaces.
This is because by using a degassing furnace in combination, the degassing becomes more complete and the temperature and components can be controlled within an extremely narrow range, resulting in extremely homogeneous and high quality copper powder.

さらに好ましくは、本発明によるステンレス鋼粉製造に
際して、上記ADO炉に装入する原料は、フェロニッケ
ル製錬炉及びフェロクロム製錬炉で製造したフェロニッ
ケル及びフェロクロムの溶湯を直接装入するか、もしく
は該溶湯あるいは該溶湯を鋳造して得たインプットを電
気炉に装入して溶解し、さらに予備的なsi除去操作を
加えた粗溶鋼をAOD炉に装入することが好ましい。
More preferably, when producing stainless steel powder according to the present invention, the raw material charged into the ADO furnace is directly charged with molten ferronickel and ferrochrome produced in a ferronickel smelting furnace and a ferrochrome smelting furnace, or It is preferable that the molten metal or the input obtained by casting the molten metal be charged into an electric furnace and melted, and then the crude molten steel subjected to a preliminary Si removal operation be charged into an AOD furnace.

これは上記のごとき方法によシ製造したフェロニッケル
及びフェロクロムが一般に高炭素含有量であり(フェロ
ニッケル中には1〜3重量%、フェロクロム中には5〜
8重量−の炭素が含有されている)、この様な高炭素含
有量の溶湯もしくは粗溶鋼(電気炉にて予備的なSt除
去を行っても炭素含有量の大幅な低下はない)をAOD
炉にて精錬する際、酸化脱炭工程において大量の一酸化
炭素ガス(CO)が発生し、このCOガス及びCOガス
の希釈に用いる窒素ガス以外の不活性ガス(例えばアル
ゴン)の攪拌効果等の効果により窒素及び酸素の溶湯か
らの除去が極めて容易になるからである。
This is because ferronickel and ferrochrome produced by the above method generally have a high carbon content (1 to 3% by weight in ferronickel and 5 to 5% by weight in ferrochrome).
8 weight of carbon), such high carbon content molten metal or crude molten steel (even if preliminary St removal is performed in an electric furnace, the carbon content does not decrease significantly) is AOD.
When refining in a furnace, a large amount of carbon monoxide gas (CO) is generated in the oxidation and decarburization process, and the stirring effect of this CO gas and an inert gas other than nitrogen gas (for example, argon) used to dilute the CO gas, etc. This is because the removal of nitrogen and oxygen from the molten metal becomes extremely easy due to the effect of .

ステンレス鋼溶湯中の酸素含有量はAOD炉にて脱酸剤
による強制的な脱酸、スラグによる拡散膜酸を行うこと
により除去されるが、この場合でも大量のガスによる攪
拌効果の得られるAOD炉は有効である。
The oxygen content in molten stainless steel is removed by forcible deoxidation using a deoxidizing agent in an AOD furnace and diffusion film oxidation using slag. Furnaces are effective.

この様にAOD炉で精錬して得た銅粉はそのままでも従
来法によって製造した銅粉に比較して優れた性質を有し
ているが、AOD炉で精錬した溶鋼をさらにASEA−
8KF炉のごとき真空加熱・脱ガス炉にて引き続き処理
することによって窒素及び酸素の除去がさらに完璧なも
のになるとともに、この段階で溶鋼の温度や成分を極め
て狭い範囲に制御できるため、銅粉の形状等の特性を制
御できたシ、あるいは製造の困難であった特殊ステンレ
ス鋼の銅粉も容易に製造可能になる等、真空加熱・脱ガ
ス炉の使用は付加的な効果をも有するものである。
As described above, copper powder obtained by refining in an AOD furnace has superior properties compared to copper powder produced by conventional methods, but molten steel refined in an AOD furnace is further refined by ASEA-
By continuing the treatment in a vacuum heating/degassing furnace such as an 8KF furnace, the removal of nitrogen and oxygen becomes even more complete, and the temperature and composition of the molten steel can be controlled within an extremely narrow range at this stage, so copper powder The use of vacuum heating and degassing furnaces also has additional effects, such as being able to control the shape and other properties of stainless steel, and making it easier to manufacture copper powder for special stainless steel, which was previously difficult to manufacture. It is.

上記の様な方法により製造した、本発明−によるステン
レス鋼粉は窒素及び酸素含有量が極めて低い水準に抑え
られるため、従来法によシ製造したステンレス鋼粉に比
較してその圧縮性、成形性、焼結性及び該銅粉を焼結し
て得られる焼結体の耐食性が極めて優れているものであ
る。
The stainless steel powder according to the present invention produced by the method described above has extremely low nitrogen and oxygen content, so its compressibility and formability are lower than that of stainless steel powder produced by the conventional method. The sintered body obtained by sintering the copper powder has extremely excellent corrosion resistance, sinterability, and corrosion resistance of the sintered body obtained by sintering the copper powder.

窒素及び酸素含有量を低減せしめることにより、ステン
レス鋼粉の圧縮性、成形性、焼結性及び焼結体の耐食性
が向上する理由に関しては、まず窒素を低減せしめるこ
とによりステンレス鋼粉自体の硬度が低下すること、ク
ロム窒化物の生成が抑制されることまた酸素含有量を低
減せしめることによりステンレス鋼粉の表面酸化が抑制
されること等の効果が複合的に作用しているものと考え
られる。
The reason why reducing the nitrogen and oxygen content improves the compressibility, formability, sinterability of stainless steel powder, and the corrosion resistance of the sintered body is that by reducing the nitrogen content, the hardness of the stainless steel powder itself improves. It is thought that a combination of effects such as a reduction in chromium nitride, a suppression of chromium nitride generation, and a suppression of surface oxidation of stainless steel powder by reducing the oxygen content are working. .

本発明においては上記の様な特性を有するステンレス鋼
粉に関し、その成分上、窒素含有量を0.0150重量
・母−セント以下、酸素含有量を0.1重量パーセント
以下とすることを条件としているが、以下にその理由を
述べると、 a1窒素: 0.015重量i!−セント以下窒素はス
テンレス鋼構成元素であるクロムと結合して粉末表面に
硬度の高いクロム窒化物を生成するが、過剰に含有され
ると圧縮性、焼結体の耐食性の劣化をきたすので、0.
015重量パーセント以下とした。
In the present invention, regarding the stainless steel powder having the above-mentioned characteristics, the condition is that the nitrogen content is 0.0150% by weight or less and the oxygen content is 0.1% by weight or less. However, the reason is as follows: a1 Nitrogen: 0.015 weight i! Nitrogen combines with chromium, which is a constituent element of stainless steel, to form hard chromium nitride on the powder surface, but if it is contained in excess, the compressibility and corrosion resistance of the sintered body deteriorate. 0.
0.015% by weight or less.

酸素含有量が高いと粉末表面に形成される酸化被膜の量
が増加し、圧縮性、成形性及び焼結体の強度に及ばず影
響が大きくなるので、0.1重量・臂−セント以下に規
制する必要がある。
If the oxygen content is high, the amount of oxide film formed on the powder surface will increase, and the compressibility, formability, and strength of the sintered body will be affected, so the It needs to be regulated.

(実施例) 次に実施例に基づいて、本発明の構成及び作用効果を具
体的に説明する。
(Example) Next, the configuration and effects of the present invention will be specifically explained based on Examples.

実施例−1 表2は、表1に示す組成の粉末に1.0%のステアリン
酸亜鉛を混合して得られた配合ステンレス鋼粉を加圧力
5.OtΔノで成形し、グリーン密度を求めた結果であ
る。この表から、本発明に従い、窒素及び酸素含有量を
0.015重量パーセント及び0.1重量ノ臂−セント
に規制することにより圧縮性を向上させ得ることがわか
る。
Example-1 Table 2 shows blended stainless steel powder obtained by mixing 1.0% zinc stearate with the powder having the composition shown in Table 1 at a pressing force of 5. These are the results of molding at OtΔ and determining the green density. From this table, it can be seen that according to the present invention, compressibility can be improved by regulating the nitrogen and oxygen content to 0.015 weight percent and 0.1 weight percent.

実施例−2 表3及び表4に粉末の化学成分及び特性値を示したが、
このうち扁1〜3のステンレス鋼粉は水噴霧法により製
造したSUS 316L粉末で本発明により窒素及び酸
素含有量を極めて低く抑制したもの、A4〜6は比較の
ため高周波誘導炉により溶製し、水噴霧法により製造し
たものである。
Example-2 Tables 3 and 4 show the chemical components and characteristic values of the powder.
Among these, the stainless steel powders for A4-A6 are SUS 316L powder manufactured by the water spray method and the nitrogen and oxygen contents are suppressed to extremely low levels according to the present invention, and A4-A6 are SUS 316L powder produced by a water spray method, and A4-A6 are made by melting in a high-frequency induction furnace for comparison. , produced by the water spray method.

第1図及び第2図は、上記ステンレス鋼粉のうちA1及
びA4粉末に1.01のステアリン酸亜鉛を混合して得
られた配合ステンレス鋼粉の圧縮性及び成形性を調査し
た結果である。第1図は成形圧力を変えて圧縮成形した
際の圧縮密度を示す図であり、本発明のステンレス鋼粉
は比較鋼粉に比べてグリーン密度かたかく、圧縮性が優
れていることをしめしている。第2図は加圧力を変えて
成形して得た成形体のラトラー値を示す図で、本発明ス
テンレス鋼粉は比較鋼粉に比ベラトラー値が低く、成形
性が良いことがわかる。又、第3図は前記と同一試料を
下記の条件で焼結し焼結密度の変化を調査した結果であ
る。本発明ステンレス鋼粉は、比較鋼粉に比べて焼結密
度が著しく向上せしめられており、焼結性の優れている
ことがわかる。
Figures 1 and 2 are the results of investigating the compressibility and formability of blended stainless steel powders obtained by mixing 1.01 zinc stearate with A1 and A4 powders among the above stainless steel powders. . Figure 1 is a diagram showing the compressed density when compression molding was performed with varying molding pressures, showing that the stainless steel powder of the present invention has a higher green density and superior compressibility than the comparative steel powder. There is. FIG. 2 is a diagram showing the Rattler values of molded bodies obtained by molding with varying applied pressures, and it can be seen that the stainless steel powder of the present invention has a lower Rattler value than the comparative steel powder, and has good moldability. Moreover, FIG. 3 shows the results of sintering the same sample as above under the following conditions and investigating the change in sintered density. It can be seen that the stainless steel powder of the present invention has a significantly improved sintered density compared to the comparative steel powder, and has excellent sinterability.

焼結条件  焼結温度  1150℃ 焼結雰囲気 水素(露点−65℃) 焼結時間  60分 第4図及び第5図は、下記表3に示す特性を有する本発
明ステンレス鋼粉及び比較鋼粉の焼結試料を各々温度8
0℃、濃度10%の硫酸溶液及び塩酸溶液に浸し重量減
を測定した結果である。第4図及び第5図から明らかな
ように、本発明によるステンレス鋼粉から得られた焼結
体は比較鋼粉にくらべて硫酸及び塩酸溶液中の耐食性も
極めて良好であることが確認された。
Sintering conditions: Sintering temperature: 1150°C Sintering atmosphere: Hydrogen (dew point -65°C) Sintering time: 60 minutes Each sintered sample was heated to a temperature of 8
These are the results of measuring weight loss by immersing the sample in 10% sulfuric acid solution and hydrochloric acid solution at 0°C. As is clear from FIGS. 4 and 5, it was confirmed that the sintered body obtained from the stainless steel powder according to the present invention has extremely good corrosion resistance in sulfuric acid and hydrochloric acid solutions compared to the comparative steel powder. .

表  5 試料調整条件 成形圧力  7t/crn2焼結温度 
 1150℃ 焼結雰囲気 水素(露点−65℃) 時間    60分 添加潤滑剤 1チステアリン酸亜鉛 実施例−3 表6、及び表7に粉末の成分及び特性値を示したがこの
うちA1−A3のステンレス鋼粉は、水噴霧法により製
造したSUS 304L粉末で本発明により窒素及び酸
素含有量を極めて低く抑制したもの、扁4〜&6は比較
の為高周波誘導炉により溶製し、水噴霧法により製造し
たものである。
Table 5 Sample preparation conditions Molding pressure 7t/crn2 sintering temperature
1150℃ Sintering atmosphere Hydrogen (dew point -65℃) Time 60 minutes Added lubricant Zinc 1stearate Example-3 Tables 6 and 7 show the powder components and characteristic values. The stainless steel powder is SUS 304L powder manufactured by the water spray method, and the nitrogen and oxygen contents are suppressed to extremely low levels according to the present invention.For comparison, flats 4 to 6 are made by melting in a high frequency induction furnace and made by the water spray method. It was manufactured.

第6図及び第7図は、上記ステンレス鋼粉のうちA1及
びA4粉末に1.0チのステアリン酸亜鉛を混合して得
られた配合ステンレス鋼粉の圧縮性及び成形性を調査し
た結果である。第6図は成形圧力を変えて圧縮成形した
際の圧縮密度を示す図であり、本発明のステンレス鋼粉
は比較鋼粉に比べてグリーン密度かたかく、圧縮性が優
れていることをしめしている。第7図は加圧力を変えて
成形して得た成形体のラトラー値を示す図で、本発明ス
テンレス鋼粉は比較鋼粉に比ベラトラー値が低く、成形
性が良いことがわかる。又、第8図は前記と同一試料を
下記の条件で焼結し焼結密度の変化を調査した結果であ
る。本発明ステンレス鋼粉は、比較鋼粉に比べて焼結密
度が向上せしめられておシ、焼結性の優れていることが
わかる。
Figures 6 and 7 show the results of investigating the compressibility and formability of blended stainless steel powders obtained by mixing 1.0 g of zinc stearate with A1 and A4 powders among the above stainless steel powders. be. Figure 6 is a diagram showing the compressed density when compression molding was performed with varying molding pressures, showing that the stainless steel powder of the present invention has a higher green density and superior compressibility than the comparative steel powder. There is. FIG. 7 is a diagram showing the Rattler values of molded bodies obtained by molding with varying applied pressures, and it can be seen that the stainless steel powder of the present invention has a lower Rattler value than the comparative steel powder, and has good formability. Moreover, FIG. 8 shows the results of sintering the same sample as above under the following conditions and investigating the change in sintered density. It can be seen that the stainless steel powder of the present invention has improved sintering density and excellent sinterability compared to the comparative steel powder.

焼結条件  焼結温度   1150℃焼結雰囲気  
水素(露点−65℃) 焼結時間   60分 第9図及び第10図は、下記表8に示す特性を有する本
発明ステンレス鋼粉及び比較鋼粉の焼結試料を各々温度
80℃、濃度1(lの硫酸溶液及び塩酸溶液に浸し重量
減を測定した結果である。
Sintering conditions Sintering temperature 1150℃ sintering atmosphere
Hydrogen (dew point -65°C) Sintering time: 60 minutes Figures 9 and 10 show sintered samples of the stainless steel powder of the present invention and comparative steel powder having the characteristics shown in Table 8 below, respectively, at a temperature of 80°C and a concentration of 1. (This is the result of measuring the weight loss by immersing it in 1 of sulfuric acid solution and hydrochloric acid solution.

第9図及び第10図から明らか表ように、本発明による
ステンレス鋼粉から得られた焼結体は比較鋼粉にくらべ
て硫酸及び塩酸溶液中の耐食性も極めて良好であること
が確認された。
As clearly shown in Figures 9 and 10, it was confirmed that the sintered body obtained from the stainless steel powder according to the present invention has extremely good corrosion resistance in sulfuric acid and hydrochloric acid solutions compared to the comparative steel powder. .

表  8 試料調整条件 成形圧力  7t/crn2焼結温度 
 1150℃ 焼結雰囲気 水素(露点−65℃) 時間   60分 添加潤滑剤 1チステアリン酸亜鉛 (発明の効果) 以上詳述したとおり、本発明のステンレス鋼粉は、従来
法により製造したステンレス鋼粉に比較して、圧縮性、
成形性、焼結性及び該銅粉を焼結して得られる焼結体の
耐食性が顕著に優れているので、本発明は産業上稗益す
るところが極めて大である。
Table 8 Sample preparation conditions Molding pressure 7t/crn2 sintering temperature
1150°C Sintering atmosphere Hydrogen (dew point -65°C) Time: 60 minutes Added lubricant Zinc monostearate (effects of the invention) As detailed above, the stainless steel powder of the present invention is a stainless steel powder manufactured by a conventional method. Compressibility, compared to
Since the moldability, sinterability, and corrosion resistance of the sintered body obtained by sintering the copper powder are excellent, the present invention has great industrial benefits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明鋼粉(表3.71L1)と比較鋼粉(表
3、A4)の成形圧力とグリーン密度の関係を示す図、
第2図は本発明鋼粉(表3、ml )と比較鋼粉(表3
、屋4)の成形圧力とラトラー値の関係を示す図、第3
図は本発明鋼粉(表3、煮1)と比較鋼粉(表3、A4
)の成形圧力と焼結密度との関係を示す図、第4図は本
発明鋼粉(表3、At)焼結品と比較鋼粉(表3、A4
)焼結品の10 q6H2804溶液(so℃)中での
浸漬時間と重量減の関係を示す図、第5図は本発明鋼粉
(表3、屋1)焼結品と比較鋼粉(表3.44)焼結品
の10 % HC1溶液(80℃)中での浸漬時間と重
量減の関係を示す図、第6図は本発明鋼粉(表6、黒1
)と比較鋼粉(表6、A4)の成形圧力とグリーン密度
との関係を示す図、第7図は本発明鋼粉(表6、AI 
)と比較鋼粉(表6、扁4)の成形圧力とラトラー値の
関係を示す図、第8図は本発明鋼粉(表6、A1)と比
較銅粉(表6、扁4)の成形圧力と焼結密度との関係を
示す図、第9図は本発明鋼粉(表6、AI )焼結晶と
比較鋼粉(表6、A4)焼結晶の10チH2SO4溶液
(80℃)中の浸漬時間と重量減の関係を示す図、第1
0図は本発明鋼粉(表6.41 )焼結晶と比較鋼粉(
表6、A4)焼結晶の10%HCt溶液(80℃)中の
浸漬時間と重量減の関係を示す図である。 (zwa4ul)   、y #ト ニ41(2櫂、7
/1nt) yN軍
Figure 1 is a diagram showing the relationship between compacting pressure and green density for the steel powder of the present invention (Table 3.71L1) and the comparative steel powder (Table 3, A4);
Figure 2 shows the steel powder of the present invention (Table 3, ml) and the comparative steel powder (Table 3, ml).
, 4) Diagram showing the relationship between molding pressure and Rattler value, 3rd
The figure shows the steel powder of the present invention (Table 3, Boiled 1) and the comparative steel powder (Table 3, A4
Figure 4 shows the relationship between the compacting pressure and sintered density of the present invention steel powder (Table 3, At) and the comparison steel powder (Table 3, A4).
) Figure 5 shows the relationship between the immersion time and weight loss of the sintered product in the 10q6H2804 solution (so℃), and Figure 5 shows the relationship between the sintered product of the invention steel powder (Table 3, Ya 1) and the comparative steel powder (Table 3). 3.44) A diagram showing the relationship between immersion time and weight loss of sintered products in 10% HC1 solution (80°C), Figure 6 is a diagram showing the relationship between immersion time and weight loss of sintered products in 10% HC1 solution (80°C).
) and comparative steel powder (Table 6, A4).
) and the comparison steel powder (Table 6, Flat 4). Figure 8 shows the relationship between the molding pressure and Rattler value for the steel powder of the present invention (Table 6, A1) and the comparison copper powder (Table 6, Flat 4). A diagram showing the relationship between compaction pressure and sintered density, Figure 9 is a 10-inch H2SO4 solution (80°C) of the inventive steel powder (Table 6, AI) sintered crystals and the comparative steel powder (Table 6, A4) sintered crystals. Diagram showing the relationship between soaking time and weight loss, Part 1
Figure 0 shows the sintered crystals of the steel powder of the present invention (Table 6.41) and the comparative steel powder (Table 6.41).
Table 6, A4) is a diagram showing the relationship between immersion time and weight loss of calcined crystals in a 10% HCt solution (80°C). (zwa4ul) , y # Toni 41 (2 paddles, 7
/1nt) yN army

Claims (1)

【特許請求の範囲】[Claims] 窒素含有量が0.0150重量パーセント以下、酸素含
有量が0.1重量パーセント以下であることを特徴とす
るステンレス鋼粉。
A stainless steel powder characterized by having a nitrogen content of 0.0150% by weight or less and an oxygen content of 0.1% by weight or less.
JP15138484A 1984-07-23 1984-07-23 Stainless steel powder for powder metallurgy Pending JPS6130604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15138484A JPS6130604A (en) 1984-07-23 1984-07-23 Stainless steel powder for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15138484A JPS6130604A (en) 1984-07-23 1984-07-23 Stainless steel powder for powder metallurgy

Publications (1)

Publication Number Publication Date
JPS6130604A true JPS6130604A (en) 1986-02-12

Family

ID=15517398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15138484A Pending JPS6130604A (en) 1984-07-23 1984-07-23 Stainless steel powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JPS6130604A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347302A (en) * 1986-08-15 1988-02-29 Daido Steel Co Ltd Stainless steel powder
JPH0456703A (en) * 1990-06-27 1992-02-24 Daido Steel Co Ltd Stainless steel powder for powder metallurgy
JPH0456704A (en) * 1990-06-27 1992-02-24 Daido Steel Co Ltd Stainless steel powder for powder metallurgy
JP2010222662A (en) * 2009-03-24 2010-10-07 Seiko Epson Corp Metal powder and sintered compact

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429285A (en) * 1977-08-08 1979-03-05 Kanagawa Prefecture Method of etching material for craftwork
JPS56201A (en) * 1979-06-12 1981-01-06 Daido Steel Co Ltd Stainless steel powder for powder metallurgy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429285A (en) * 1977-08-08 1979-03-05 Kanagawa Prefecture Method of etching material for craftwork
JPS56201A (en) * 1979-06-12 1981-01-06 Daido Steel Co Ltd Stainless steel powder for powder metallurgy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347302A (en) * 1986-08-15 1988-02-29 Daido Steel Co Ltd Stainless steel powder
JPH0723481B2 (en) * 1986-08-15 1995-03-15 大同特殊鋼株式会社 Stainless steel powder
JPH0456703A (en) * 1990-06-27 1992-02-24 Daido Steel Co Ltd Stainless steel powder for powder metallurgy
JPH0456704A (en) * 1990-06-27 1992-02-24 Daido Steel Co Ltd Stainless steel powder for powder metallurgy
JP2010222662A (en) * 2009-03-24 2010-10-07 Seiko Epson Corp Metal powder and sintered compact

Similar Documents

Publication Publication Date Title
CA2294362C (en) Stainless steel powder
KR100601498B1 (en) A water-atomised, annealed iron-based powder and method of preparing a sintered product using the powder
GB2035376A (en) Alloy steel powder
EP2617503B1 (en) Method for producing ferrous powder
CN109972060B (en) Low-nickel high-strength duplex stainless steel material and preparation method thereof
US5458670A (en) Iron powder and mixed powder for powder metallurgy as well as method of producing iron powder
KR102064146B1 (en) Method for producing alloyed steel powder for sintered member starting material
CN102021480A (en) Low-chromium ferritic stainless steel and manufacturing method thereof
KR20140083165A (en) Method for manufacturing diffusion bonding iron-based powders
JPS6130604A (en) Stainless steel powder for powder metallurgy
CN115287540B (en) Powder metallurgy duplex stainless steel suitable for welding and preparation method and welding part thereof
US3975193A (en) Powder metallurgy process for producing stainless steel stock
CN112410658B (en) Preparation method of high-strength and high-hardness water-atomized prealloyed steel powder
CN114716256B (en) Refractory material for smelting rare earth steel and method for improving rare earth yield
CN114309578A (en) Wear-resistant metal ceramic powder, application thereof and wear-resistant metal ceramic
JPH0723481B2 (en) Stainless steel powder
JPS591763B2 (en) stainless steel powder
JPH059501A (en) Iron powder for sintering and production thereof
KR101136570B1 (en) Method for preparing Metal-ceramic composite improvement agent at semi-solid temperature of Sn-Cu alloy and metal material which mechanical property is improved using the same
JP3953626B2 (en) Ferritic stainless steel excellent in drawing workability and manufacturing method thereof
JPS61117202A (en) Low alloy iron powder for sintering
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
RU2202445C1 (en) Method for making iron base powder
JPS59129753A (en) Alloy steel powder for high strength sintered material
JPS591761B2 (en) stainless steel powder for powder metallurgy