JPS6130207Y2 - - Google Patents

Info

Publication number
JPS6130207Y2
JPS6130207Y2 JP7544580U JP7544580U JPS6130207Y2 JP S6130207 Y2 JPS6130207 Y2 JP S6130207Y2 JP 7544580 U JP7544580 U JP 7544580U JP 7544580 U JP7544580 U JP 7544580U JP S6130207 Y2 JPS6130207 Y2 JP S6130207Y2
Authority
JP
Japan
Prior art keywords
electrode
standard solution
holding chamber
hydrogen ion
ion concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7544580U
Other languages
Japanese (ja)
Other versions
JPS57659U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7544580U priority Critical patent/JPS6130207Y2/ja
Publication of JPS57659U publication Critical patent/JPS57659U/ja
Application granted granted Critical
Publication of JPS6130207Y2 publication Critical patent/JPS6130207Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は電極内部の標準液の水素イオン濃度を
長期に亘る測定期間中、可及的に一定に保つよう
にした陽イオン交換膜型水素イオン選択性電極に
関する。
[Detailed Description of the Invention] The present invention relates to a cation exchange membrane type hydrogen ion selective electrode that maintains the hydrogen ion concentration of a standard solution inside the electrode as constant as possible over a long period of measurement.

ステンレス鋼、チタン、ジルカロイ等の高級合
金材の酸洗には一般に弗化水素酸を含む酸洗浴が
使用されるが、この酸洗浴の酸濃度管理のために
行われる水素イオン濃度の測定には、ガラス膜が
弗化水素酸に犯されるため通常のガラス電極の水
素イオン濃度計が使用できないので、陽イオン交
換膜型水素イオン選択性電極(以下陽イオン電極
という)が使用されている。この陽イオン電極に
よる水素イオン濃度測定は公知の如く、陽イオン
交換膜の両側に接した電極内部に保持した既知の
水素イオン濃度の標準液と被検液との間に生じた
電位差を測定し、前記電位差が標準液と被検液の
水素イオン濃度の差に一定の相関性を有する原理
を利用して被検液の水素イオン濃度を求めるもの
であつて、通常上記陽イオン電極による電位差は
基準電極との組み合せで行う零位法によつて測定
指示される。
A pickling bath containing hydrofluoric acid is generally used to pickle high-grade alloy materials such as stainless steel, titanium, and Zircaloy. Since a typical glass electrode hydrogen ion concentration meter cannot be used because the glass membrane is damaged by hydrofluoric acid, a cation exchange membrane type hydrogen ion selective electrode (hereinafter referred to as a cation electrode) is used. As is well known, hydrogen ion concentration measurement using this cation electrode measures the potential difference generated between a standard solution of known hydrogen ion concentration and a test solution held inside the electrodes that are in contact with both sides of the cation exchange membrane. , the hydrogen ion concentration of the test solution is determined using the principle that the potential difference has a certain correlation with the difference in hydrogen ion concentration between the standard solution and the test solution, and the potential difference due to the cation electrode is usually Measurement instructions are given using the zero position method in combination with a reference electrode.

前記陽イオン電極においては、電極内部の標準
液と被検液とを分離する陽イオン交換膜が被検溶
液中の陽イオンを通過させる性質があるため、陽
イオン電極による被検液の測定時間の経過と共に
被検液中の水素イオンが電極内部の標準液内に浸
透して標準液の水素イオン濃度に変化をきたす、
ために電極の示す測定電位がシフトして被検液の
水素イオン濃度測定値に誤差を生じる欠点があ
る。
In the above-mentioned cation electrode, the cation exchange membrane that separates the standard solution and the test solution inside the electrode has a property of allowing the cations in the test solution to pass through, so the measurement time of the test solution with the cation electrode is As time passes, hydrogen ions in the test solution penetrate into the standard solution inside the electrode, causing a change in the hydrogen ion concentration of the standard solution.
Therefore, there is a drawback that the measurement potential shown by the electrode shifts, causing an error in the measured value of the hydrogen ion concentration of the test liquid.

なお、前記陽イオン電極の電位の応答は2〜3
秒と極めて速いが、陽イオン交換膜の浸透による
標準液のイオン濃度の変化は極めて緩慢なために
1時間程度の範囲内での測定においては標準液の
濃度変化による測定誤差は無視し得るので測定は
可能であるが、酸洗のプロセスコントロール等を
目的とする長期(約1ケ月)に亘る被検液の連続
測定に対しては前記測定誤差を生じる欠点のため
陽イオン電極は使用できなかつた。
Note that the response of the potential of the cation electrode is 2 to 3.
However, the change in the ion concentration of the standard solution due to permeation of the cation exchange membrane is extremely slow, so the measurement error due to the change in the concentration of the standard solution can be ignored in measurements over a period of about 1 hour. Although measurement is possible, cation electrodes cannot be used for continuous measurement of test liquid over a long period of time (approximately one month) for the purpose of process control of pickling, etc. due to the drawback of causing measurement errors. Ta.

本考案は上記欠点を解消するためになされたも
ので、その要旨とするところは、電極基体と、基
体内部に設けた標準液保持室と、該標準液保持室
と電極基体外界とを仕切る電位感応体としての陽
イオン交換膜と、標準液保持室内に設けた電極
と、該電極に接続されて電極基体外面に端子を有
する導線とを備えており、前記標準液保持室内に
標準液を循環させるための標準液保持室へ通ずる
給液口と、排液口とを有することを特徴とする陽
イオン交換膜型水素イオン選択性電極にある。
The present invention was devised to eliminate the above-mentioned drawbacks, and its gist is to provide an electrode substrate, a standard solution holding chamber provided inside the substrate, and an electric potential that separates the standard solution holding chamber from the outside world of the electrode substrate. It is equipped with a cation exchange membrane as a sensitive body, an electrode provided in a standard solution holding chamber, and a conductive wire connected to the electrode and having a terminal on the outer surface of the electrode base, and the standard solution is circulated in the standard solution holding chamber. The present invention provides a cation exchange membrane type hydrogen ion selective electrode characterized by having a liquid supply port communicating with a standard solution holding chamber and a liquid discharge port for storing a standard solution.

以下図面に掲げる実施例に基いて本考案を詳細
に説明する。
The present invention will be described in detail below based on embodiments shown in the drawings.

第1図は本案電極の構造を示す説明図で縦断正
面図である。第1図において2は電位感応体とし
て公知の陽イオン交換膜、3は電極内部に設けた
銀一塩化銀電極、4は電極内部に設けた標準液保
持室、5は銀一塩化銀電極3と後記する電位差計
とを接続する導線、6は電極基体であり、前記標
準液保持室4の給液口7は送液管9に、排液口8
は排液管10にそれぞれ接続する。標準液11は
給液口7から保持室4に入り、該保持室4内を通
つて排液口8から排液管10に排出されるように
構成される。
FIG. 1 is an explanatory diagram showing the structure of the electrode according to the present invention, and is a longitudinal sectional front view. In FIG. 1, 2 is a cation exchange membrane known as a potential sensitive material, 3 is a silver monochloride electrode provided inside the electrode, 4 is a standard solution holding chamber provided inside the electrode, and 5 is a silver monochloride electrode 3 A conductive wire 6 connects a potentiometer to be described later, 6 is an electrode base, a liquid supply port 7 of the standard solution holding chamber 4 is connected to a liquid supply pipe 9, and a liquid drain port 8
are connected to the drain pipe 10, respectively. The standard solution 11 enters the holding chamber 4 through the liquid supply port 7, passes through the holding chamber 4, and is discharged from the drain port 8 into the drain pipe 10.

第2図は本案電極を用いて被検液の水素イオン
濃度を測定する一実施例を示した説明図であり、
被検液、電極、標準液貯溜タンク等の配置ならび
に標準液の循環系路が明らかである。図におい
て、1は陽イオン電極、12は電極外に設けた標
準液貯溜タンクであり、第1図に示した電極1内
部の標準液保持室4が標準液貯溜タンク12と送
液管9及び排液管10により結合されていて、送
液ポンプ13により標準液11が陽イオン電極1
内部の前記標準液保持室と標準液貯溜タンク12
とを循環するよう設けられている。
FIG. 2 is an explanatory diagram showing an example of measuring the hydrogen ion concentration of a test liquid using the electrode of the present invention.
The arrangement of the test solution, electrodes, standard solution storage tank, etc., as well as the standard solution circulation path are clear. In the figure, 1 is a cation electrode, 12 is a standard solution storage tank provided outside the electrode, and the standard solution holding chamber 4 inside the electrode 1 shown in FIG. The standard solution 11 is connected to the cation electrode 1 by a liquid pump 13.
The internal standard solution holding chamber and standard solution storage tank 12
It is set up so that it circulates.

14は基準電極、15は電位差計であり、基準
電極14及び陽イオン電極1と電位差計15とは
それぞれ導線20,20で接続される。16は被
検液の測定セルであり、被検液17は入口18か
ら測定セル16内に入り同セル内の被検液に浸漬
した前記陽イオン電極1及び基準電極14により
被検液の水素イオン濃度に応じた電位を測定させ
た後出口19よりセル16外に排出され、被検液
17の水素イオン濃度が連続的に測定される。ま
た前記被検液の水素イオン濃度に応じた電位は公
知の如く陽イオン電極1と基準電極14の組み合
せで行う零位法に基いて電位差計15にて指示さ
れる。
14 is a reference electrode, 15 is a potentiometer, and the reference electrode 14, the cation electrode 1, and the potentiometer 15 are connected by conducting wires 20, 20, respectively. Reference numeral 16 denotes a measurement cell for the test liquid, and the test liquid 17 enters the measurement cell 16 from the inlet 18, and the hydrogen of the test liquid is absorbed by the cation electrode 1 and the reference electrode 14 immersed in the test liquid in the cell. After measuring the potential according to the ion concentration, the sample liquid 17 is discharged from the cell 16 through the outlet 19, and the hydrogen ion concentration of the sample liquid 17 is continuously measured. Further, the potential corresponding to the hydrogen ion concentration of the test liquid is indicated by a potentiometer 15 based on a known null method using a combination of a cation electrode 1 and a reference electrode 14.

上記構成よりして、本案陽イオン電極内部の標
準液は保持室4と貯溜タンク12とを絶えず循環
し、かつ、貯溜タンク12の容量が保持室4に比
較して大容量であるため保持室4での標準液の濃
度変化に貯溜タンク12にて無視し得る程度に薄
められて再び保持室4に循環せしめられると共
に、前記保持室4での濃度変化に基く貯溜タンク
内で標準液の濃度変化の進行が比較的緩慢なため
に随時の料採取による化学分析によつて必要に応
じて濃度が変化した貯溜タンク内の標準液を所定
の濃度のものと取替える等の処置が十分執れるた
め、本案陽イオン電極内部の保持室内の標準液の
水素イオン濃度を長期間可及的に一定に保つこと
ができるので、弗化水素酸を含む酸洗液のプロセ
スコントロール等のための長期間に亘る濃度の連
続測定に対しても陽イオン電極の使用が可能とな
る。
With the above configuration, the standard solution inside the cation electrode of the present invention is constantly circulated between the holding chamber 4 and the storage tank 12, and since the capacity of the storage tank 12 is larger than that of the holding chamber 4, 4, the standard solution is diluted to a negligible extent in the storage tank 12 and circulated again to the holding chamber 4, and the concentration of the standard solution is adjusted in the storage tank based on the concentration change in the holding chamber 4. Because the progress of change is relatively slow, it is possible to take appropriate measures such as replacing the standard solution in the storage tank whose concentration has changed with one of the predetermined concentration by chemical analysis by sampling samples from time to time. Since the hydrogen ion concentration of the standard solution in the holding chamber inside the cation electrode can be kept as constant as possible for a long period of time, it can be used for long periods of time for process control of pickling solutions containing hydrofluoric acid, etc. It is also possible to use a cation electrode for continuous measurement of concentrations over a wide range.

次に実施例により本案電極の効果を説明する。 Next, the effects of the electrode according to the present invention will be explained using examples.

実施例 1 第3図は第2図の本案電極1を使用した水素イ
オン濃度測定装置により弗化水素酸を0.9〜4.5モ
ルの範囲でそれぞれ含有した各種の被検液中の水
素イオン濃度を測定した場合における水素イオン
濃度と電位差計15に示された指示電位の関係を
特性曲線Pにて示した図表である。
Example 1 Figure 3 shows the measurement of hydrogen ion concentrations in various test liquids containing hydrofluoric acid in the range of 0.9 to 4.5 mol using a hydrogen ion concentration measuring device using the electrode 1 of the invention shown in Figure 2. This is a chart showing the relationship between the hydrogen ion concentration and the indicated potential shown on the potentiometer 15 in a characteristic curve P.

図示した如く、弗化水素酸含有量の大小に拘ら
ず被検液の水素イオン濃度が0.1〜10モル以上と
極めて広い濃度範囲に亘る場合において、水素イ
オン濃度の測定が可能であつた。
As shown in the figure, regardless of the hydrofluoric acid content, it was possible to measure the hydrogen ion concentration in the test solution over an extremely wide concentration range of 0.1 to 10 mol or more.

実施例 2 第4図は水素イオン濃度を一定に調整した弗化
水素酸を含有した被検液の水素イオン濃度を、そ
れぞれ第2図の本案電極を用いた水素イオン濃度
測定装置と従来の陽イオン電極と基準電極の組合
せからなる水素イオン濃度測定装置により長時間
に亘り連続測定した場合の測定時間の経過と、電
位差計が示した指示電位の関係を特性曲線Q及び
Rにて示した図表である。
Example 2 Figure 4 shows the hydrogen ion concentration of a test solution containing hydrofluoric acid whose hydrogen ion concentration was adjusted to a constant value, using a hydrogen ion concentration measuring device using the proposed electrode shown in Figure 2 and a conventional positive electrode, respectively. A chart showing the relationship between the elapsed measurement time and the indicated potential indicated by the potentiometer using characteristic curves Q and R when continuous measurement is performed over a long period of time using a hydrogen ion concentration measuring device consisting of a combination of an ion electrode and a reference electrode. It is.

図示の如く、従来装置を用いた特性曲線Rは測
定開始より、1.5時間経過までは一定の電位を示
したが1.5時間を越えると被検液中の水素イオン
濃度の影響を受けて標準液の濃度が変化したた
め、指示電位がシフト(低下)し水素イオン濃度
の測定結果に誤差を生じたが、これに反し本案電
極を用いた特性曲線Qは測定開始後約1ケ月
(720時間)経過する毎に1回宛貯溜タンクの標準
液を所定の濃度のものと取替えて(矢印aで示
す)2000時間の長期に亘り常に略々一定の電位
(即ち水素イオン濃度)に保つことができたこと
を示している。
As shown in the figure, the characteristic curve R using the conventional device showed a constant potential from the start of measurement until 1.5 hours had elapsed, but after 1.5 hours, the potential of the standard solution was affected by the hydrogen ion concentration in the test solution. As the concentration changed, the indicated potential shifted (decreased), causing an error in the measurement results of hydrogen ion concentration.However, on the other hand, the characteristic curve Q using the proposed electrode shows that approximately 1 month (720 hours) has elapsed since the start of measurement. By replacing the standard solution in the storage tank with one of the specified concentration once every time (indicated by arrow a), it was possible to maintain a nearly constant potential (i.e., hydrogen ion concentration) over a long period of 2000 hours. It shows.

上記した如く、本案陽イオン電極は標準液を電
極外に設けた標準液貯溜タンクと電極内部の標準
液保持室とを循環するように設けて長期に亘り電
極内部の標準液の水素イオン濃度を一定に保つよ
うにしたので、弗化水素酸を含む酸洗浴組成のプ
ロセスコントロールが可能となり、ステンレス
鋼、チタン、ジルカロイ等の酸洗能率の向上及び
酸洗コストの低減に極めて有効である。
As mentioned above, the cation electrode of the present invention is provided so that the standard solution is circulated between the standard solution storage tank provided outside the electrode and the standard solution holding chamber inside the electrode, and the hydrogen ion concentration of the standard solution inside the electrode is maintained over a long period of time. Since it is kept constant, the process control of the pickling bath composition containing hydrofluoric acid becomes possible, which is extremely effective in improving the pickling efficiency of stainless steel, titanium, Zircaloy, etc. and reducing the pickling cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本案電極の構造を示す説明図で縦断正
面図、第2図は本案電極を用いて被検液の水素イ
オン濃度を測定する一実施例を示した説明図、第
3図は本案電極を用いた装置による被検液の水素
イオン濃度と指示電位の関係を示す図表、第4図
は本案と従来装置の陽イオン電極により被検液の
水素イオン濃度を測定した場合における指示電位
と経過時間の関係を比較して示した図表である。 1:陽イオン電極、2:陽イオン交換膜、3:
銀一塩化銀電極、4:標準液保持室、5:導線、
6:電極基体、7:給液口、8:排液口、9:送
液管、10:排液管、11:標準液、12:標準
液貯溜タンク、13:送液ポンプ、14:基準電
極、15:電位差計、16:測定セル、17:被
検液。
Figure 1 is an explanatory diagram showing the structure of the electrode according to the present invention, and is a longitudinal front view, Figure 2 is an explanatory diagram showing an example of measuring the hydrogen ion concentration of a test liquid using the electrode according to the present invention, and Figure 3 is an explanatory diagram showing the structure of the electrode according to the present invention. A chart showing the relationship between the hydrogen ion concentration of a test solution and indicated potential using an electrode-based device. Figure 4 shows the indicated potential and the indicated potential when measuring the hydrogen ion concentration of a test solution using the cation electrode of the present invention and the conventional device. It is a chart showing a comparison of relationships between elapsed times. 1: Cation electrode, 2: Cation exchange membrane, 3:
Silver monochloride electrode, 4: Standard solution holding chamber, 5: Conductive wire,
6: Electrode base, 7: Liquid supply port, 8: Liquid drain port, 9: Liquid feeding pipe, 10: Liquid draining pipe, 11: Standard solution, 12: Standard solution storage tank, 13: Liquid feeding pump, 14: Standard electrode, 15: potentiometer, 16: measurement cell, 17: test liquid.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電極基体6と、基体内部に設けた標準液保持室
4と、該標準液保持室との電極基体外界とを仕切
る電位感応体としての陽イオン交換膜2と、標準
液保持室内に設けた電極3と、該電極に接続され
て電極基体外面に端子を有する導線5とを備えて
おり、前記標準室保持室内に標準液を循環させる
ための標準液保持室へ通ずる給液口7と排液口8
とを有することを特徴とする陽イオン交換膜型水
素イオン選択性電極。
An electrode substrate 6, a standard solution holding chamber 4 provided inside the substrate, a cation exchange membrane 2 as a potential sensitive body that partitions the standard solution holding chamber from the outside world of the electrode substrate, and an electrode provided inside the standard solution holding chamber. 3, and a conductive wire 5 connected to the electrode and having a terminal on the outer surface of the electrode base, and a liquid supply port 7 and a liquid drain connected to the standard solution holding chamber for circulating the standard solution in the standard chamber holding chamber. Mouth 8
A cation exchange membrane type hydrogen ion selective electrode comprising:
JP7544580U 1980-05-31 1980-05-31 Expired JPS6130207Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7544580U JPS6130207Y2 (en) 1980-05-31 1980-05-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7544580U JPS6130207Y2 (en) 1980-05-31 1980-05-31

Publications (2)

Publication Number Publication Date
JPS57659U JPS57659U (en) 1982-01-05
JPS6130207Y2 true JPS6130207Y2 (en) 1986-09-04

Family

ID=29438121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7544580U Expired JPS6130207Y2 (en) 1980-05-31 1980-05-31

Country Status (1)

Country Link
JP (1) JPS6130207Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7106376B2 (en) * 2018-07-06 2022-07-26 キヤノンメディカルシステムズ株式会社 automatic analyzer

Also Published As

Publication number Publication date
JPS57659U (en) 1982-01-05

Similar Documents

Publication Publication Date Title
Smith et al. Copper determination in water by standard addition potentiometry
Frumkin Hydrogen overvoltage
Carson et al. Coulometric Determination of Acid
Huston et al. Calcium activity measurements using a liquid ion exchange electrode in concentrated aqueous solutions
JPS6130207Y2 (en)
US4886584A (en) Potential measuring method and apparatus having signal amplifying multiple membrane electrode
Rulfs Polarographic diffusion coefficients
Torrance A potentiometric method for the determination of chloride in boiler waters in the range 0· 1 to 10 µg ml–1 of chloride
Thompson et al. Fast reaction flow system using crystal-membrane ion-selective electrodes
Wikby et al. Correlation between the gel layer properties and the electrochemical behaviour of hydrogen selective glass electrodes
Lazarou et al. Kinetic study of the iron (II)-induced perbromate-iodide reaction with an iodide ion selective electrode and kinetic determination of iron, perbromate, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, and ethylene glycol-bis (2-aminoethyl ether)-N, N, N', N'-tetraacetic acid
Armstrong et al. Exchange current determination and time-dependent effects for model liquid membrane ion-selective electrodes
Chreitzbeeg et al. The overpotential of the manganese dioxide electrode
RU2107286C1 (en) Method of determination of octadecylamine concentration in water heat carrier and device intended for its realization
Sollner et al. The The Electrochemistry of Permselective Protamine Collodion Membranes. I. Rate Studies on the Establishment of the Concentration Potential across Various Types of Permselective Protamine Collodion Membranes.
Peverelli et al. A kinetic study of the silver/silver iodide film electrode in aqueous solution using the coulostatic pulse technique: Part II. Influence of the nature and concentration of the inert electrolyte
CN116718660A (en) Method for measuring ion concentration by ion selective electrode based on double electrolytic cells
Bond et al. Investigation by automated differential pulse anodic-stripping voltammetry of the problem of storage of dilute solutions
Van der Meer et al. The micro determination of copper (II) with a solid-state copper-selective electrode
King et al. Kinetics of Silver‐Silver Ion Exchange
JPH10267886A (en) Ph-measuring method of halogen-bath tin electroplating liquid
Nutbourne Use of an electrode made from glass BH 115 to determine potassium concentration in solutions containing a large excess of sodium
Radić et al. Fluoride-selective electrode with internal redox reference electrode
SU1744650A1 (en) Method for determination of osmolarity of blood serum and device
Su et al. Micelle‐Counterion Interaction, I. Critical Micelle Concentrations OF SDS Under the Influence of Copper Counterion