JPS6130078A - Microwave high-output transistor - Google Patents

Microwave high-output transistor

Info

Publication number
JPS6130078A
JPS6130078A JP15061084A JP15061084A JPS6130078A JP S6130078 A JPS6130078 A JP S6130078A JP 15061084 A JP15061084 A JP 15061084A JP 15061084 A JP15061084 A JP 15061084A JP S6130078 A JPS6130078 A JP S6130078A
Authority
JP
Japan
Prior art keywords
electrode
resistance
layer
gate electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15061084A
Other languages
Japanese (ja)
Inventor
Hiroyuki Anraku
安楽 広之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15061084A priority Critical patent/JPS6130078A/en
Publication of JPS6130078A publication Critical patent/JPS6130078A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable a microwave high-output transistor to operate without causing oscillation over a wide band, by forming a resistance layer region directly below a gate electrode so that the region extends through the substrate, and connecting the gate electrode to the ground potential through this resistance layer region. CONSTITUTION:A source electrode 2, a gate electrode 3 and a drain electrode 4 are disposed on a high-resistance GaAs substrate, and an impurity-diffused layer 7 having a finite resistance is formed directly below the electrode 3. The layer 7 extends through the substrate to reach the reverse surface thereof. When the GaAsFET with this structure is mounted in a semiconductor element package, the electrode 3 is grounded through the layer 7. The resistance of the layer 7 can be set at an appropriate value by controlling the impurity concentration in the layer 7. In other words, the electrical resistance between the electrode 3 and the ground electrode enables the device to operate without oscillation over a wide band.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はマイクロ波高出力トランジスタに関し。[Detailed description of the invention] (Industrial application field) The present invention relates to a microwave high power transistor.

特にマイクロ波帯高出力用ヒ化ガリウム電界効果トラン
ジスタ(以下GaAs F E Tと記す)に関する。
In particular, the present invention relates to a gallium arsenide field effect transistor (hereinafter referred to as GaAs FET) for high output power in the microwave band.

(従来技術) GaAs F E Tは年々高周波数化、高ゲイン化が
進み、それに伴い素子内の浮遊容量の低減、高周波直列
抵抗R8の低減、熱抵抗athの低減など、種々の技術
開発がなされ、現在ではX帯の領域まで安定的に製品と
供給できるようになってきた。
(Prior art) As the frequency and gain of GaAs FETs progresses year by year, various technological developments have been made to reduce stray capacitance within the device, reduce high frequency series resistance R8, and reduce thermal resistance ath. Currently, we are able to stably supply products up to the X-band range.

また従来から生産されているC帯の製品も高効率。In addition, conventionally produced C-band products are also highly efficient.

高ゲインが要求されるようになシ、それに対応する製品
の開発が急がれている。
As high gain is increasingly required, there is an urgent need to develop products that meet this demand.

そこで、X帯以上の^い周波数用に開発された技術を用
いてC″mm薬品涯することが考えられるが、一般にX
帯用の技術を用いたGaAs F ETはC帯ではゲイ
ンが高くなシすぎ1回路状態や周波数によってはFET
内部での帰還によシ発躯を起す可能性が大である0 第3図(a)、 (b)は、従来の高出力GaAsFE
Tの一例の平面図及びA−A’断面図でおる。第3図(
a)、 (b)において、高抵抗のG a A s基板
1上にソースミ極2.ゲート電極3.ドレイン電極4が
配置され、また各電極がクシ形に交錯した部分直下が、
活性動作領域であって破線5はその領域線である。
Therefore, it is possible to treat C″mm chemicals using technology developed for frequencies higher than the X band, but in general,
GaAs FETs using C-band technology do not have high gain in the C-band, so depending on the circuit condition and frequency, the FET
There is a high possibility that the internal feedback will cause an eruption.
These are a plan view and an AA' cross-sectional view of an example of T. Figure 3 (
In a) and (b), a source mirror 2. is placed on a high resistance GaAs substrate 1. Gate electrode 3. Directly below the part where the drain electrode 4 is arranged and each electrode intersects in a comb shape,
This is the active operation region, and the broken line 5 is the region line.

上記構造のFETがX帯で必要な特性を得た場合の最大
有能電力利得(MAG)のシュミレーシ冒ンを実際の製
品のSパラメータをもとに行いその結果を第4図に示し
た。第4図に於て、実線部は発振に対して安定な領域で
あシ、また破線部は動作が不安定になり易く、回路状態
1周波数によっては発振を起す領域でおる。第4図によ
シ前記FE’I’の安定な動作領域は11 GHz以上
であシ23GHzでゲインがOdBとなることがわかる
A simulation of the maximum available power gain (MAG) when the FET with the above structure obtains the necessary characteristics in the X band was performed based on the S parameters of the actual product, and the results are shown in FIG. In FIG. 4, the solid line portion is a stable region against oscillation, and the broken line portion is a region where operation tends to become unstable and oscillation may occur depending on the circuit state and frequency. It can be seen from FIG. 4 that the stable operating range of the FE'I' is above 11 GHz, and the gain becomes OdB at 23 GHz.

すなわち従来のままでは11GHz以下では安定な動作
は期待できず問題である。
That is, with the conventional technology, stable operation cannot be expected at frequencies below 11 GHz, which is a problem.

(発明の目的) 本発明の目的は、X帯用に開発されたG a A 5F
ETf、X帯での性能を損わずにC帯においても発振に
対して安定な状態で、かつ高ゲインを実現し高帯域に使
用できるGaAsFETを提供することにある。
(Object of the invention) The object of the present invention is to obtain the G a A 5F developed for
The object of the present invention is to provide a GaAsFET that is stable against oscillation even in the C band without impairing its performance in the ETF and X bands, achieves high gain, and can be used in a high band.

(作用) 従来のX帯用の技術によ多形成したG a A s F
ETはC帯ではゲインが高くなりすぎ1回路状態や周波
数によりFET内部での帰還により発振を起す可能性が
大で実用に適さなかった。
(Function) G a A s F formed using conventional X-band technology
The gain of the ET becomes too high in the C band, and depending on the circuit condition and frequency, there is a large possibility that oscillation will occur due to feedback inside the FET, making it unsuitable for practical use.

しかし本発明によれば、ゲートパッド直下に有限な抵抗
値を持つ拡散層が形成され、該拡散層は高抵抗GaAs
基板を貫通して形成されているので、本発明によるGa
As FETを半導体素子用容器に搭載すれば、ゲート
電極が半導体素子用容器の接地電位と接続され、結果と
してゲート電極と接地電極間に電気抵抗を形成したこと
になる。この電気抵抗は拡散層の不純物濃度を制御する
ことによシ適当な抵抗値とすることが出来るので、この
抵抗値を変えることKより広い帯域にわたって発振の起
らない安定領域を有するGaAsFETが得られる。
However, according to the present invention, a diffusion layer having a finite resistance value is formed directly under the gate pad, and the diffusion layer is made of high resistance GaAs.
Since the Ga layer according to the present invention is formed through the substrate,
When the As FET is mounted in a semiconductor device container, the gate electrode is connected to the ground potential of the semiconductor device container, and as a result, an electric resistance is formed between the gate electrode and the ground electrode. This electrical resistance can be set to an appropriate resistance value by controlling the impurity concentration of the diffusion layer, so by changing this resistance value, a GaAsFET with a stable region in which oscillation does not occur over a wider band than K can be obtained. It will be done.

(実施例) 以下、本発明の実施例について、図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図+り、 (b)は本発明の一実施例の平面図及び
B−B’断面図である0第1図(a)において、1は高
抵抗G a A s 基板、  2Fiソース電極、3
はゲート電極、4はドレイン電極である。各電極がクシ
形に交錯した部分直下が活性動作領域であシ破線5はそ
の領域線である0また第1図(b)において、破線6け
動作活性領域である0また7はゲートパ、ド直下に形成
され有限な抵抗値を持つ不純物拡散層であり、この拡散
層は高抵抗G a A s基板1を貫通し裏面に達L7
ている。なお第1図(a)の破線8けゲート直下の拡散
層の領域を示し第1図(b)の7に和尚する。
Figure 1 (b) is a plan view and a BB' cross-sectional view of an embodiment of the present invention. In Figure 1 (a), 1 is a high resistance Ga As substrate, 2 is a Fi source electrode. ,3
4 is a gate electrode, and 4 is a drain electrode. The area directly below the part where the electrodes intersect in a comb shape is the active operating region, and the broken line 5 is the area line 0. In FIG. This is an impurity diffusion layer formed directly below and having a finite resistance value, and this diffusion layer penetrates the high resistance GaAs substrate 1 and reaches the back surface L7.
ing. Note that the region of the diffusion layer immediately below the 8-gate gate is indicated by the broken line in FIG. 1(a), and is referred to as 7 in FIG. 1(b).

第1図(a)、 (b)に示す構造のGaAsFBTは
半導体素子用容器に搭載すると、ゲート電極が、前記拡
散層7を介して接地されることになり、この拡散層の不
純*濃度を制御すればこの拡散層の抵抗値を適当な値に
することが出来る0 すなわち、ゲート電極と接地電極間の電気抵抗により広
い帯域にわたって発振を起すことなく動作させることが
できる0 第2図は第1図(a)、 (b)に示したゲート電極を
抵抗を介して接地電位に接続した本実施例のG a A
 5FETで抵抗値を2000としたときの最大有能電
力利得(MAG)の計算結果を示す図である0第2図に
おいて実線が安定な帯域、破線が不安定な帯域を意味す
る。第2図では今回のシーミレーシ、ンで計算可能な2
GHzから6GHzまでが動作の安定な領域となってお
シ、このときはゲイン12〜14dBが得られておシ、
また22.5GHzでOdBとなっている0 この結果をゲートを抵抗を介して接地電位に接続しない
従来のGaAs F E Tの結果を示す第4図と比較
すると第2図に示す本実施例ではゲインOdBの周波数
では従来の第4図のものに対し500MHz低下してい
るが、11〜16GHzでは殆んど両者は変っていない
結果を示している。発振に対して安定でゲインOd8以
上の得られる領域も第4図の従来例の11〜23GHz
に対し第2図の本実施例では2〜6 GHz、 10.
5〜22.5 GHzとなっており、また、2〜6GH
zでゲイン12〜14dBを得ている。ゲート電極を2
000の抵抗で接地した場合が、はるかに広帯域となっ
ていることがわかる。
When the GaAsFBT having the structure shown in FIGS. 1(a) and 1(b) is mounted in a semiconductor device container, the gate electrode will be grounded via the diffusion layer 7, and the impurity* concentration of this diffusion layer will be reduced. If controlled, the resistance value of this diffusion layer can be set to an appropriate value. In other words, the electric resistance between the gate electrode and the ground electrode allows operation over a wide range without causing oscillation. G a A of this example in which the gate electrodes shown in Figure 1 (a) and (b) are connected to the ground potential via a resistor.
In FIG. 2, which is a diagram showing the calculation results of the maximum available power gain (MAG) when the resistance value is 2000 for a 5FET, the solid line indicates a stable band, and the broken line indicates an unstable band. In Figure 2, the current sea mileage is 2, which can be calculated using n.
The range from GHz to 6 GHz is stable operation, and at this time a gain of 12 to 14 dB can be obtained.
Moreover, when comparing this result with FIG. 4, which shows the results of a conventional GaAs FET in which the gate is not connected to the ground potential through a resistor, it is OdB at 22.5 GHz. At the frequency of the gain OdB, the frequency is lowered by 500 MHz compared to the conventional one shown in FIG. 4, but at 11 to 16 GHz, the results show that the two are almost unchanged. The range in which it is stable against oscillation and obtains a gain of Od8 or more is 11 to 23 GHz in the conventional example shown in Figure 4.
On the other hand, in this embodiment shown in FIG. 2, the frequency is 2 to 6 GHz, 10.
5 to 22.5 GHz, and 2 to 6 GHz
A gain of 12 to 14 dB is obtained at z. 2 gate electrodes
It can be seen that when grounded with a resistance of 000, the band is much wider.

(発明の効果) 以上説明したように1本発明によれば、10GHz以上
での高周波特性をほとんど損なう ことな(10GHz
以下で本発振に対して安定な領域を持つ高ゲインなマイ
クロ波帯GaAsFETを得ることができる。
(Effects of the Invention) As explained above, according to the present invention, the high frequency characteristics at 10 GHz or higher are hardly impaired (10 GHz
A high-gain microwave band GaAsFET having a stable region for main oscillation can be obtained in the following manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、Φ)は本発明の一実施例の平面図及びB
−B’断面図、第2図は本発明の一実施例の構造のGa
As FETのMAGの計算結果を示す図、第3図(a
)、(b)は従来のマイクロ波帯高出力G a A 5
FETの平面図及びA−A’断面図、第4図は従来のマ
イクロ波帯高出力GaAs FETのMAGの計算結果
を示す図である。 1・・・・・・G a A s基板、2・・・・・・ソ
ース電極、3・・・・・・ゲート電極、4・・・・・・
ドレイン電極、5,6・・・・・・動ト電極直下の不純
物拡散による抵抗層の領域線(破線部)。 γ 第 l 図 Σ<、5\ml/)毎  〔偽り 羊 3 図
FIG. 1(a), Φ) is a plan view of an embodiment of the present invention, and FIG.
-B' sectional view, FIG. 2 is a Ga structure according to an embodiment of the present invention.
Figure 3 (a) is a diagram showing the calculation results of MAG of As FET.
), (b) are conventional microwave band high output G a A 5
A plan view and an AA' cross-sectional view of the FET, and FIG. 4 are diagrams showing calculation results of MAG of a conventional microwave band high-power GaAs FET. 1...G a As substrate, 2... Source electrode, 3... Gate electrode, 4...
Drain electrode, 5, 6... Area line (broken line part) of the resistance layer due to impurity diffusion directly under the active electrode. γ lth figure Σ<, 5\ml/) every [false sheep 3 figures

Claims (1)

【特許請求の範囲】[Claims]  半絶縁性半導体基板上に活性層、ソース・ドレイン及
びゲート電極を有するGaAsFETにおいて、ゲート
電極直下に抵抗層領域を有し、該抵抗層領域は前記半導
体基板を貫通し、該抵抗層を形成した半導体チップを半
導体素子用容器に搭載することによって前記抵抗層を介
してゲート電極が半導体素子用容器の接地電位と接続さ
れ、前記ゲート電極と前記接地電極間に電気抵抗を形成
したことを特徴とするマイクロ波高出力トランジスタ。
A GaAsFET having an active layer, a source/drain, and a gate electrode on a semi-insulating semiconductor substrate has a resistance layer region directly below the gate electrode, and the resistance layer region penetrates the semiconductor substrate to form the resistance layer. The gate electrode is connected to the ground potential of the semiconductor device container via the resistance layer by mounting the semiconductor chip in the semiconductor device container, and an electric resistance is formed between the gate electrode and the ground electrode. Microwave high output transistor.
JP15061084A 1984-07-20 1984-07-20 Microwave high-output transistor Pending JPS6130078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15061084A JPS6130078A (en) 1984-07-20 1984-07-20 Microwave high-output transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15061084A JPS6130078A (en) 1984-07-20 1984-07-20 Microwave high-output transistor

Publications (1)

Publication Number Publication Date
JPS6130078A true JPS6130078A (en) 1986-02-12

Family

ID=15500641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15061084A Pending JPS6130078A (en) 1984-07-20 1984-07-20 Microwave high-output transistor

Country Status (1)

Country Link
JP (1) JPS6130078A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0472357A2 (en) * 1990-08-22 1992-02-26 Mitsubishi Denki Kabushiki Kaisha A semiconductor integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0472357A2 (en) * 1990-08-22 1992-02-26 Mitsubishi Denki Kabushiki Kaisha A semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
US3986196A (en) Through-substrate source contact for microwave FET
US4135168A (en) Reverse channel GaAsFET oscillator
US3967305A (en) Multichannel junction field-effect transistor and process
US4698654A (en) Field effect transistor with a submicron vertical structure and its production process
JPS6130078A (en) Microwave high-output transistor
JPH11168099A (en) Semiconductor device
JPH02110943A (en) Field-effect transistor
JP2554672B2 (en) Field effect type semiconductor device
JPH0411743A (en) Semiconductor device
Yuen et al. A monolithic Ka-band HEMT low-noise amplifier
US4786881A (en) Amplifier with integrated feedback network
JPS60196977A (en) Microwave high-output transistor
JPH10261653A (en) Semiconductor device and manufacture therefor
US3986142A (en) Avalanche semiconductor amplifier
JP2689957B2 (en) Semiconductor device
JPS6027172A (en) Fet device
JPH0774557A (en) Microwave semiconductor device
JPH01216608A (en) Package for semiconductor device
JPH07120906B2 (en) Microwave millimeter wave high power transistor
JPS6211018Y2 (en)
JP2735403B2 (en) Semiconductor device
Drukier et al. A high power 15GHz GaAs FET
JPS61115338A (en) Semiconductor integrated circuit device
JPH01223758A (en) Monolithic microwave integrated circuit
JP3499394B2 (en) Microwave integrated circuit