JPS61294847A - Manufacture of thick film circuit substrate - Google Patents

Manufacture of thick film circuit substrate

Info

Publication number
JPS61294847A
JPS61294847A JP60136404A JP13640485A JPS61294847A JP S61294847 A JPS61294847 A JP S61294847A JP 60136404 A JP60136404 A JP 60136404A JP 13640485 A JP13640485 A JP 13640485A JP S61294847 A JPS61294847 A JP S61294847A
Authority
JP
Japan
Prior art keywords
film
resistor
glass
base metal
thick film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60136404A
Other languages
Japanese (ja)
Inventor
Osamu Makino
治 牧野
Toru Ishida
徹 石田
Koji Nishida
孝治 西田
Takeshi Izeki
健 井関
Hirotoshi Watanabe
寛敏 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60136404A priority Critical patent/JPS61294847A/en
Publication of JPS61294847A publication Critical patent/JPS61294847A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a thick film circuit substrate, which has a very stable resistor and a stable conductor film, whose soldering is easy, by removing remaining carbon at a temperature higher than a softening point of glass, fluidizing the glass beforehand, and forming the substrate in a non-oxidizing atmosphere so that a base metal conductor is not oxidized. CONSTITUTION:On a porcelain substrate 10, a silicide-glass glazed resistor film 50 is burned in an oxidizing atmosphere at a temperature in a range of 500-1,000 deg.C. Thereafter, a conductor film 40 comprising a base metal material, which is contacted with the resistor film 50, is burned in a non-oxidizing atmosphere at a high temperature. Since the material used in this way is the base metal material, a highly reliable thick film circuit substrate, which has the inexpensive glazed resistor having stable resistance characteristic and also has the excellent conductor film, is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、IC,チップ部品などの電子部品の実装を高
密度に低コストに行なう厚膜回路基板の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a thick film circuit board in which electronic components such as ICs and chip components can be mounted at high density and at low cost.

従来の技術 近年、各種電子機器の小型化や多機能化が年を追って進
んできているが、この中で回路部品の高密度実装技術は
重要な役割を演じてきている。特に、IC,LSIの発
達に伴う抵抗器、コンデンサ等のチップ化や厚膜化そし
て、配線基板の多層化などによる小型化、高密度化には
目を見張るものがある。さらに、ある回路ブロックを、
厚膜状の抵抗と配線導体を形成した厚膜回路基板上に他
のチップ状態、受動部品を搭載するいわゆる厚膜ハイブ
リッドICへと移行してきている。
BACKGROUND OF THE INVENTION In recent years, various electronic devices have become smaller and more multifunctional, and high-density mounting technology for circuit components has played an important role in this process. In particular, with the development of ICs and LSIs, resistors, capacitors, etc. have become more chip-based and thicker, and wiring boards have become more compact and denser due to multi-layered wiring boards. Furthermore, a certain circuit block is
There has been a shift to so-called thick-film hybrid ICs in which other chips and passive components are mounted on a thick-film circuit board on which thick-film resistors and wiring conductors are formed.

この厚膜ハイブリッドICは、抵抗体が厚膜状であるた
め、抵抗トリミングによる調整が容易な事と、セラミッ
ク材料を用いるため高信頼性である事などから、広く普
及してきている。
This thick-film hybrid IC has become widely popular because the resistor is in the form of a thick film, making it easy to adjust by trimming the resistor, and because it uses a ceramic material, it is highly reliable.

以下図面を参照しながら、上述した従来の厚膜回路基板
の製造方法の一例について述べる。
An example of the conventional method for manufacturing the above-mentioned thick film circuit board will be described below with reference to the drawings.

第1図は従来の厚膜回路基板の断面図を示すものである
。同図において、1oはセラミック基板、2oは貴金属
導体膜、30はRuO2系グレーズ抵抗膜を示す。従来
の厚膜回路基板は、焼結されたアルミナ基板1o上に、
Ag  、 Pd  、 Pt  、 Auなどの貴金
属を主成分とするペーストを印刷し、乾燥後に850℃
前後の温度の空気中で焼成して貴金属系の導体膜20を
得た後、Ru O2−ガラスからなるペーストを前記導
体膜と接触するように印刷し、乾燥後に空気中750〜
900℃の温度で焼成してRu O2系のグレーズ抵抗
膜30を設けて得られるのが一般的である、上記のよう
にして得られた厚膜回路基板は、全て空気中で焼成でき
るという手軽さと、抵抗体特性も優れたものが得られて
おるため広く実用に供されている。
FIG. 1 shows a cross-sectional view of a conventional thick film circuit board. In the figure, 1o is a ceramic substrate, 2o is a noble metal conductor film, and 30 is a RuO2-based glaze resistance film. A conventional thick film circuit board has a sintered alumina substrate 1o,
A paste mainly composed of noble metals such as Ag, Pd, Pt, and Au is printed and dried at 850°C.
After baking in air at a temperature of about 750°C to obtain a conductive film 20 made of a noble metal, a paste made of RuO2-glass is printed so as to be in contact with the conductive film, and after drying it is fired in air at a temperature of 750°C.
The thick film circuit board obtained as described above is generally obtained by firing at a temperature of 900°C and providing a RuO2-based glaze resistive film 30.The thick film circuit board obtained as described above can be fired easily in the air. It is widely used in practical applications because it has excellent resistance and resistor properties.

(例えば、「厚膜工C化技術」日本マイクロエレクトロ
ニクス協会綿、工業調査会発行)。
(For example, "Thick film technology C technology" published by Japan Microelectronics Association, Industrial Research Committee).

しかし、反面では、導体材料、抵抗材料共に高価で価格
変動の大きい貴金属材料を用いているため、いくら製造
の合理化をはかったとしても非常に高価な回路基板にな
るという問題点を有していた。そこで、両者とも貴金属
材料を用いないつまり低コストで価格変動も少ない卑金
属材料のみからなる導体材料と抵抗材料を用いた構成の
ものが提案されている。(例えば、特開昭66−153
762号公報)。
However, on the other hand, since both the conductor material and the resistor material are expensive and use precious metal materials whose prices fluctuate widely, there was a problem that no matter how much rationalization of manufacturing was attempted, the result was a very expensive circuit board. . Therefore, a configuration has been proposed in which both conductive materials and resistive materials are made of base metal materials, which are low in cost and have little price fluctuation, without using noble metal materials. (For example, JP-A-66-153
Publication No. 762).

これは、Cuなどの卑金属導体を予めセラミック基板1
0にメタライズして導体膜20とし、この後に、硅化物
−ガラス系グレーズ抵抗ペーストを印刷し、ペースト中
のバインダーの除却のため空気中で加熱後、850’C
前後の還元性雰囲気中で焼付けてクレーズ抵抗体を得る
ものである。
This is done by attaching a base metal conductor such as Cu to the ceramic substrate in advance.
After that, a silicide-glass based glaze resistor paste was printed, and after heating in air to remove the binder in the paste, it was heated to 850'C.
A craze resistor is obtained by baking in a reducing atmosphere.

発明が解決しようとする問題点 しかしながら、上記の方法で得られた抵抗膜の特性と導
体膜の性質は決して満足のいくものではなかった。と言
うのは、卑金属材料は一般に低温でも酸化されやすいた
め、最低必要な脱バインダ温度(soo’c)であって
も表面に酸化膜を形成しく Cu 20やCuO)これ
が高温で抵抗体のガラス中に拡散して、グレーズ抵抗体
中で還元し、このCuが となシ結果的には、抵抗体特性に多大な悪影響を与える
。このCuの析出は特に電極付近で著るしいため、特に
過負荷試験を行なった時の電極付近での電流集中によっ
て抵抗値が大きく変化する。
Problems to be Solved by the Invention However, the characteristics of the resistive film and the properties of the conductive film obtained by the above method were by no means satisfactory. This is because base metal materials are generally easily oxidized even at low temperatures, so an oxide film will form on the surface even at the minimum required debinding temperature (Cu 20 or CuO). This Cu diffuses into the glaze resistor and is reduced in the glaze resistor, resulting in a large adverse effect on the resistor characteristics. Since this Cu precipitation is particularly significant near the electrodes, the resistance value changes greatly due to current concentration near the electrodes especially when an overload test is performed.

逆に脱バインダ温度を下げるために熱分解性の高いバイ
ンダを用いたとしても、どうしても炭化は起υ僅かな残
留カーボンが抵抗体特性に悪影響を与えるものであった
On the other hand, even if a highly thermally decomposable binder was used to lower the debinding temperature, carbonization would still occur and a small amount of residual carbon would adversely affect the resistor characteristics.

また、導体膜の表面酸化は、抵抗焼成時に還元されるも
のの一度酸化した導体膜面は半田も付きにりく、導体抵
抗も高くなる傾向にある。
Furthermore, although the surface oxidation of the conductor film is reduced during resistor firing, once the surface of the conductor film has been oxidized, it is difficult for solder to stick to it, and the conductor resistance tends to be high.

このように上記のような従来の構成では、空気中脱パイ
ンダニ程の悪影響と、脱バインダの不完全性から、形成
された抵抗体の特性は完全なものでなく特に信頼性面で
大きな問題を有しているため実用に供しにくかった。
As described above, in the conventional structure as described above, the characteristics of the formed resistor are not perfect due to the negative effects of debinding in the air and the incompleteness of debinding, which causes a big problem, especially in terms of reliability. This made it difficult to put it into practical use.

本発明は上記問題点に鑑み、使用する材料は卑金属材料
であるため安価で安定な抵抗特性を有したグレーズ抵抗
と優れた導体膜とを有する高信頼性の厚膜回路基板の製
造方法を提供するものである。
In view of the above-mentioned problems, the present invention provides a method for manufacturing a highly reliable thick film circuit board that has a glaze resistor that is inexpensive and has stable resistance characteristics because the material used is a base metal material, and an excellent conductor film. It is something to do.

問題点を解決するための手段 上記問題点を解決するために本発明の厚膜回路基板の製
造方法は、出器基板上に珪化物−ガラス系グレーズ抵抗
膜を、SOO〜1000℃の範囲の温度の酸化性雰囲気
中で焼成した後、抵抗膜に接触する卑金属材料からなる
導体膜を非酸化性雰囲気中の高温にて焼成するという構
成を備えたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the method for manufacturing a thick film circuit board of the present invention includes forming a silicide-glass based glaze resistive film on the output substrate at a temperature in the range of SOO to 1000°C. After firing in an oxidizing atmosphere at a high temperature, a conductive film made of a base metal material in contact with a resistive film is fired at a high temperature in a non-oxidizing atmosphere.

作用 本発明の方法によれば、予め、ガラスの軟化点より高い
温度で残存カーボンの除去とガラスの予備流動を起こし
、次いで卑金属導体を酸化させない程度の非酸化性雰囲
気で形成するため、残存カーボンが全くなく、かつ導体
の一部酸化による導体金属の拡散がないため、非常に安
定な抵抗体と、半田付けが容易で安定な導体膜を有する
厚膜回路基板を提供できるものである。
Effect: According to the method of the present invention, residual carbon is removed and the glass is preliminarily flowed at a temperature higher than the softening point of the glass, and then the base metal conductor is formed in a non-oxidizing atmosphere that does not oxidize the base metal conductor. Since there is no diffusion of the conductor metal due to partial oxidation of the conductor, it is possible to provide a thick film circuit board having an extremely stable resistor and a conductor film that is easy to solder and is stable.

実施例 以下本発明の一実施例の厚膜回路基板の製造方法につい
て、図面を参照しながら説明する、第2図は本発明の実
施例における厚膜回路基板の断面図を示すものである。
EXAMPLE A method of manufacturing a thick film circuit board according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 2 shows a cross-sectional view of the thick film circuit board according to an embodiment of the present invention.

第2図において、1oはセラミック基板、40は卑金属
導体、6oは珪化物−ガラス系グレーズ抵抗膜を示す。
In FIG. 2, 1o is a ceramic substrate, 40 is a base metal conductor, and 6o is a silicide-glass based glaze resistive film.

3種類の珪化物組成を有する珪化物粉体を特公開昭56
−153702に示す手順で得た。この珪化物粉体に、
BaO、B2O3,MgO、CaO。
Silicide powder with three types of silicide compositions was published in 1982.
-153702. In this silicide powder,
BaO, B2O3, MgO, CaO.

S iO2からなり軟化点が600〜1000℃のガラ
スフリットと、エチルセルロースなどの樹脂バインダを
テレピン油に10%溶解したビークルとを加え、よく混
練して珪化物−ガラス系グレーズ抵抗ペーストとした。
A glass frit made of SiO2 and having a softening point of 600 to 1000 DEG C. and a vehicle prepared by dissolving 10% of a resin binder such as ethyl cellulose in turpentine oil were added and thoroughly kneaded to obtain a silicide-glass glaze resistance paste.

この時、珪化物粉体とガラスリフトとの合計量に対する
珪化物粉体を6〜60重量%とした。この抵抗ペースト
を、アルミナ純度が96%の焼結体であるセラミック基
板1o上にスクリーン印刷し、120℃で10分間乾燥
してから、空気中のピーク温度が500℃〜1000′
Cに制御されたベルト炉に通して焼成し珪化物−ガラス
系グレーズ抵抗膜50を形成した。
At this time, the amount of silicide powder was 6 to 60% by weight based on the total amount of silicide powder and glass lift. This resistor paste was screen printed on a ceramic substrate 1o, which is a sintered body with alumina purity of 96%, and dried at 120°C for 10 minutes.
The film was fired in a belt furnace controlled at C. to form a silicide-glass glaze resistive film 50.

次に、導体材料としてCu  、Co  、 Ni  
、 Feを主成分としたペーストを、抵抗膜5oに接触
するようにスクリーン印刷し、120℃で10分間乾燥
後ピーク温度が850〜120o℃でN2またはN2に
数チのmm2と僅かな水蒸気を含む混合雰囲気ガス中で
焼成して卑金属導体膜4oを形成した。この時焼付温度
は、ガラス組成と導体材料の組合せによって異なる。
Next, Cu, Co, and Ni are used as conductor materials.
, A paste containing Fe as a main component was screen printed so as to be in contact with the resistive film 5o, and after drying at 120°C for 10 minutes, a peak temperature of 850 to 120°C was applied to N2 or N2 with several inches of mm2 and a small amount of water vapor. A base metal conductor film 4o was formed by firing in a mixed atmospheric gas containing the above. At this time, the baking temperature differs depending on the combination of glass composition and conductor material.

このようにして得られた厚膜回路基板のグレーズ抵抗の
特性を調べた。第1表には、これらのグレーズ抵抗の面
積抵抗値(Ro)、25℃と126℃間での抵抗温度係
数(TCR)、ノイズ。
The characteristics of the glaze resistance of the thick film circuit board thus obtained were investigated. Table 1 shows the sheet resistance (Ro), temperature coefficient of resistance (TCR) between 25°C and 126°C, and noise of these glaze resistors.

150 mW / mm2の負荷を5秒間印加後の抵抗
変化率を示す過負荷試験(OLT)の結果をそれぞれ示
す。
The results of an overload test (OLT) showing the rate of resistance change after applying a load of 150 mW/mm2 for 5 seconds are shown, respectively.

(以下余白) また、第3図には、酸化雰囲気中焼成温度と、代表的抵
抗特性であるROとTCHの関係の代表例を示す。なお
、温度が500〜10oo℃の範囲は本実施例で得られ
たものであり、それ以外の温度節回は別途試料を作成し
て得たものである。
(The following is a blank space) Further, FIG. 3 shows a typical example of the relationship between the firing temperature in an oxidizing atmosphere and the typical resistance characteristics, RO and TCH. Note that the temperature range of 500 to 100° C. was obtained in this example, and the other temperature ranges were obtained by separately preparing samples.

比較例 本発明の効果を明らかにするために、従来の方法、すな
わち卑金属電極形成後に、硅化物−ガラス系グレーズ抵
抗体を形成する方法で得られた厚膜回路基板の特性の代
表的数値を、実施例の代表例と共に第2表に示す。
Comparative Example In order to clarify the effects of the present invention, typical values of the characteristics of a thick film circuit board obtained by a conventional method, that is, a method of forming a silicide-glass based glazed resistor after forming a base metal electrode, are shown. , are shown in Table 2 together with representative examples of Examples.

C以下余白) 第2表での比較から、本発明の製造方法で優れた抵抗体
と導体を有する厚膜回路基板が得られる事がわかる。さ
らに第1表から、本発明の製造方法のなかで、抵抗体と
しては硅化物−ガラス系のグレーズ抵抗体であればよく
硅化物の種類によってその効果が著るしく変わらない事
がわかると同時に、導体膜もCu 、 Go 、 Ni
 、 Feなどの卑金属材料による大きな差は見られな
い。また第3図に示すように酸化性雰囲気中でのグレー
ズ抵抗の焼成が500〜1000℃が好ましいのは後で
形成する卑金属導体の焼成温度によっても事情は異るが
主に以下の理由によると考えられる。500℃よシも低
い時、残留カーボンが抵抗体中に閉じ込められかつ、ガ
ラスが予備流動しておらず印刷直後と変らないぐらいポ
ーラスであるためその上に重ねて印刷した導体ペースト
が進入してターシネジョン性を損う。また、1000”
Cよシも高温で行なった時、ガラス組成(即ちガラスの
軟化点)Kもよるが、高温での珪化物粒子同志の凝集と
反応が過度に進み珪化物とガラス相との分相が起こる、
これらの理由から、適正温度範囲外ではR。
From the comparison in Table 2, it can be seen that a thick film circuit board having excellent resistors and conductors can be obtained by the manufacturing method of the present invention. Furthermore, from Table 1, it can be seen that in the manufacturing method of the present invention, it is sufficient to use a silicide-glass glazed resistor as the resistor, and the effect does not change significantly depending on the type of silicide. , the conductor film is also Cu, Go, Ni
, No major differences were observed depending on base metal materials such as Fe. Furthermore, as shown in Fig. 3, it is preferable to sinter the glaze resistor in an oxidizing atmosphere at 500 to 1000°C for the following reasons, although the circumstances vary depending on the sintering temperature of the base metal conductor that will be formed later. Conceivable. When the temperature is as low as 500℃, the residual carbon is trapped in the resistor, and the glass is as porous as it was immediately after printing because it has not pre-flowed, so the conductor paste printed on top of it enters. It impairs the tercinesion property. Also, 1000”
When C and C are carried out at high temperatures, depending on the glass composition (i.e., the softening point of the glass) K, the aggregation and reaction of silicide particles at high temperatures progress excessively, leading to phase separation between silicide and glass phase. ,
For these reasons, R outside the appropriate temperature range.

が著るしく上り、TCRが著るしく負に大きくなると考
えられる。
is considered to increase significantly, and TCR becomes significantly negative.

一方、卑金属導体膜の形成条件は、導体材料の融点と熱
力学的定数(ΔGo )によって焼付温度と雰囲気の酸
素分圧が異なるが、この珪化物−ガラス系グレーズ抵抗
体は酸化・還元に対して安定でありRu O2系抵抗体
のように Rub2+ 2H2→Ru + 2H20となって抵抗
特性を失う事はないため、抵抗特性への大きな影響は与
えず、むしろ導体膜の接着性や導通抵抗に対しての影響
が太きいと考えられる。
On the other hand, the formation conditions for a base metal conductor film include the baking temperature and oxygen partial pressure of the atmosphere, which vary depending on the melting point and thermodynamic constant (ΔGo) of the conductor material. Since it is stable and does not lose its resistance characteristics by changing from Rub2+ 2H2 → Ru + 2H20 like RuO2-based resistors, it does not have a large effect on the resistance characteristics, but rather affects the adhesion and conduction resistance of the conductor film. It is thought that the impact on

なお、実施例ではグレーズ抵抗体のガラス成分として硼
珪酸バリウム系のものを用いたが、前述の理由から電極
焼付時の雰囲気下で酸化、還元の反応を起さない成分か
ら構成されるガラス組成であれば構わない。まだ、導体
膜材料として卑金属導体単体で調べたが必要におじてこ
れらを合金化したものであっても構わない。
In the example, a barium borosilicate glass component was used as the glass component of the glaze resistor, but for the reasons mentioned above, a glass composition composed of components that do not cause oxidation or reduction reactions in the atmosphere during electrode baking was used. It doesn't matter if it is. Although we have investigated base metal conductors alone as conductor film materials, they may be alloyed if necessary.

発明の効果 以上のように本発明の製造方法は、磁器基板上に珪化物
−ガラス系グレーズ抵抗膜を500〜1000℃の範囲
の温度の酸化性雰囲気中で焼成した後、抵抗膜に接触す
る卑金属材料からなる導体膜を非酸化性雰囲気中の高温
にて焼成することにより、高信頼性のグレーズ抵抗体と
優れた特性の導体膜を有する安価な厚膜回路基板を提供
することができる。
Effects of the Invention As described above, the manufacturing method of the present invention involves firing a silicide-glass-based glaze resistive film on a ceramic substrate in an oxidizing atmosphere at a temperature in the range of 500 to 1000°C, and then contacting the resistive film. By firing a conductive film made of a base metal material at high temperature in a non-oxidizing atmosphere, it is possible to provide an inexpensive thick film circuit board having a highly reliable glazed resistor and a conductive film with excellent characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の厚膜回路基板の断面図、第2図は本発明
の実施例における厚膜回路基板の断面図、第3図は酸化
雰囲気中焼成温度と面積抵抗(RO)あるいは抵抗温度
係数(TCR)との関係を示す図である。 10・・・・・・セラミック基板、20・・・・・・導
体膜、30・・・・・・グレーズ抵抗膜、4o・・・・
・・卑金属導体膜、50・・・・・・珪化°物−ガラス
系グレーズ抵抗膜。
Fig. 1 is a cross-sectional view of a conventional thick film circuit board, Fig. 2 is a cross-sectional view of a thick film circuit board according to an embodiment of the present invention, and Fig. 3 is a firing temperature in an oxidizing atmosphere and a resistance area (RO) or resistance temperature. It is a figure which shows the relationship with a coefficient (TCR). 10...Ceramic substrate, 20...Conductor film, 30...Glaze resistance film, 4o...
...Base metal conductor film, 50... Silicide-glass-based glaze resistance film.

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁性磁器基板上に、珪化物−ガラス系グレーズ
抵抗膜を500〜1000℃の酸化性雰囲気中で焼成し
た後、前記抵抗膜に接触する卑金属材料からなる導体膜
を非酸化性雰囲気中の高温にて焼成することを特徴とす
る厚膜回路基板の製造方法。
(1) After firing a silicide-glass-based glazed resistive film on an insulating ceramic substrate in an oxidizing atmosphere at 500 to 1000°C, a conductive film made of a base metal material in contact with the resistive film is heated in a non-oxidizing atmosphere. A method for manufacturing a thick film circuit board, characterized by firing at medium high temperature.
(2)卑金属導体が、銅、コバルト、ニッケル、鉄であ
ることを特徴とする特許請求の範囲第(1)項記載の厚
膜回路基板の製造方法。
(2) The method for manufacturing a thick film circuit board according to claim (1), wherein the base metal conductor is copper, cobalt, nickel, or iron.
JP60136404A 1985-06-21 1985-06-21 Manufacture of thick film circuit substrate Pending JPS61294847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60136404A JPS61294847A (en) 1985-06-21 1985-06-21 Manufacture of thick film circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60136404A JPS61294847A (en) 1985-06-21 1985-06-21 Manufacture of thick film circuit substrate

Publications (1)

Publication Number Publication Date
JPS61294847A true JPS61294847A (en) 1986-12-25

Family

ID=15174371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60136404A Pending JPS61294847A (en) 1985-06-21 1985-06-21 Manufacture of thick film circuit substrate

Country Status (1)

Country Link
JP (1) JPS61294847A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153702A (en) * 1980-04-30 1981-11-27 Matsushita Electric Ind Co Ltd Glazed resistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153702A (en) * 1980-04-30 1981-11-27 Matsushita Electric Ind Co Ltd Glazed resistor

Similar Documents

Publication Publication Date Title
US4122232A (en) Air firable base metal conductors
US4072771A (en) Copper thick film conductor
US4894184A (en) Low-temperature burnt conductive paste and method of manufacturing printed circuit board
JPS60500837A (en) thick film resistor circuit
JPS6166303A (en) Conductive paste for thick film
JPH0213803B2 (en)
US4311730A (en) Thick film circuits
JPS61294847A (en) Manufacture of thick film circuit substrate
JPH0341997B2 (en)
JPH0797447B2 (en) Metallized composition
JPS6055961B2 (en) Method for manufacturing alumina circuit board with glaze low antibody
JPH0349108A (en) Copper conductor composition material
JPS6025294A (en) Method of producing circuit board
JPS63181496A (en) Manufacture of thick film circuit board
JPS63301405A (en) Manufacture of low temperature baking type conductive paste and circuit board
JPS5873185A (en) Method of producing thick film circuit board
JPH0224907A (en) Paste component and pattern formation using the same
JPS63181497A (en) Manufacture of thick film circuit board
JPS6318356B2 (en)
JPS5915481B2 (en) Manufacturing method of glaze resistor
JPH0554718B2 (en)
JPH0319681B2 (en)
JPS63213311A (en) Silicide resistance material
JPS63213312A (en) Glaze resistance material
JPS62209801A (en) Glaze resistor paste