JPS6129832Y2 - - Google Patents

Info

Publication number
JPS6129832Y2
JPS6129832Y2 JP1979065767U JP6576779U JPS6129832Y2 JP S6129832 Y2 JPS6129832 Y2 JP S6129832Y2 JP 1979065767 U JP1979065767 U JP 1979065767U JP 6576779 U JP6576779 U JP 6576779U JP S6129832 Y2 JPS6129832 Y2 JP S6129832Y2
Authority
JP
Japan
Prior art keywords
core metal
bit
ultra
section
rock cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979065767U
Other languages
Japanese (ja)
Other versions
JPS55168593U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1979065767U priority Critical patent/JPS6129832Y2/ja
Publication of JPS55168593U publication Critical patent/JPS55168593U/ja
Application granted granted Critical
Publication of JPS6129832Y2 publication Critical patent/JPS6129832Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

【考案の詳細な説明】 この考案は、多数の細長い超硬質芯金を、ジグ
ザグ状に配列し、軟質マトリツクスで囲繞固結
し、これを刃先に固設して成る摺擦式回転ビツト
の刃体に用いる岩石切削用超硬質芯金に関するも
のである。
[Detailed description of the invention] This invention is a sliding type rotary bit blade that consists of a large number of slender ultra-hard core metals arranged in a zigzag pattern, surrounded by a soft matrix, and fixed to the cutting edge. The present invention relates to an ultra-hard core metal for rock cutting used in bodies.

焼結タングステンカーバイドの細い棒状体から
成る多数の超硬質芯金を、ジグザグ状に配列し
て、これを軟質のマトリツクスで固めその表面に
各々芯金頂部が露出するようにした刃先体が提案
されており、(特願53−054296号参照)これを用
いて岩石面に対し、給圧下回転すると、芯金より
マトリツクスの消耗が早いので、芯金の先端が自
然に突出して岩石の切削が可能となる。芯金の突
出程度にもよるが、進行方向から加わる切削圧と
衝撃が大きい硬質岩切削などの場合、突出芯金を
欠損させることもあるので、芯金の材質が硬さに
偏ることなく、十分なじん性を具える必要のある
ことは云うまでもない。
A cutting edge body has been proposed in which a large number of ultra-hard core metals made of thin rod-shaped bodies of sintered tungsten carbide are arranged in a zigzag pattern and solidified in a soft matrix so that the top of each core metal is exposed on the surface. (See Patent Application No. 53-054296) When this is used to rotate against a rock surface under pressure, the matrix wears out faster than the core metal, so the tip of the core metal protrudes naturally, making it possible to cut the rock. becomes. Although it depends on the degree of protrusion of the core metal, in cases such as hard rock cutting where the cutting pressure and impact applied from the direction of travel are large, the protruding core metal may be damaged, so the material of the core metal is not biased towards hardness. Needless to say, it needs to have sufficient toughness.

焼結タングステンカーバイドの通有性として、
硬さの高いものはじん性に劣る傾向があり、ま
た、芯金の強度を保つために芯金を太くすると、
切削性がいちじるしく低下するので、限られた太
さ(通常2ミリ内外)の範囲内で、強度と切削性
を最良条件に保つような断面形状とした上で、硬
さを出来るだけ高めに(通常ロツクウエルA89〜
92)選定することが得策である。また、上記とは
別に、刃体が抗壁と接する部分、いわゆるゲーヂ
部に沿つて配列する芯金は、ビツトが急速な掘進
を始めると、ゲージ部芯金先端部に強烈な横方向
の給圧分力による反力が作用して、該芯金を先端
から次々に折損させることがある。
As a common property of sintered tungsten carbide,
Items with high hardness tend to have poor toughness, and if the core metal is made thicker to maintain its strength,
Since machinability will be significantly reduced, the cross-sectional shape should be designed to maintain the best strength and machinability within a limited thickness (usually around 2 mm), and the hardness should be as high as possible ( Normal Rockwell A89~
92) It is a good idea to select. In addition to the above, when the bit starts to dig rapidly, the core metal arranged along the part where the blade contacts the counter wall, the so-called gauge part, receives a strong lateral feed to the tip of the gauge part core metal. A reaction force due to pressure component force may act and cause the core bar to break one after another starting from the tip.

上記2項、即ち掘進正面配置の芯金と、ゲーヂ
部芯金は夫々異つた破損態様を示すが、本考案の
芯金の使用によつて、その何れも大巾に改善する
ことが出来る。
Although the above two items, ie, the core metal placed in front of the excavation and the core metal in the gauge part, exhibit different failure modes, both of them can be greatly improved by using the core metal of the present invention.

次に図示の例に基いて説明を加える。第1図a
において、1は従来提案されている円形断面の芯
金であるが、図のようにマトリツクス2中に埋設
し、端部3が露出して切削に供する。4は進行方
向を示し、実際の刃体にはこの芯金が多数ジグザ
グ状に配列されるが、本図によつて説明すれば、
この表面で岩石上を給圧下摺擦するとき、芯金よ
りマトリツクスが先に消耗するので、芯金が突出
し、岩石面の掘削が可能となる。ビツトが高速掘
進に移ると、円形芯金のほゞ中央部(最大径部)
に面圧応力の境界点5が発生し、刃先面は前方6
の切削部と抵抗面7に分断される。抵抗面7は切
削を阻害する摩擦面となり、高速掘進の際接圧力
の増大を伴なうので、これを起点として屡々芯金
の先端の破壊がおこる。第1図bは、本考案の芯
金であるが、後方に直線部8を設けて前記境界点
を後部に移し、前部を半紡すい形9に形成したも
のである。紡すい先端は尖つているが、適度の丸
みを帯びてもよい。また、境界点を後部に移す点
では第1図cのような半円形でもよいが、進行方
向に対する強度の点でやゝ劣る。
Next, an explanation will be added based on the illustrated example. Figure 1a
In the figure, reference numeral 1 denotes a conventionally proposed metal core with a circular cross section, which is embedded in a matrix 2 as shown in the figure, with its end 3 exposed for cutting. 4 indicates the direction of movement, and the actual blade body has a large number of core metals arranged in a zigzag pattern, but if we explain with this figure,
When this surface is rubbed on a rock under pressure, the matrix wears out before the core metal, so the core metal protrudes, making it possible to excavate the rock surface. When the bit moves to high-speed digging, the approximately central part (maximum diameter part) of the circular core metal
Boundary point 5 of surface pressure stress occurs at
It is divided into a cutting part and a resistance surface 7. The resistance surface 7 becomes a friction surface that inhibits cutting, and is accompanied by an increase in contact pressure during high-speed excavation, which often causes the tip of the core to break. FIG. 1b shows a core metal according to the present invention, in which a straight portion 8 is provided at the rear, the boundary point is moved to the rear, and the front portion is formed into a half-spun shape 9. The spinning tip is pointed, but may be moderately rounded. Also, in order to move the boundary point to the rear, a semicircular shape as shown in FIG.

本考案の芯金を上記のように形成しておくと、
切削中、後方直線部より前縁部10の消耗が大き
いので、第2図のように前方に向つて暖やかな勾
配面11となり、その背後にマトリツクスの峯1
2が残る。従つて、前述境界点以後の抵抗面は殆
んどマトリツクス峯12上に移り、抵抗面は消去
されたと同様になり、これによつて切削効果を増
大し、且つ芯金は破壊から免れることになる。
If the core metal of the present invention is formed as described above,
During cutting, the front edge 10 wears out more than the rear straight section, so it becomes a warm slope 11 toward the front as shown in Figure 2, and behind it there is a matrix ridge 1.
2 remains. Therefore, most of the resistance surface after the aforementioned boundary point moves onto the matrix ridge 12, and the resistance surface becomes as if it had been erased, thereby increasing the cutting effect and avoiding the core metal from being destroyed. Become.

次に、この芯金を用いてビツトに構成した例に
基き、ゲージ部芯金の強化方法を述べる。
Next, a method for strengthening the gauge portion core metal will be described based on an example in which a bit is constructed using this core metal.

刃先の形状は、コアビツト、ノンコアビツト、
等ビツト型式により多種の変化形であるが、便宜
的にプレードビツトを例にあげて第3図a,bに
示す。aは側面図で、bは刃先面である。13は
ビツト本体であり、その上部に掘削軸14が連結
し、地上動力(図示せず)によりビツトに回転が
伝えられる。ビツト本体にはブレード15が係合
され、さらに、ブレード端部16に刃体17が繋
合されている。図示の例では、ブレード端面に多
数の小孔18を穿ち、これに芯金19を挿着した
あとマトリツクス20で囲繞固結したものである
が、刃体を別に成型して、直接本体に結合する場
合もある。21は坑壁であつて、とくに坑壁に接
している芯金22は坑壁の摩擦と、坑径の外周部
の切削を同時に受持つので、きわめて重要であ
る。23は、給圧方向とビツト掘進方向を示す
が、ビツトが急速な掘進を始めると、ゲージ部先
端部は楔の打ち込みに似た反力24が発生し、芯
金先端を次々に折損させるので、急速なゲージ面
の損耗がおこる25。ゲージ部に破壊を及ぼす有
害な反力24は、初期のうちは微弱であるが、僅
かな摩耗面の発生によつて、反力の増加との悪循
環をもたらすので、これを初期のうちに抑える必
要がある。
The shape of the cutting edge is core bit, non-core bit,
Although there are many variations depending on the type of bit, for convenience, a plaid bit is taken as an example and shown in FIGS. 3a and 3b. A is a side view, and b is a cutting edge surface. Reference numeral 13 denotes a bit body, to the upper part of which an excavation shaft 14 is connected, and rotation is transmitted to the bit by ground power (not shown). A blade 15 is engaged with the bit body, and a blade body 17 is further connected to the blade end 16. In the illustrated example, a large number of small holes 18 are drilled in the end face of the blade, a core metal 19 is inserted into these holes, and the core metal 19 is then surrounded and solidified with a matrix 20. However, the blade body is molded separately and directly connected to the main body. In some cases. Reference numeral 21 denotes the shaft wall, and in particular, the core metal 22 in contact with the shaft wall is extremely important because it simultaneously handles the friction of the shaft wall and the cutting of the outer periphery of the shaft diameter. 23 indicates the pressure supply direction and the bit digging direction, but when the bit starts digging rapidly, a reaction force 24 similar to driving a wedge is generated at the tip of the gauge part, which causes the tip of the core bar to break one after another. , rapid wear and tear of the gauge surface occurs25. The harmful reaction force 24 that causes damage to the gauge part is weak at the beginning, but the generation of a slight wear surface creates a vicious cycle with an increase in the reaction force, so this should be suppressed at an early stage. There is a need.

第4図a,bは、第3図に基いてその主要部を
拡大したものであるが、半紡すい形芯金を用い、
紡すい軸25をビツト中心に向けるようにゲージ
部に配列したものである。
Figures 4a and b are enlarged views of the main parts based on Figure 3, using a semi-spun spiral core,
The spinning shafts 25 are arranged in the gauge part so as to point toward the center of the bit.

このように配置した刃体で掘削すると、ゲージ
部芯金の外部26と、内側27で消耗度に差が生
じ、内側に向つて勾配面28の生成あるいはその
潜在性によつて、前記坑壁からの反力24と吊合
う別の反力29が発生し、初期のうちに上記反力
24を消去するので、ゲージ部芯金の折損を防止
することが出来る。コンベツクス型ビツトのよう
に、刃先形状が中高のビツトでは、刃先の大部分
が小さいゲージ部の集合と云えるので、この場合
には切削正面刃の大部分に上記の配列法が採用さ
れることもある。
When excavating with the blade body arranged in this way, there will be a difference in the degree of wear between the outer side 26 and the inner side 27 of the gauge part core metal, and due to the formation of an inwardly sloped surface 28 or its potential, the above-mentioned tunnel wall Another reaction force 29 is generated that balances the reaction force 24 from the above, and the reaction force 24 is canceled in the initial stage, so that breakage of the gauge core can be prevented. For bits with a medium-high cutting edge shape, such as convex type bits, most of the cutting edge can be said to be a collection of small gauge parts, so in this case, the above arrangement method should be adopted for most of the cutting front cutting edge. There is also.

本考案の芯金は上述のように形成してあるの
で、切削正面刃部と、ゲーヂ部芯金が受ける夫々
異なる破壊態様に対応して、適宜配置することに
より、芯金の破損を防止し、この種型式の摺擦式
回転ビツトの切削性能と、寿命を大巾に向上する
ことが出来る。
Since the core metal of the present invention is formed as described above, damage to the core metal can be prevented by appropriately arranging them in response to the different types of destruction that the cutting front blade part and the gauge part core metal receive. , the cutting performance and life of this type of sliding rotary bit can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは従来提案されている円型断面を有す
る芯金、b,cは本考案による芯金形状でbは半
紡すい断面、cは半円形断面を有する芯金であ
る。第2図は切削中の芯金突起状態図、第3図
a,bはブレードビツト(1部切欠)による作用
説明図、第4図a,bは本考案の芯金を用いてゲ
ーヂ部強化を図つた図である。(切欠図)。 図において1は円形断面の芯金、2はマトリツ
クス、3芯金の露出端部、4は使用時の進行方
向、5は面圧応力の境界点、6は切削部、7は摩
擦抵抗面、8は直線部、9は半紡すい形成部、1
0は芯金の前縁部、11は使用時に形成される芯
金先端の勾配面、12は使用時刃面に形成される
マトリツクス峯である。
FIG. 1a shows a core metal having a conventionally proposed circular cross section, b and c show a core metal shape according to the present invention, b is a half-spun cross section, and c is a core metal having a semicircular cross section. Figure 2 is a state diagram of the protrusion of the core metal during cutting, Figures 3a and b are explanatory diagrams of the action of the blade bit (partially cut away), and Figures 4a and b are reinforcement of the gauge part using the core metal of the present invention. This is a diagram illustrating the following. (Cutaway view). In the figure, 1 is a core metal with a circular cross section, 2 is a matrix, 3 is the exposed end of the core metal, 4 is the direction of movement during use, 5 is a boundary point of surface pressure stress, 6 is a cutting part, 7 is a friction resistance surface, 8 is a straight line part, 9 is a half-spun forming part, 1
0 is the front edge of the core metal, 11 is the sloped surface of the tip of the core metal formed during use, and 12 is a matrix ridge formed on the blade surface during use.

Claims (1)

【実用新案登録請求の範囲】 (1) タングステンカーバイドを主成分とする細長
い棒状体の断面を、一部に直線部を設け、他方
を半紡すい状に形成した岩石切削用超硬質芯
金。 (2) 断面の一端を直線とし、他方を半円状に形成
した実用新案登録請求の範囲第1項記載の岩石
切削用超硬質芯金。 (3) ビツト刃先に埋設する際に、半円又は半紡す
い状断面の先細りする側を進行方向に、直線部
を背後に向けて配置することにより、岩石の切
削能率を高めることを目的とした実用新案登録
請求の範囲第1項記載の岩石切削用超硬質芯
金。 (4) 半紡すい状断面の先細りする側をビツト中心
に向け、直線部をビツトゲーヂ面に面して配列
し、その内外側に摩耗差を発生せしめて坑壁か
らの有害な分力反力を消去することにより、ゲ
ーヂ部の強化を図ることに応用できる実用新案
登録請求の範囲第1項記載の岩石切削用超硬質
芯金。
[Scope of Claim for Utility Model Registration] (1) An ultra-hard cored metal for rock cutting, which is formed by forming a long and thin rod-shaped body mainly composed of tungsten carbide, with a straight section on one part and a semi-spun spiral shape on the other. (2) The ultra-hard metal core for rock cutting according to claim 1 of the utility model registration claim, wherein one end of the cross section is straight and the other half is semicircular. (3) When embedding the bit into the cutting edge, the tapered side of the semicircular or half-screw-shaped cross section is placed in the direction of travel and the straight part faces toward the back, aiming to increase rock cutting efficiency. An ultra-hard core metal for rock cutting according to claim 1 of the claimed utility model registration claim. (4) Arrange the tapered side of the half-screw-shaped cross section toward the center of the bit, and the straight part facing the bit gauge surface, creating a difference in wear between the inside and outside of the part to prevent harmful component reaction forces from the mine wall. 1. An ultra-hard core metal for rock cutting according to claim 1, which can be applied to strengthen a gauge part by eliminating .
JP1979065767U 1979-05-18 1979-05-18 Expired JPS6129832Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979065767U JPS6129832Y2 (en) 1979-05-18 1979-05-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979065767U JPS6129832Y2 (en) 1979-05-18 1979-05-18

Publications (2)

Publication Number Publication Date
JPS55168593U JPS55168593U (en) 1980-12-03
JPS6129832Y2 true JPS6129832Y2 (en) 1986-09-02

Family

ID=29299764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979065767U Expired JPS6129832Y2 (en) 1979-05-18 1979-05-18

Country Status (1)

Country Link
JP (1) JPS6129832Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129586A (en) * 1979-03-16 1980-10-07 Christensen Inc Rotary boring bit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129586A (en) * 1979-03-16 1980-10-07 Christensen Inc Rotary boring bit

Also Published As

Publication number Publication date
JPS55168593U (en) 1980-12-03

Similar Documents

Publication Publication Date Title
US4702525A (en) Conical bit
US3945681A (en) Cutter assembly
US4339009A (en) Button assembly for rotary rock cutters
JP3450334B2 (en) Rock drill bit
US5131480A (en) Rotary cone milled tooth bit with heel row cutter inserts
US3424258A (en) Rotary bit for use in rotary drilling
US7207402B2 (en) Percussion drill bit and a regrindable cemented carbide button therefor
JP3380723B2 (en) Drilling cutting blade and method of manufacturing the same
CA1335812C (en) Excavating tooth for an earth auger
JPS6129832Y2 (en)
CN105804663A (en) Mono-cone bit with PDC combined tooth
JP7360231B2 (en) Cutting tips and bits
CN105863518A (en) Composite drilling bit with PDC combined tooth
JPS6019199Y2 (en) Bit for shield tunneling machine
JP3332842B2 (en) Drilling cutters and drilling disc cutters
JP3085815B2 (en) Cutter head for shield excavator
JP3229233B2 (en) Bit for drilling continuous wall
CN212201907U (en) Surface strengthening structure of roller bit
JP2002081287A (en) Composite bit
JP2002054390A (en) Excavator cutter bit
CN216727527U (en) Hammer head and breaking hammer
JP7140374B2 (en) roller cutter
JP2602496Y2 (en) Lockbit
CN210798853U (en) Impregnated PDC drill bit
JP3331170B2 (en) Drilling cutters and drilling disc cutters