JPS61295228A - Production of lithium aluminate powder - Google Patents

Production of lithium aluminate powder

Info

Publication number
JPS61295228A
JPS61295228A JP60136275A JP13627585A JPS61295228A JP S61295228 A JPS61295228 A JP S61295228A JP 60136275 A JP60136275 A JP 60136275A JP 13627585 A JP13627585 A JP 13627585A JP S61295228 A JPS61295228 A JP S61295228A
Authority
JP
Japan
Prior art keywords
solvent
lithium aluminate
aluminate powder
powder
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60136275A
Other languages
Japanese (ja)
Other versions
JPH068173B2 (en
Inventor
Hidekimi Kadokura
秀公 門倉
Hiroshi Umezaki
梅崎 博
Hideaki Murakami
秀明 村上
Toshiyuki Mizoe
溝江 利之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP60136275A priority Critical patent/JPH068173B2/en
Publication of JPS61295228A publication Critical patent/JPS61295228A/en
Publication of JPH068173B2 publication Critical patent/JPH068173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain gamma type Li aluminate powder suitable for a raw material of a tile for an electrolyte of a molten carbonate fuel cell by mixing the specified Al2O3 hydrate with LiOH in a wet process and calcining the mixture. CONSTITUTION:One, two or more kinds of Al2O3 hydrate selected from among boemite, pseudoboemite, diaspore, gibbsite and bayerite are mixed with LiOH in the presence of a solvent e.g. one, two or more kinds of H2O or alcohols. Thereafter gamma type Li aluminate powder is produced by calcining a solid content obtained by removing the solvent at 650-1,000 deg.C (especially 700-950 deg.C). This gammatype Li aluminate powder is small in grain size and has a large specific surface area of about >=15m<2>/g.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はりチウムアルミネート粉末の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing lithium aluminate powder.

さらに詳細には溶融炭酸塩燃料電池の電解質タイルの原
料に用いられる、微細な高表面積のりチウムアルミネー
ト粉末の製造方法に関する。
More specifically, the present invention relates to a method for producing fine, high-surface-area lithium aluminate powder used as a raw material for electrolyte tiles in molten carbonate fuel cells.

(従来の技術) 溶融炭酸塩燃料電池の電解質タイルはアルカリ炭酸塩融
体(Lx*COa、べ2■3)を650℃付近で保持す
るため、その原料は耐熱性、耐アルカリ性を有する微細
な高表面積の粉末が要求される。現在、耐融体安定性の
面からりチウムアルミネート(Li九の2)が選ばれ、
□電解質保持力および熱的安定性0面から表面N 15
 m2/I以上のr型リチウムアルミネートが望まれて
いる。
(Prior art) The electrolyte tile of the molten carbonate fuel cell maintains the alkaline carbonate melt (Lx*COa, Be2*3) at around 650°C, so its raw material is made of fine particles with heat resistance and alkali resistance. High surface area powders are required. Currently, lithium aluminate (Li 9-2) is selected from the viewpoint of melt resistance stability.
□Electrolyte retention and thermal stability from surface 0 to surface N 15
An r-type lithium aluminate with m2/I or higher is desired.

電解質タイルに用いられるリチウムアルミネ。Lithium alumine used in electrolyte tiles.

−トの製造方法は以下の方法が知られている。The following methods are known as methods for producing -.

(1)  アルミナ(y−ALgOa又はtx−ALg
Oi)とLi gcOs を乾式混合して熱処理する(
特開昭52−48600号公報)。
(1) Alumina (y-ALgOa or tx-ALg
Oi) and Li gcOs are dry mixed and heat treated (
(Japanese Unexamined Patent Publication No. 52-48600).

(ノアルミナ(1−At20g又はa−At20g)と
水酸化リチウムを湿式混合して乾燥後熱処理する(特開
昭58−186688号公報)。
(Noalumina (20 g of 1-At or 20 g of a-At) and lithium hydroxide are wet-mixed, dried, and then heat-treated (Japanese Patent Laid-Open No. 186688/1988).

(8)  アルミナと水酸化リチウムをフラックス(N
aCA/KCA又はLiCt/KCt  )中で熱処理
する(特開昭58−45118号公報)。
(8) Flux (N) alumina and lithium hydroxide
aCA/KCA or LiCt/KCt) (Japanese Unexamined Patent Application Publication No. 1983-45118).

(船 アルミニウムアルコキサイドとりチウムアルコキ
サイドの混合物を加水分解して得られる粉末を熱処理す
る(特開昭58−87772号公報)。
(Ship) A powder obtained by hydrolyzing a mixture of aluminum alkoxide and tium alkoxide is heat-treated (Japanese Patent Application Laid-open No. 87772/1983).

(1)および(2)の方法から得られるr型リチウムア
ルミネートは粒径が大きく表面積の小さい物しか製造で
きない欠点がある。
The r-type lithium aluminate obtained by methods (1) and (2) has a drawback that only products with a large particle size and a small surface area can be produced.

(8)の方法から得られるリチウムアルミネート粉末は
r型で表面積が10〜20 m2/g/と比較的高表面
積の物が得られるが、フラックスに用いた塩化物が完全
に除去できないという欠点がある。
The lithium aluminate powder obtained by method (8) is r-type and has a relatively high surface area of 10 to 20 m2/g/, but the drawback is that the chloride used in the flux cannot be completely removed. There is.

(4)の方法から得られるリチウムアルミネート粉末は
微細な高表面積のγ型が得られるが、原料のりチウムア
ルコキサイドが吸湿性が大きく凝集しやすいため取扱い
にくく、又高価であり、且つ入手しにくいという欠点が
ある。
The lithium aluminate powder obtained by method (4) can be obtained in a fine γ-type with a high surface area, but the raw material lithium alkoxide is highly hygroscopic and easily aggregates, making it difficult to handle, expensive, and difficult to obtain. The disadvantage is that it is difficult to do.

(発明が解決しようとする問題点) 本発明者らは上述のような不都合を改善すべ(棚々検討
した結果、特定のアルミナ水和物と水酸化リチウムを湿
式混合し、この混合物を焼成して得られたりチウムアル
ミネート粉末は微細で高表面積であり、溶融炭酸塩燃料
電池の電解質タイルの材料に好適であることを見い出し
、本発明を完成させるに至った。
(Problems to be Solved by the Invention) The present inventors have attempted to improve the above-mentioned disadvantages by wet-mixing a specific alumina hydrate and lithium hydroxide and firing this mixture. The inventors have discovered that the lithium aluminate powder obtained from the above process is fine and has a high surface area, and is suitable as a material for electrolyte tiles for molten carbonate fuel cells, leading to the completion of the present invention.

(問題点を解決するための手段) 本発明は、ベーマイト、擬ベーマイト、ダイアスポア、
ギブサイトおよびパイヤライトからなる群から選ばれた
1種又は2種以上のアルミナ水和物および水酸化リチウ
ムを溶媒の存在下湿式混合し、次いで溶媒を除去して得
られた固型分を650℃から1000℃の範囲内の温度
で焼成することを特徴とするr型リチウムアルミネート
粉末の製造法である。
(Means for solving the problems) The present invention provides boehmite, pseudoboehmite, diaspore,
One or more alumina hydrates selected from the group consisting of gibbsite and payerite and lithium hydroxide are wet mixed in the presence of a solvent, and the solid content obtained by removing the solvent is heated at 650 ° C. This is a method for producing r-type lithium aluminate powder, which is characterized by firing at a temperature within a range of 1000°C.

本発明方法の実施に当り用いられるアルミナ水和物は、
ベーマイト、擬ベーマイト、ダイアスボア、ギブサイト
、パイヤライトから選ばれる1種又は2種以上である。
The alumina hydrate used in carrying out the method of the present invention is
One or more types selected from boehmite, pseudo-boehmite, diasbore, gibbsite, and payerite.

これらのアルミナ水和物はアルミン酸アルカリの加水分
解、アルミノゲルの熟成、アルミニウムアルコキサイド
の加水分解等の方法で得られる。ベーマイト、擬ベーマ
イト、ダイアスボア、ギブサイト又はパイヤライト以外
の結晶構造のアルミナ水和物、例えばr−アルミナやα
−アルミナを原料に用いた場合、アルミナの活性が低い
ためか、焼成後の粉末に一部未反応のアルミナが残存し
たり、粒径が大きく表面積の小さいr型リチウムアルミ
ネートしか得られないという欠点を有する。
These alumina hydrates can be obtained by methods such as hydrolysis of alkali aluminate, aging of alumino gel, and hydrolysis of aluminum alkoxide. Alumina hydrates with crystal structures other than boehmite, pseudoboehmite, diasbore, gibbsite, or payerite, such as r-alumina and α
- When alumina is used as a raw material, some unreacted alumina remains in the powder after firing, possibly due to the low activity of alumina, and only r-type lithium aluminate with large particle size and small surface area is obtained. It has its drawbacks.

本発明に用いられる溶媒は水;ヘキサン、ヘプタン、オ
クタン、パラフィン油、灯油等の飽和脂肪族炭化水素;
ペンテン、ヘキセン、ヘプテン、オクテン、デセン等の
不飽和脂肪族炭化水素;シクロペンタン、シクロヘキサ
ン、シクロヘキセン等の指環式化合物;ベンゼン、トル
エン等の芳香族炭化水素;メタノール、エタノール、プ
ロパツール、ブタノール等のアルコール類;アセトンメ
チルエチルケトン、メチルイソブチルケトン等のケトン
類;ジエチルエーテル、テトラヒドロフラン、ジオキサ
ン等のエーテル類から選ばれた1種又は2N以上である
The solvent used in the present invention is water; saturated aliphatic hydrocarbons such as hexane, heptane, octane, paraffin oil, and kerosene;
Unsaturated aliphatic hydrocarbons such as pentene, hexene, heptene, octene, and decene; Ring compounds such as cyclopentane, cyclohexane, and cyclohexene; Aromatic hydrocarbons such as benzene and toluene; Methanol, ethanol, propatool, butanol, etc. Alcohols; ketones such as acetone methyl ethyl ketone and methyl isobutyl ketone; and one or more 2N or more selected from ethers such as diethyl ether, tetrahydrofuran, and dioxane.

特に水酸化リチウムを溶解する水、メタノール等は得ら
れるリチウムアルミネートの表面積が特に大きくなるの
で好適に用いられる。
In particular, water, methanol, etc. that dissolve lithium hydroxide are preferably used because the surface area of the obtained lithium aluminate becomes particularly large.

本発明に用いられる水酸化リチウムは、粉末状又は湿式
混合時に粉末状になる1水和物が好適に用いられる。
The lithium hydroxide used in the present invention is suitably used in the form of a powder or a monohydrate that becomes powder during wet mixing.

本発明の実施に当り、アルミナ水和物と水酸化リチウム
は溶媒の存在下湿式混合される。湿式混合の手段として
は、攪拌機つきの混合槽、ボールミル、振動主ル、V型
混合器、超音波解膠器等が用いられる。混合条件が湿式
条件でなく乾式条件下の場合は、アルミナ水和物と水酸
化リチウムの分散が不均一になるだめか、反応が充分に
進まなかったり、粒径の大きな表面積の小さいリチウム
アルミネートしか得られない。
In practicing the present invention, alumina hydrate and lithium hydroxide are wet mixed in the presence of a solvent. As means for wet mixing, a mixing tank with an agitator, a ball mill, a vibrating main mill, a V-type mixer, an ultrasonic peptizer, etc. are used. If the mixing conditions are dry rather than wet, the dispersion of alumina hydrate and lithium hydroxide may become uneven, or the reaction may not proceed sufficiently, or lithium aluminate with large particle size and small surface area may be mixed. I can only get it.

アルミナ水和物と水酸化リチウムの湿式混合品を次いで
溶媒を除去する。
The wet mixture of alumina hydrate and lithium hydroxide is then freed of solvent.

溶媒の除去方法は蒸発除去、沖過、遠心分離、噴霧乾燥
等の公知の技術を使用できる。但しリチウム化合物が溶
媒に溶解する場合は蒸発除去法又は噴霧乾燥法を用いる
As a method for removing the solvent, known techniques such as evaporation, filtration, centrifugation, and spray drying can be used. However, if the lithium compound is dissolved in a solvent, evaporation removal method or spray drying method is used.

これらの方法で湿式混合品から溶媒を除去すると、固型
分が粉末状で得られる。
When the solvent is removed from the wet mixture by these methods, the solids are obtained in the form of a powder.

本発明における焼成は通常650℃から1000℃、好
ましくは700℃から950℃の範囲内の温度で行なわ
れる。660℃より低い温度で焼成すると、主構造が無
定形又はβ型のリチウムアルミネートとなり、1000
℃より高い温度で焼成すると得られるリチウムアルミネ
ートの粒径が大キく、表面積は小さくなるので好ましく
ない。
Firing in the present invention is usually carried out at a temperature within the range of 650°C to 1000°C, preferably 700°C to 950°C. When fired at a temperature lower than 660°C, the main structure becomes amorphous or β-type lithium aluminate, and the
Calcining at a temperature higher than 0.degree. C. is not preferable because the resulting lithium aluminate has a large particle size and a small surface area.

本発明の実施にあたり、アルミナ水和物と水酸化リチウ
ムの湿式混合品から溶媒を除去して得られる粉末状固型
分を直ちに焼成してもよいが、その前に粉砕又は混合処
理を施して、二次凝集物の粉砕、均質化を行なって焼成
すると、粒径が小さく表面積が大きいr型リチウムアル
ミネートが得られるので望ましい。粉砕又は混合処理に
用いられる機器としては、ボールミル、振動ミル、アト
ライター、らいかい器、V型混合器等が用いられる。
In carrying out the present invention, the powdery solid obtained by removing the solvent from a wet mixture of alumina hydrate and lithium hydroxide may be immediately calcined, but it may be pulverized or mixed before calcining. It is preferable to crush and homogenize the secondary agglomerates and then sinter them, since it is possible to obtain r-type lithium aluminate with a small particle size and a large surface area. As equipment used for the grinding or mixing treatment, a ball mill, a vibration mill, an attritor, a miller, a V-type mixer, etc. are used.

(発明の効果) 本発明方法によって得られたりチウムアルミネートは7
0疼以上がr型の結晶形を有し、残りがβ型の結晶形を
有しており、粒径が小さく表面積が約15m”/f以上
と大きいため、溶融炭酸塩燃料電池の電解質タイルの原
料に好適に用いられる。
(Effect of the invention) The lithium aluminate obtained by the method of the present invention is 7
0 and more have an r-type crystal form, and the rest have a β-type crystal form, and because the particle size is small and the surface area is large, about 15 m"/f or more, it is suitable for use as an electrolyte tile for molten carbonate fuel cells. It is suitably used as a raw material.

(実施例) 以下、実施例によって本発明方法をさらに詳細に説明す
るが、本発明はその要旨を越えない限り以下の実施例に
よって限定されるものではない。
(Examples) Hereinafter, the method of the present invention will be explained in more detail with reference to Examples, but the present invention is not limited by the following Examples unless the gist thereof is exceeded.

実施例1 攪袢機、凝縮器等を備えた201の混合槽に擬ベーマイ
ト2 s s o y (At20gとして2040I
I)、水酸化リチウム−水和物(LiOH・H2O) 
16801および水10〜を仕込み、温度95〜100
℃に保ちつつ100 rl)mで2時間攪拌混合した。
Example 1 Pseudo-boehmite 2 s s o y (2040 I as At 20 g
I), lithium hydroxide hydrate (LiOH・H2O)
Prepare 16801 and 10~ of water, and bring the temperature to 95~100.
The mixture was stirred and mixed at 100 ml for 2 hours while maintaining the temperature at .degree.

次いで水を100℃にて蒸発除去して乾燥粉末8000
fを得た。
Next, water was removed by evaporation at 100°C to obtain a dry powder of 8,000 °C.
I got f.

この乾燥粉末を振動ミルで2時間処理した後、第1表に
示す条件で焼成した。
This dry powder was treated with a vibration mill for 2 hours, and then fired under the conditions shown in Table 1.

得られた焼成品の物性は@1表の生成物物性欄に示すと
おりであった。
The physical properties of the obtained fired product were as shown in the column of product physical properties in Table @1.

実施例2〜8 実施例1と同様にして、種々のアルミナ水和物と水酸化
リチウム−水和物および種々の溶媒を第1表に示す条件
で湿式混合、溶媒除去し、その乾燥粉末を第1表に示す
条件で乾式粉砕処理しく実施例8は処理を行なわず)、
次いで第1表に示す条件で焼成し、微粉のりチウムアル
ミネートを得た。このリチウムアルミネートの結晶形お
よびBET比表面積を測定し第1表に示した。
Examples 2 to 8 In the same manner as in Example 1, various alumina hydrates, lithium hydroxide hydrates, and various solvents were wet mixed under the conditions shown in Table 1, the solvents were removed, and the dry powder was obtained. Dry pulverization was carried out under the conditions shown in Table 1 (No treatment was carried out in Example 8),
Next, the mixture was fired under the conditions shown in Table 1 to obtain fine powder glue aluminate. The crystal form and BET specific surface area of this lithium aluminate were measured and shown in Table 1.

実施例9 実施例1と同一の擬ベーマイト2550f(At20g
として204(HF )、水酸化リチウム−水和物16
80F、および水10にダを80tのボールミルに仕込
み、温度20℃〜30℃にて回転混合した。この混合ス
ラリーを実施例−1と同一の混合槽に仕込み、水を10
0℃にて蒸発除去して乾燥し、乾燥粉末80001を得
た。この乾燥粉末を振動ミルで2時間処理した後、80
0℃で1時間焼成した。得られた焼成品物性は第1表の
生成物物性欄に示すとおりであった。
Example 9 Pseudo-boehmite 2550f (At20g
as 204 (HF), lithium hydroxide hydrate 16
A 80-t ball mill was charged with 80 F and 10 parts of water, and mixed by rotation at a temperature of 20 to 30°C. This mixed slurry was placed in the same mixing tank as in Example-1, and water was added to
It was evaporated and dried at 0°C to obtain dry powder 80001. After processing this dry powder in a vibrating mill for 2 hours,
It was baked at 0°C for 1 hour. The physical properties of the obtained fired product were as shown in the product physical properties column of Table 1.

比較例1 焼成を600℃又は1100℃で各1時間行なった以外
は実施例1と同様に行なうた。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the firing was carried out at 600°C or 1100°C for 1 hour each.

得られた焼成品の物性は第2表の生成物物性欄に示すと
おりであった。
The physical properties of the obtained fired product were as shown in the column of product physical properties in Table 2.

比較例2 焼成を600℃又は1100℃で各1時間行なった以外
は実施例2と同様に行なった。
Comparative Example 2 The same procedure as Example 2 was carried out except that the firing was performed at 600°C or 1100°C for 1 hour each.

得られた焼成品の物性は第2表の生成物物性欄に示すと
おりであった。
The physical properties of the obtained fired product were as shown in the column of product physical properties in Table 2.

比較例8 実施例1で用いたと同一の混合槽に1−AzgOs21
501 (AAgOgとして204([’)、水酸化リ
チウム−水和物(LiOH−HiO) 1680 gお
よび水10匂を仕込み、温度95℃〜100℃に保ちつ
つt o o rpmで2時間攪拌混合した。次いで水
を100℃にて蒸発除去して乾燥粉末を得た。この乾燥
粉末を振動ミルで2時間混合した後、第2表に示す条件
で焼成した。
Comparative Example 8 1-AzgOs21 was placed in the same mixing tank as used in Example 1.
501 (204 ([') as AAgOg, 1680 g of lithium hydroxide-hydrate (LiOH-HiO), and 10 g of water were prepared, and the mixture was stirred and mixed at 200 rpm for 2 hours while maintaining the temperature at 95°C to 100°C. Next, water was removed by evaporation at 100° C. to obtain a dry powder.The dry powder was mixed in a vibrating mill for 2 hours and then calcined under the conditions shown in Table 2.

得られた焼成品の物性は第2表の生成物物性欄に示すと
おり、未反応の1−AL20aが残存したり、表面積の
小さなr型リチウムアルミネートしか得られなかった。
As shown in the product properties column of Table 2, the physical properties of the obtained fired product were such that unreacted 1-AL20a remained and only r-type lithium aluminate with a small surface area was obtained.

比較例4 実施例1と同様にしてα−AttOm  と水酸化リチ
ウム−水和物を水の存在下、第2表に示す条件で湿式混
合し、溶媒除去し、その乾燥粉末を第2表に示す条件で
乾式粉砕し、次いで第2表に示す条件で焼成した。得ら
れた焼成品の物性は第2表に示した。
Comparative Example 4 α-AttOm and lithium hydroxide hydrate were wet mixed in the presence of water under the conditions shown in Table 2 in the same manner as in Example 1, the solvent was removed, and the dry powder was prepared as shown in Table 2. It was dry ground under the conditions shown and then calcined under the conditions shown in Table 2. The physical properties of the obtained fired product are shown in Table 2.

比較例5 実施例1と同一の擬ベーマイト2550F(AzgOs
 トして2040f)および水酸化リチウム−水和物1
68ONを溶媒の存在なしで80Lボールミルにて8時
間乾式混合した。
Comparative Example 5 Pseudo-boehmite 2550F (AzgOs
2040f) and lithium hydroxide hydrate 1
68ON was dry mixed in an 80L ball mill for 8 hours without the presence of solvent.

この粉末を第2表に示す条件で焼成した。This powder was fired under the conditions shown in Table 2.

得られた焼成品の物性は第2表に示すとおり表面積の小
さなr型リチウムアルミネートしか得られなかった。
As for the physical properties of the obtained fired product, as shown in Table 2, only r-type lithium aluminate with a small surface area was obtained.

以上の実施例および比較例より、本発明方法により微細
で高表面積のr型リチウムアルミネートが安定して製造
できることが明らかである。
From the above Examples and Comparative Examples, it is clear that fine r-type lithium aluminate with a high surface area can be stably produced by the method of the present invention.

手続補正書(自発) 昭和60年7月2+日 特許庁長官  宇 賀 道 部  殿 ・・に・・ 1、 事件の表示 昭和60年 特許顕画186275号 2、 発明の名称 リチウムアルミネート粉末の製造法 8、 補正をする者 事件との関係   特許出願人 住 所 大阪市東区北浜5丁目15番地名称 (209
)住友化学工業株式会社代表者  森    英  雄 4、代理人 住 所  大阪市東区北浜5丁目15番地6、補正の内
容 明細書18頁第1表の生成物物性の欄の「比面積」を1
比表面積」と補正する。
Procedural amendment (voluntary) July 2, 1985 Michibu Uga, Commissioner of the Patent Office... 1. Indication of the case 1985 Patent Kenga No. 186275 2. Name of the invention Manufacture of lithium aluminate powder Law 8, Relationship with the person making the amendment Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name (209)
) Sumitomo Chemical Co., Ltd. Representative: Hideo Mori 4, Agent address: 5-15-6 Kitahama, Higashi-ku, Osaka City, ``Specific area'' in the column of product physical properties in Table 1, page 18 of the statement of contents of the amendment: 1
Corrected as "specific surface area".

以  上that's all

Claims (4)

【特許請求の範囲】[Claims] (1)ベーマイト、擬ベーマイト、ダイアスボア、ギブ
サイトおよびバイヤライトからなる群から選ばれた1種
又は2種以上のアルミナ水和物および水酸化リチウムを
溶媒の存在下に混合し、次いで溶媒を除去して得られた
固型分を650℃から1000℃の範囲内の温度で焼成
することを特徴とするに型リチウムアルミネート粉末の
製造法。
(1) One or more alumina hydrates selected from the group consisting of boehmite, pseudoboehmite, diasbore, gibbsite, and bayerite and lithium hydroxide are mixed in the presence of a solvent, and then the solvent is removed. 1. A method for producing a lithium aluminate powder, characterized in that the solid content obtained is fired at a temperature within the range of 650°C to 1000°C.
(2)焼成温度が700℃から950℃の範囲内の温度
である特許請求の範囲第1項記載の製造法。
(2) The manufacturing method according to claim 1, wherein the firing temperature is within the range of 700°C to 950°C.
(3)固型分を焼成に処する前にそれに粉砕又は混合処
理を施すことを特徴とする特許請求 の範囲第1項または第2項記載の製造法。
(3) The manufacturing method according to claim 1 or 2, characterized in that the solid content is subjected to pulverization or mixing treatment before being subjected to calcination.
(4)溶媒が、水又はアルコール類から選ばれた1種又
は2種以上であることを特徴とする特許請求の範囲第1
項、第2項または第3項記載の製造法。
(4) Claim 1, characterized in that the solvent is one or more selected from water or alcohols.
2. The manufacturing method according to item 2, item 3, or item 3.
JP60136275A 1985-06-21 1985-06-21 Method for producing lithium aluminum powder Expired - Lifetime JPH068173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60136275A JPH068173B2 (en) 1985-06-21 1985-06-21 Method for producing lithium aluminum powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60136275A JPH068173B2 (en) 1985-06-21 1985-06-21 Method for producing lithium aluminum powder

Publications (2)

Publication Number Publication Date
JPS61295228A true JPS61295228A (en) 1986-12-26
JPH068173B2 JPH068173B2 (en) 1994-02-02

Family

ID=15171383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60136275A Expired - Lifetime JPH068173B2 (en) 1985-06-21 1985-06-21 Method for producing lithium aluminum powder

Country Status (1)

Country Link
JP (1) JPH068173B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302368A2 (en) * 1987-08-04 1989-02-08 Kernforschungszentrum Karlsruhe Gmbh Process for the production of sinterable powders for binary and multinary ceramic oxidic materials
JPH06290799A (en) * 1992-09-30 1994-10-18 Hitachi Ltd Manufacture of electrolytic sheet for fused carbonate type fuel cell
US6290928B1 (en) 1997-04-07 2001-09-18 Nippon Chemicals Industrial Co. Gamma lithium aluminate product and process of making

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302368A2 (en) * 1987-08-04 1989-02-08 Kernforschungszentrum Karlsruhe Gmbh Process for the production of sinterable powders for binary and multinary ceramic oxidic materials
EP0302368A3 (en) * 1987-08-04 1991-06-12 Kernforschungszentrum Karlsruhe Gmbh Process for the production of sinterable powders for binary and multinary ceramic oxidic materials
JPH06290799A (en) * 1992-09-30 1994-10-18 Hitachi Ltd Manufacture of electrolytic sheet for fused carbonate type fuel cell
US6290928B1 (en) 1997-04-07 2001-09-18 Nippon Chemicals Industrial Co. Gamma lithium aluminate product and process of making

Also Published As

Publication number Publication date
JPH068173B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
CN1039804C (en) Composition precursor and cerium and zirconium mixed oxide based composition, method for its preparation and use thereof
KR101286825B1 (en) PROCESS FOR PRODUCING FINE α-ALUMINA PARTICLES
TW200948746A (en) Process for production of aluminum titanate-based ceramics
TW201031616A (en) Process for producing aluminum titanate-based ceramics
JP6329526B2 (en) Method for producing potassium titanate
US8048400B2 (en) Process for preparation of alumina powder and precursor thereof
TW201010962A (en) Process for producing aluminium titanate-based ceramics
WO2013133331A1 (en) Aluminium hydroxide powder and method for producing same
EP0207663B1 (en) A method for producing lithium aluminate powders
CN104211081A (en) Method for synthesizing 4A zeolite from coal ash
JP4181777B2 (en) Boehmite production method
JPS58199711A (en) Manufacture of aluminosilicate powder
KR20100075742A (en) Method for producing alumina
JPS61295228A (en) Production of lithium aluminate powder
Maddu et al. Structural and dielectric properties of CaTiO3 synthesized utilizing Duck’s eggshell as a calcium source
JP2014518537A (en) Method for producing precipitated calcium carbonate using avian eggshell
JP2010111552A (en) Method for manufacturing aluminum titanate-based ceramic
JPH06263437A (en) Production of platy boehmite particles
JPH0417896B2 (en)
JP2539483B2 (en) Manufacturing method of lithium aluminum powder with large specific surface area
JPH0239451B2 (en)
RU2710708C1 (en) Microsphere powdered aluminum hydroxide of specified dispersion and method of its production
CA1086025A (en) Process for producing alumina
JPH0412020A (en) Preparation of barium titanate powder
JP2000007327A (en) Highly plastic alumina particle by coating alumina particle with alumina hydrate and its production