JPS6129709A - Measuring method of shape - Google Patents

Measuring method of shape

Info

Publication number
JPS6129709A
JPS6129709A JP15185084A JP15185084A JPS6129709A JP S6129709 A JPS6129709 A JP S6129709A JP 15185084 A JP15185084 A JP 15185084A JP 15185084 A JP15185084 A JP 15185084A JP S6129709 A JPS6129709 A JP S6129709A
Authority
JP
Japan
Prior art keywords
irradiation point
measured
jig
irradiation
imaging means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15185084A
Other languages
Japanese (ja)
Inventor
Mitsuo Iso
三男 磯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP15185084A priority Critical patent/JPS6129709A/en
Publication of JPS6129709A publication Critical patent/JPS6129709A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the shape of an object body providing reference jigs provided in parallel in the front-rear direction of the object body and also providing a couple of image pickup means, picking up images of respective irradiation points of the object body and jigs by the front-rear direction, and calculating the accurate positions of the respective irradiation points continuously. CONSTITUTION:The long-sized reference jigs 3a and 3b with constant height are provided on the right and left of the work in parallel. A moving body 7 consists of image pickup surfaces 11a and 11b having plural photodetecting elements and image pickup means 13a and 13b. The irradiation point P of the jig 3a is irradiated to derive respective positions on the image pickup surfaces 11a and 11b by the image pickup means 13a and 13b, and the positions are converted into XY plane positions to calculate the position of the irradiation point Pa. Then, the position of an irradiation point Pa1 of the work 2 is derived, then the positions of irradiation points Pa2-Pan are obtained, and further the position of a Pa' of the jig 3b is calculated. Then, the moving body 7 is moved in the Z-axial direction to derive the position of an irradiation point Pb. Those position measured values are corrected into actual values by an image processing means. Thus the accurate positions of irradiation points of the work 2 are derived continuously to measure the shape of the work precisely in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、被測定体表面の各点の位置を導出して被測
定体の形状等を計測する形状測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a shape measuring method for measuring the shape, etc. of an object to be measured by deriving the position of each point on the surface of the object to be measured.

〔従来技術〕[Prior art]

従来、被測定体表面の各点の位置を導出して被測定体の
形状等を測定する手法として、センシングプローブを被
測定体に接触させて被測定体の形状を測定する接触法や
、2台のカメラによシ同一対象物を同時に撮像しその両
画像の共通点を求めて被測定体の形状を測定するステレ
オ写真法、基準面におけるモアレ縞および被測定体表面
におけるモアレ縞にもとづき被測定体の形状を測定する
モアレトポグラフィ法、および縦長のスリット光を被測
定体に照射して当該照射個所をテレビカメラによシ撮像
し、筒該画像の特徴的な点を求めて被測定体の形状を計
測する光切断法などの非接触法があシ、これらの各手法
が産業用ロボットの物体認識技術として、あるいは各種
の検査装置等における物体認識技術として広く応用され
ている。
Conventionally, as a method of deriving the position of each point on the surface of the object to be measured and measuring the shape of the object, there is a contact method in which the shape of the object is measured by bringing a sensing probe into contact with the object. Stereo photography is a method that measures the shape of an object by simultaneously capturing images of the same object with a camera on a stand and finding common points between both images. The moiré topography method measures the shape of the object to be measured, and the object to be measured is irradiated with a vertically elongated slit light, the irradiated area is imaged with a television camera, and the characteristic points of the cylindrical image are determined to determine the object to be measured. There are non-contact methods such as optical cutting methods that measure the shape of objects, and these methods are widely applied as object recognition technologies for industrial robots and various inspection devices.

ところが、前記した接触法では測定に長時間を要すると
いう欠点があシ、非接触式の場合も、被測定体の形状を
認識しているだけで、被測定体の位置、すなわち任意の
座標系における座標を直接測定しているのではないため
、被測定体の位置を求めるには、得られた画像から対象
とすべき点を求めたのち、求めた点の位置すなわち座標
を演算。
However, the contact method described above has the disadvantage of requiring a long time for measurement, and even in the non-contact method, the position of the object, that is, the arbitrary coordinate system, can be determined by simply recognizing the shape of the object. Since the coordinates of the object are not directly measured, in order to determine the position of the object, the target point is determined from the obtained image, and then the position, or coordinates, of the determined point is calculated.

導出しなければならず、演算に時間がかかり、しかもこ
れらの手法を実現する測定装置は分解能が非常に低tn
fcめ、被測定体そのものが小さい場合。
calculations are time-consuming, and the measurement equipment that implements these methods has very low resolution.
fc, when the object to be measured itself is small.

あるいは被測定体表面に小さな凹凸がある場合には、精
度よく被測定体の形状や表面の凹凸の梶態を認識できず
、信頼性に欠けるという欠点があり、被測定体の形状等
を測定するには不十分である。
Alternatively, if there are small irregularities on the surface of the object to be measured, the shape of the object to be measured and the texture of the surface unevenness cannot be recognized accurately, resulting in a lack of reliability. It is insufficient to do so.

〔発明の目的〕[Purpose of the invention]

この発明は、前記の点に留意してなされたものであシ、
被測定体の形状および位置を短時間で精度よく測定でき
るようにすることを目的とする。
This invention was made with the above points in mind, and
The purpose is to enable accurate measurement of the shape and position of an object to be measured in a short time.

〔発明の構成〕[Structure of the invention]

この発明は、被測定体にfUJ後方向に長尺の基準治具
を並設し、前記被測定体およびmJ記治具を撮像する1
対の撮像手段を設け、前記両撮像手段の重複視野内の左
右方向に平行な切断面における前記被測定体表面の複数
個所および前記治具表面の少なくとも1個所に光源から
のスリット光を照射し、前記両撮像手段、前記光源とm
J記被測定体。
In the present invention, long reference jigs are arranged in parallel in the fUJ backward direction on the object to be measured, and the object to be measured and the mJ marking jig are imaged.
A pair of imaging means is provided, and slit light from a light source is irradiated to a plurality of locations on the surface of the object to be measured and at least one location on the surface of the jig in a cut plane parallel to the left-right direction within the overlapping fields of view of both the imaging means. , both the imaging means, the light source and m
J object to be measured.

前記治具との相対的な前後方向への移動による前記被測
定体表面の各照射点および前記治具表面の各照射点をそ
れぞれ前記両撮像手段により撮像し、画像処理手段によ
り、前記各画像を処理して前記各照射点の位置を導出す
るとともに、前記治具表照射点の位置を補正して前記被
測定体の形状を測を並設し、画像処理手段によシ前記治
具表面の各照射点の画像を処理して得られる各照射点の
高さの変化trc本とづAr@記治月8表面の前記各照
射改の位置を導出し、前記各照射点の位置にもとづき。
Each irradiation point on the surface of the object to be measured and each irradiation point on the surface of the jig due to movement in the front-back direction relative to the jig are imaged by both the imaging means, and each of the images is processed by the image processing means. The positions of the respective irradiation points are derived by processing the irradiation points, and the positions of the irradiation points on the jig table are corrected to measure the shape of the object to be measured. The change in height of each irradiation point obtained by processing the image of each irradiation point trc The position of each irradiation point on the surface of Ar@Kijigetsu 8 is derived, and based on the position of each irradiation point. .

前記被測定体表面の前記各照射点の位置を補正して前記
被測定体の形状を測定するものである。 。
The shape of the object to be measured is measured by correcting the position of each irradiation point on the surface of the object to be measured. .

〔発明の効果〕〔Effect of the invention〕

したがって、この発明の形状測定方法によると、基準治
具表面の各照射点の位置にもとづいて被測定体表面の各
照射点の位置を補正するようにしたことにより、両撮像
手段、光源と被測定体、基準治具との相対的な前後方向
への移動時に両撮像手段の重複視野が左右方向。
Therefore, according to the shape measuring method of the present invention, the position of each irradiation point on the surface of the object to be measured is corrected based on the position of each irradiation point on the surface of the reference jig. When moving in the front-back direction relative to the measuring object and the reference jig, the overlapping field of view of both imaging means is in the left-right direction.

上下方向にぶれても、被測定体表面の前記各照射点の正
確な位置を連続的に導出して被測定体の形状を短時間で
精度よく測定することができ、非常に実用的である。
Even if there is vertical deviation, the accurate position of each irradiation point on the surface of the object to be measured can be continuously derived and the shape of the object to be measured can be accurately measured in a short time, making it very practical. .

さらに、基準治具に所定勾配の傾斜面を形成することに
より、画像処理して得られる基準治具表面の各照射点の
高さの変化にもとづいて前記各基準点を導出することが
でき、前記治具表面の各照射点の位置の導出を短時間で
容易に行なうことが可能となると同時に、両撮像手段、
光源または被測定体、基準治具の前後方向への移動量の
設定値と実際値とにずれがあっても、被測定体表面の各
照射点の位置を補正して正確な位置を得ることが可能と
なシ、被測定体の形状測定をよシ短時間で精度よく測定
することができる。
Furthermore, by forming an inclined surface with a predetermined slope on the reference jig, each of the reference points can be derived based on the change in height of each irradiation point on the surface of the reference jig obtained by image processing, It becomes possible to easily derive the position of each irradiation point on the surface of the jig in a short time, and at the same time, both imaging means,
Even if there is a discrepancy between the set value and the actual value of the amount of movement in the front-rear direction of the light source, object to be measured, or reference jig, the position of each irradiation point on the surface of the object to be measured can be corrected to obtain an accurate position. This makes it possible to measure the shape of the object to be measured in a short time and with high precision.

また、被測定体表面の各照射点の位置を導出するため、
被測定体の形状と同時に位置も測定することができ、い
っそう実用的である。
In addition, in order to derive the position of each irradiation point on the surface of the object to be measured,
The shape and position of the object to be measured can be measured at the same time, making it even more practical.

〔実施例〕〔Example〕

つぎに、この発明を、その実施例を示した図面とともに
詳細に説明する。
Next, the present invention will be described in detail with reference to drawings showing embodiments thereof.

まず、l実施例を示した第1図ないし第5図について説
明する。
First, FIGS. 1 to 5 showing the first embodiment will be explained.

第1図ないし第3図において、(1)は架台、(2)は
架台(1)上に載置された被測定体(以下ワークという
)、(8a) 、(8b)は架台(1)上のワーク(2
)の左方、右方に並設された高さ一定の断面台形状の前
後方向に長尺の第1.第2基準治具、(4a)、(4h
)は架台(1)の前左端部および後左端部に立設された
支持バー、(5)は前、後の両端部が両支持バー(4a
)、(4b)にそれぞれ固定されて支持されたガイド体
、(6a)、(6b)はガイド体(5)上の前端部およ
び後端部に取シ付けられた後述の移動体の移動用モータ
および軸受がそれぞれ収納された収納体、(7)は両端
が前記モータの回転軸および軸受に係止された送シねじ
に左下端部が螺合して前後方向に移動自在に設けられた
下面が開口した筐体状の移動体、(8)は伸縮自在の蛇
腹状の包被体であり、前記送りねじの移動体(7)の前
側の部分および後側の部分を包被して前記送りねじを保
護している。〜 (9)は移動体(7)内に設けられスリット光であるス
ポット光を照射するレーザ、円形スリット付きのキセノ
ンランプ等からなる光源、(IQは移動体(7)内のほ
ぼ中央に設けられ光源(9)からのスポット光の光路を
角度θ回転させて変更する反射鏡、(ha) 。
In Figures 1 to 3, (1) is the pedestal, (2) is the object to be measured (hereinafter referred to as the work) placed on the pedestal (1), and (8a) and (8b) is the pedestal (1). Upper work (2
) are arranged side by side on the left and right sides of the first . Second reference jig, (4a), (4h
) is a support bar erected at the front left end and rear left end of the frame (1), and (5) is a support bar (4a) installed at both the front and rear ends.
) and (4b) are respectively fixed and supported, and (6a) and (6b) are for moving the moving body (described later) attached to the front and rear ends of the guide body (5). A storage body in which a motor and a bearing are housed, (7) is provided so that its lower left end is screwed into a feed screw whose both ends are locked to the rotating shaft of the motor and the bearing, so that it can move freely in the front and back direction. The housing-like moving body (8) with an open bottom surface is a bellows-shaped envelope that can be expanded and contracted, and covers the front and rear parts of the feed screw moving body (7). The feed screw is protected. ~ (9) is a light source that is installed in the moving body (7) and consists of a laser that emits a spot light that is a slit light, a xenon lamp with a circular slit, etc. (IQ is installed approximately in the center of the moving body (7) A reflecting mirror (ha) that changes the optical path of the spot light from the light source (9) by rotating the angle θ.

(llb)は移動体(7)内の反射鏡αQの左方、右方
にそれぞれ設けられた1対の本体内の上端部に設けられ
(llb) are provided at the upper ends of a pair of main bodies provided on the left and right sides of the reflecting mirror αQ in the movable body (7), respectively.

複数個の受光素子が左右方向に1次元的に配列された撮
像面、(128)、(12b)は集光レンズであシ、そ
れぞれ前記両本体の下端部に設けられ、ワーク(2)お
よび治具(3B)、(3b)からの反射光をそれぞれ両
撮像面(++a)、(ob)に集光するようになってお
シ、両撮像面(Ha)、(11b)と画集光レンズ(1
2a)、(121))とにより、ワーク(2)および治
具(3a)、(8b)を撮像するOCD型り=フイメー
ジセンサからなる第!、第2撮像手段(13a)。
An imaging surface in which a plurality of light-receiving elements are arranged one-dimensionally in the left-right direction, and (128) and (12b) are condensing lenses, each provided at the lower end of both the bodies, and the workpiece (2) and The reflected light from the jigs (3B) and (3b) is focused on both imaging surfaces (++a) and (ob), respectively, and both imaging surfaces (Ha) and (11b) and the image focusing lens. (1
2a) and (121)), the OCD mold image sensor is used to image the workpiece (2) and the jig (3a) and (8b). , second imaging means (13a).

(13b)が構成されている。(13b) is configured.

なお、04)はガイド体(5)の右側面に設けられ移動
体(7)の移動時の摩擦を軽減して移動を容易にするリ
ニア軸受である。
Note that 04) is a linear bearing provided on the right side surface of the guide body (5) to reduce friction during movement of the movable body (7) and facilitate movement.

lた図示されていないが、両撮像手段(18a)、(1
8b)によるワーク(2)の表面および両治具(8a)
、(3b)の表面の各照射点の画像を処理して前記各照
射点の位てワーク(2)の形状を測定する画像処理手段
が設けられている。
Although not shown, both imaging means (18a) and (1
Surface of workpiece (2) and both jigs (8a) according to 8b)
, (3b) is provided. Image processing means is provided for processing images of each irradiation point on the surface of the workpiece (2) and measuring the shape of the workpiece (2) at each of the irradiation points.

いま、第1図中に示すように左右、上下9前後の各方向
に任意の点を原点とするXYz座標系のX、Y、Zの各
軸をとシ、ワーク(2〕の表面の各点の三次元位置、す
なわちxYz座標を測定して前記ワークの形状および位
置を計測する場合、ガイド体(7)を2軸方向の所定位
置に停止させ、第4図。
Now, as shown in Fig. 1, each axis of the X, Y, and Z coordinate system of the XYz coordinate system whose origin is an arbitrary point in each direction (left, right, up, down, front, back, etc.) is When measuring the shape and position of the workpiece by measuring the three-dimensional position of a point, that is, the xYz coordinates, the guide body (7) is stopped at a predetermined position in two axial directions.

第5図に示すように、両撮像手段(18a)、(18b
)の重複視野内の左右方向であるX軸に平行な平面、た
とえばXY平而面平行な切断面における治具(3a)上
の照射点Paに光源(9)からのスポット光を照射し、
両撮像手段(18a)、(1ab)によシ前記照射点P
a近辺を同時に撮像するとともに、画像処理手段によシ
両撮像手段(1B&)、(13b)による照射点Pa近
辺の画像のうち最も明るい点の位置、すなわち照射点P
aの両撮像手段(+8&)、(tab)の撮像面(ha
)、(nb)におけるそれぞれの位置を導出し、両撮像
面(ha)、(nb)上の照射点Paのそれぞれの位置
をXY平面における点のそれぞれの位置に換算し、両撮
像面(118)、(llb)上の画点それぞれとxY平
面上の両点それぞれとを結ぶ前記切断面における2本の
直線の交点として治具(8a)上の照射点Paの位置が
導出される。
As shown in FIG. 5, both imaging means (18a), (18b
), a spot light from a light source (9) is irradiated to an irradiation point Pa on the jig (3a) in a plane parallel to the X-axis in the left-right direction, for example, a cut plane parallel to the XY plane,
The irradiation point P is determined by both imaging means (18a) and (1ab).
At the same time, the image processing means (1B&) and (13b) image the vicinity of the irradiation point Pa, which is the position of the brightest point, that is, the irradiation point P.
Both imaging means (+8&) of a, imaging surface (ha) of (tab)
), (nb), and convert the respective positions of the irradiation point Pa on both the imaging planes (ha) and (nb) into the respective positions of the points on the XY plane. ), (llb) and both points on the xY plane, the position of the irradiation point Pa on the jig (8a) is derived as the intersection of two straight lines on the cut plane.

つぎに、前記切断面におけるワーク(2〕の表面の照射
点Pa+に光源(9)からのスポット光を照射し、画像
処理手段により、前記した照射点Paの画像処理による
位置導出と同様にして照射点Pa+の位置を導出すると
ともに、前記切断面におけるワーク(2)の表面の照射
点ra2.rag 、・・・、Pan、・・・の位置を
導出し、さらに前記切断面における治具(8b)の上面
の照射点Pa’の位置を導出し、前記切断面における各
照射点Pa、Pal、 ・−、Pan、−、Pa’ Q
:)位置を画像処理手段に記憶させたのち、移動体(7
)を2軸の正方向に所定量移動させ、再び前記と同様に
、前記切断面に平行な切断面における治具(8a)の上
面の照射点Pbにスポット光を照射し、前記した照射点
Paの画像処理による位置導出と同様にして照射点Pb
の位置を導出する。
Next, the spot light from the light source (9) is irradiated to the irradiation point Pa+ on the surface of the workpiece (2) on the cut surface, and the image processing means calculates the position of the irradiation point Pa in the same manner as in the image processing described above. The position of the irradiation point Pa+ is derived, and the positions of the irradiation points ra2.rag, ..., Pan, ... on the surface of the workpiece (2) on the cut surface are derived, and the jig ( 8b) Derive the position of the irradiation point Pa' on the upper surface, and calculate each irradiation point Pa, Pal, ·-, Pan, -, Pa' Q on the cut surface.
:) After storing the position in the image processing means, the moving object (7
) is moved by a predetermined amount in the positive direction of the two axes, and in the same way as above, the spot light is irradiated again to the irradiation point Pb on the upper surface of the jig (8a) on the cut plane parallel to the cut plane, and the above irradiation point The irradiation point Pb is determined in the same manner as the position derivation of Pa by image processing.
Derive the position of.

このとき、照射点Paの座標が(xa、ya、za) 
、照射点Pbノ座標が(xb、yb、zb)であると、
治具(8B)、(8b)が2軸に平行に配設されている
ため、移動体(7)を移動したときに、両撮像手段(1
,9B)、(13b)の重複視野が2方向に平行に移動
せずにX方向、Y方向にずれたことになシ、X方向、Y
方向へのそれぞれのずれΔX、Δyは、 Δx=xa−xb Δy=ya−yb と表わされる。
At this time, the coordinates of the irradiation point Pa are (xa, ya, za)
, the coordinates of the irradiation point Pb are (xb, yb, zb),
Since the jigs (8B) and (8b) are arranged parallel to the two axes, when the movable body (7) is moved, both the imaging means (1
, 9B) and (13b) are shifted in the X and Y directions without moving parallel to the two directions.
The respective deviations ΔX and Δy in the directions are expressed as Δx=xa−xb Δy=ya−yb.

そして、照射点Pbを含む前記切断面におけるワーク(
2)の表面の照射点Bb!、Pb2. ・、 Pbn 
K 光源(9)からのスポット光を照射し、前記した照
射点Paの画像処理による位置導出と同様にして各照射
点Pb+。
Then, the workpiece (
2) Irradiation point Bb on the surface! , Pb2.・, Pbn
A spot light from the light source (9) is irradiated to each irradiation point Pb+ in the same manner as the position derivation of the irradiation point Pa by image processing described above.

Pb2.・・・の位置を導出し、たとえば照射点Pb+
の座標が(xb+ 、yb+ 、ztn )であると、
実際の照射点Pb+の座標のX軸成分XbIおよびY軸
成分Yb+は、前記ずれΔX、Δyにより、 Xb+ = xb+−ΔX        −■Yb+
 = yb+−Δy       ・・・■と表わされ
、点Pb+の座標の2軸成分Zb+が測定値zb+と同
じく照射点Paの座標の2軸成分と移動体(7)の移動
量との和で定まるため、照射点Pb+の補正後の実際の
座標は(xb+−Δx 、 yb+−Δy 、 zb+
 )とナシ、画像処理手段により、導出、測定した照射
点Pb+の座標のX軸成分、Y軸成分から前記ずれ分Δ
X。
Pb2. ..., for example, the irradiation point Pb+
If the coordinates of are (xb+, yb+, ztn),
The X-axis component XbI and Y-axis component Yb+ of the coordinates of the actual irradiation point Pb+ are determined by the deviations ΔX and Δy as follows: Xb+ = xb+ - ΔX - ■Yb+
= yb+-Δy...■, where the two-axis component Zb+ of the coordinates of point Pb+ is the sum of the two-axis components of the coordinates of irradiation point Pa and the amount of movement of the moving body (7), as well as the measured value zb+. Therefore, the actual coordinates of the irradiation point Pb+ after correction are (xb+-Δx, yb+-Δy, zb+
) and nil, the deviation Δ from the X-axis component and Y-axis component of the coordinates of the irradiation point Pb+ derived and measured by the image processing means
X.

Δyが引算されて照射点Pb+の座標の測定値〆実際の
値に補正されるとともに、同様にして以降の照射点Pb
z 、・・・の座標の測定値が実際値に補正される。
By subtracting Δy, the measured value of the coordinates of the irradiation point Pb+ is corrected to the actual value, and in the same way, the coordinates of the subsequent irradiation point Pb
The measured values of the coordinates of z, . . . are corrected to the actual values.

なお、ずれ分ΔX、Δyがそれぞれ零であれば■。Note that if the deviations ΔX and Δy are each zero, ■.

■式による照射点Pb+の座標のX軸成分、Y軸成分X
b+ 、Yb+は測定値xln 、ytnとそれぞれ同
じにな9、測定値をそのまま実際値としてよいことにな
る。
■X-axis component and Y-axis component X of the coordinates of the irradiation point Pb+ according to the formula
Since b+ and Yb+ are the same as the measured values xln and ytn, respectively9, the measured values may be used as actual values.

さらに、前記と同様にして治具(3a)上のPb以降の
各照射点の座標の測定値と照射点Paの座標とのずれ分
にもとづいてワーク(2)上の各照射点の座標が実際値
に補正され−、補正によシ得られたワーク(2)の表面
の各照射点の座標すなわち位置が@I像処理手段によシ
記憶され、記憶された各照射点の位置にもとづきワーク
(2)の形状および位置が導出。
Furthermore, in the same manner as above, the coordinates of each irradiation point on the workpiece (2) are determined based on the deviation between the measured value of the coordinates of each irradiation point after Pb on the jig (3a) and the coordinate of the irradiation point Pa. The coordinates, that is, the positions of each irradiation point on the surface of the workpiece (2) that are corrected to the actual values and obtained by the correction are stored by the image processing means, and based on the memorized position of each irradiation point. The shape and position of workpiece (2) are derived.

測定される。be measured.

したがって、前記実施例によると、移動体(7)の移動
による両撮像手段(18a)、(13b) 、光源(9
)の2軸の正方向への移動時に両撮像手段(18a)、
(lab)の重複視野がX軸方向、Y軸方向にぶれても
、ワーク(2)表面の前記各照射点の正確な位置を連続
的に導出してワーク(2)の形状を短時間で精度よく測
定することができ、非常に実用的である。
Therefore, according to the embodiment, both the imaging means (18a), (13b) and the light source (9) are removed by the movement of the moving body (7).
) when moving in the positive direction of the two axes, both imaging means (18a),
Even if the overlapping field of view of (lab) shifts in the X-axis direction and Y-axis direction, the shape of the workpiece (2) can be determined in a short time by continuously deriving the accurate position of each irradiation point on the surface of the workpiece (2). It can be measured with high precision and is very practical.

なお、治具(3b)上の各照射点の位置すなわち座標に
もとづいてワーク(2)上の各照射点の位置すなわち座
標を補正しても同等の効果を得ることができる。
Note that the same effect can be obtained even if the position or coordinates of each irradiation point on the workpiece (2) is corrected based on the position or coordinates of each irradiation point on the jig (3b).

また、基準治具は治具(8a)、(8b)のいずれか一
方だついて説明する。
Further, the reference jig will be explained with reference to either jig (8a) or jig (8b).

それらの図面において、QQは所定勾配の傾斜面01を
有する複数個の等脚台形状の切欠部θηが形成された前
後方向に長尺の基準治具であシ、該治具Q?を第7図に
示すようにワーク(2)に並設し、第1図に示す装置に
よりワーク(2)の表面の各照射点の位置すなわち座標
を導出してワーク(2)の形状9位置を導出する。
In those drawings, QQ is a reference jig which is elongated in the front-rear direction and has a plurality of isosceles trapezoidal notches θη having an inclined surface 01 with a predetermined slope. are placed side by side on the workpiece (2) as shown in FIG. Derive.

このとき、治具aす上の照射点がPI、P2.・・・、
P8゜・・・であると、各照射点P+、・・・の高さす
なわち座標のY軸成分の変化および傾斜面a・の勾配に
もとづき、各照射点P+、・・・間の2軸方向の間隔を
算出することができ、画像処理手段により各照射点P+
At this time, the irradiation points on the jig a are PI, P2. ...,
P8゜..., the two axes between each irradiation point P+, . . . are determined based on the height of each irradiation point P+, . . The interval in the direction can be calculated, and each irradiation point P +
.

・・・の2軸方向の間隔が算出されて各照射点Pl、・
・・の座標の2軸成分が導出され、前記実施例の場合の
ように、移動体(7)の移動量にもとづいχだけではな
く、Y軸成分の変化をも加えて各照射点P+。
The intervals in the two axis directions are calculated and each irradiation point Pl, .
The two-axis components of the coordinates of ... are derived, and each irradiation point P+ is determined by adding not only a change in χ but also a change in the Y-axis component based on the amount of movement of the moving body (7), as in the case of the above embodiment.

・・・の座標の2軸成分が導出される。The two-axis components of the coordinates of ... are derived.

そして、前記した第4図および第5図と同様にしてたと
えば導出された治具aQ上の各照射点P2゜・・・の座
標と最初の照射点P+の座標とのずれにより、両撮像手
段(18a)、(+ab)の2軸の正方向への移動時の
重複視野のずれΔX、Δyが導出′され、ワーク(2)
の表面の各照射点の座標の測定値が実際値に補正され、
ワーク(2)の正確な形状および位置が導出、測定され
る。
Then, due to the deviation between the coordinates of each irradiation point P2°... on the jig aQ derived in the same manner as in FIGS. 4 and 5 described above and the coordinates of the first irradiation point P+, both imaging means The deviations ΔX and Δy of the overlapping fields of view when moving in the positive direction of the two axes (18a) and (+ab) are derived, and the workpiece (2)
The measured values of the coordinates of each irradiation point on the surface of are corrected to the actual values,
The exact shape and position of the workpiece (2) is derived and measured.

したがって、前記実施例によると、基準治具α9に所定
勾配の傾斜面aQを形成することにより、画像処理して
得られる基準治具αQの表面の各照射点の高さの変化に
もとづいて前記各照射点を導出することができ、前記治
具四の表面の各照射点の位置の導出をよシ正確に、かつ
容易に行なうことが可能となると同時に、両撮像手段(
18a)、(13b) 、光源(9)の2軸の正方向へ
の移動量の設定値と実際値とにずれがあっても、ワーク
(2)の表面の各照射点の位置を補正して正確な位置を
得ることが可能となシ、ワーク(2)の形状測定をより
短時間でよシ精度よく測定することができる。
Therefore, according to the embodiment, by forming the inclined surface aQ with a predetermined slope on the reference jig α9, the above-mentioned slopes are Each irradiation point can be derived, and the position of each irradiation point on the surface of the jig 4 can be derived more accurately and easily.
18a), (13b) Even if there is a discrepancy between the set value and the actual value of the amount of movement of the light source (9) in the positive direction of the two axes, the position of each irradiation point on the surface of the workpiece (2) can be corrected. The shape of the workpiece (2) can be measured more accurately in a shorter time.

なお、治具a5は上面全体が一定勾配の傾斜面であるよ
うなものでも、この発明を同様に実施することができる
Note that the present invention can be implemented in the same manner even if the entire upper surface of the jig a5 is an inclined surface having a constant slope.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、この発明の形状測定方法の実施例を示し、第1
図ないし第5図は1実施例を示し、第1図は測定装置の
斜視図、第2図は第1図の装置の概略を示す斜視図、第
3図は第2図の一部の右側面図、第4図および第5図は
測定時の動作説明用の゛斜視図および正面図、第6図以
下の図面は他の実施例を示し、第6図は基準治具の斜視
図、第7図はワークの形状測定時の一部の平面図、第8
図は測定時の基準治具の動作説明用の右側面図である。 (2)・・・被測定体、(8a)、(8b)・・・基準
治具、(9)・・・光源、(mm)、(13b)・・・
撮像手段、Q5・・・基準治具、aQ・・・傾斜面。 第 1 図 第4 図 第5図
The drawings show an embodiment of the shape measuring method of the present invention.
5 to 5 show one embodiment, FIG. 1 is a perspective view of the measuring device, FIG. 2 is a perspective view schematically showing the device in FIG. 1, and FIG. 3 is a right side of a part of FIG. 2. The plan view, FIGS. 4 and 5 are a perspective view and a front view for explaining the operation during measurement, FIG. 6 and the following drawings show other embodiments, and FIG. 6 is a perspective view of a reference jig. Figure 7 is a partial plan view when measuring the shape of the workpiece, Figure 8
The figure is a right side view for explaining the operation of the reference jig during measurement. (2)...Object to be measured, (8a), (8b)...Reference jig, (9)...Light source, (mm), (13b)...
Imaging means, Q5... reference jig, aQ... inclined surface. Figure 1 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)被測定体に前後方向に長尺の基準治具を並設し、
前記被測定体および前記治具を撮像する1対の撮像手段
を設け、前記両撮像手段の重複視野内の左右方向に平行
な切断面における前記被測定体表面の複数個所および前
記治具表面の少なくとも1個所に光源からのスリット光
を照射し、前記両撮像手段、前記光源と前記被測定体、
前記治具との相対的な前後方向への移動による前記被測
定体表面の各照射点および前記治具表面の各照射点をそ
れぞれ前記両撮像手段により撮像し、画像処理手段によ
り、前記各画像を処理して前記各照射点の位置を導出す
るとともに、前記治具表面の前記各照射点の位置にもと
づき、該各照射点をそれぞれ含む前記各切断面における
前記被測定体表面の前記各照射点の位置を補正して前記
被測定体の形状を測定することを特徴とする形状測定方
法。
(1) Long reference jigs are installed in parallel in the front and back direction of the object to be measured,
A pair of imaging means for taking images of the object to be measured and the jig is provided, and a plurality of locations on the surface of the object to be measured and a surface of the jig in a cut plane parallel to the left and right direction within the overlapping field of view of both the imaging means are provided. irradiating at least one location with slit light from a light source, both of the imaging means, the light source and the object to be measured;
Each irradiation point on the surface of the object to be measured and each irradiation point on the surface of the jig due to movement in the front-back direction relative to the jig are imaged by both the imaging means, and each of the images is processed by the image processing means. process to derive the position of each irradiation point, and based on the position of each irradiation point on the surface of the jig, calculate each irradiation of the surface of the object to be measured on each cut plane including each irradiation point. A shape measuring method characterized in that the shape of the object to be measured is measured by correcting the position of a point.
(2)被測定体に所定勾配の傾斜面を有する前後方向に
長尺の基準治具を並設し、前記被測定体および前記治具
を撮像する1対の撮像手段を設け、前記両撮像手段の重
複視野内の左右方向に平行な切断面における前記被測定
体表面の複数箇所および前記治具表面の少なくとも1個
所に光源からスリット光を照射し、前記両撮像手段、前
記光源と前記被測定体、前記治具との相対的な前後方向
への移動による前記被測定体表面の各照射点および前記
治具表面の各照射点をそれぞれ前記両撮像手段により撮
像し、画像処理手段により、前記被測定体表面の前記各
照射点の画像を処理して該各照射点の位置を導出すると
ともに、前記治具表面の前記各照射点の画像を処理して
得られる該各照射点の高さの変化にもとづき前記治具表
面の各照射点の位置を導出し、前記治具表面の前記各照
射点の位置にもとづき、該各照射点をそれぞれ含む前記
各切断面における前記被測定体表面の前記各照射点の位
置を補正して前記被測定体の形状を測定することを特徴
とする形状測定方法。
(2) Long reference jigs having an inclined surface with a predetermined gradient are arranged side by side in the front-rear direction on the object to be measured, and a pair of imaging means for taking images of the object to be measured and the jig are provided, and both of the imaging means are provided. Slit light is irradiated from a light source to a plurality of locations on the surface of the object to be measured and at least one location on the surface of the jig in a cut plane parallel to the left-right direction within the overlapping field of view of the means, and both of the imaging means, the light source and the object are Each irradiation point on the surface of the object to be measured and each irradiation point on the surface of the jig due to movement in the front-back direction relative to the measurement object and the jig are imaged by both the imaging means, and by the image processing means, The image of each irradiation point on the surface of the object to be measured is processed to derive the position of each irradiation point, and the height of each irradiation point obtained by processing the image of each irradiation point on the jig surface is calculated. The position of each irradiation point on the surface of the jig is derived based on the change in the irradiation point, and based on the position of each irradiation point on the surface of the jig, the surface of the object to be measured is determined on each cut plane including each irradiation point. A shape measuring method, characterized in that the shape of the object to be measured is measured by correcting the position of each of the irradiation points.
JP15185084A 1984-07-20 1984-07-20 Measuring method of shape Pending JPS6129709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15185084A JPS6129709A (en) 1984-07-20 1984-07-20 Measuring method of shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15185084A JPS6129709A (en) 1984-07-20 1984-07-20 Measuring method of shape

Publications (1)

Publication Number Publication Date
JPS6129709A true JPS6129709A (en) 1986-02-10

Family

ID=15527632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15185084A Pending JPS6129709A (en) 1984-07-20 1984-07-20 Measuring method of shape

Country Status (1)

Country Link
JP (1) JPS6129709A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0600800A1 (en) * 1992-12-04 1994-06-08 Commissariat A L'energie Atomique Procedure and device to acquire an image, in three dimensions, of a small object with a light pencil and a calibration method for such an acquirement
US5376796A (en) * 1992-11-25 1994-12-27 Adac Laboratories, Inc. Proximity detector for body contouring system of a medical camera
JP2013019733A (en) * 2011-07-11 2013-01-31 Railway Technical Research Institute Peel-off shape measurement device for cover concrete, and peel-off shape measurement method for cover concrete
JP2014066591A (en) * 2012-09-26 2014-04-17 Railway Technical Research Institute Measuring device and program
WO2021259849A1 (en) * 2020-06-22 2021-12-30 Robert Bosch Gmbh Semi-automated acquisition of multiple object data sets of an object using a positioning aid structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376796A (en) * 1992-11-25 1994-12-27 Adac Laboratories, Inc. Proximity detector for body contouring system of a medical camera
EP0600800A1 (en) * 1992-12-04 1994-06-08 Commissariat A L'energie Atomique Procedure and device to acquire an image, in three dimensions, of a small object with a light pencil and a calibration method for such an acquirement
FR2698984A1 (en) * 1992-12-04 1994-06-10 Commissariat Energie Atomique Method and apparatus for acquiring a three-dimensional image of a small object by light probing and calibration means for carrying out such an acquisition.
JP2013019733A (en) * 2011-07-11 2013-01-31 Railway Technical Research Institute Peel-off shape measurement device for cover concrete, and peel-off shape measurement method for cover concrete
JP2014066591A (en) * 2012-09-26 2014-04-17 Railway Technical Research Institute Measuring device and program
WO2021259849A1 (en) * 2020-06-22 2021-12-30 Robert Bosch Gmbh Semi-automated acquisition of multiple object data sets of an object using a positioning aid structure

Similar Documents

Publication Publication Date Title
US11951564B2 (en) Method and computer program product for OCT measurement beam adjustment
JP3021815B2 (en) Method for measuring the surface of an object in a non-contact manner and a coordinate measuring machine for implementing the method
JP7385743B2 (en) equipment and equipment
US20150085108A1 (en) Lasergrammetry system and methods
JPH05502720A (en) Method and device for photoelectrically measuring objects
JP2007101197A (en) Object search system, robot system equipped with object searchsystem and object search method
TWI667090B (en) Laser processing device
US20040081352A1 (en) Three-dimensional visual sensor
JP2012527611A (en) Flatbed scan module, flatbed scan system, jig for measuring alignment error of flatbed scan module, and method of measuring alignment error of flatbed scan module using the same
JP7353757B2 (en) Methods for measuring artifacts
JP2010058239A (en) Machining method
CN102538707B (en) Three dimensional localization device and method for workpiece
US20060007449A1 (en) Method for measuring a contour of a workpiece by scanning
JP2001157951A (en) Shape accuracy measuring device by sequential two-point method, and method for measuring space between laser displacement meter for measuring shape accuracy by sequential two-point method
JPS6129709A (en) Measuring method of shape
JP6725344B2 (en) Press brake and angle detector
JP4532556B2 (en) Interferometer with mirror device for measuring objects
JP6565367B2 (en) Position correction system
JP6500560B2 (en) Optical sensor calibration method and three-dimensional coordinate measuring machine
JPH0526639A (en) Three-dimensional measuring method
JP2009109355A (en) Apparatus and method for distance measurement, and apparatus for thickness measurement using distance measurement apparatus
JP3417708B2 (en) Cross-sectional shape measuring method and measuring device
US20210333091A1 (en) Coordinate measuring machine and method for measuring coordinates of a workpiece
JP2000326082A (en) Laser beam machine
Isa et al. Kinematic error analysis of stage tracking using stereo vision