JPS61294749A - Charged beam irradiating apparatus - Google Patents

Charged beam irradiating apparatus

Info

Publication number
JPS61294749A
JPS61294749A JP13614785A JP13614785A JPS61294749A JP S61294749 A JPS61294749 A JP S61294749A JP 13614785 A JP13614785 A JP 13614785A JP 13614785 A JP13614785 A JP 13614785A JP S61294749 A JPS61294749 A JP S61294749A
Authority
JP
Japan
Prior art keywords
wiring
electron
electron beam
irradiation
secondary electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13614785A
Other languages
Japanese (ja)
Other versions
JPH0654648B2 (en
Inventor
Masahiro Yoshizawa
吉沢 正浩
Akira Kikuchi
章 菊池
Yasushi Wada
康 和田
Akihira Fujinami
藤波 明平
Nobuo Shimazu
信生 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60136147A priority Critical patent/JPH0654648B2/en
Priority to DE19863621045 priority patent/DE3621045A1/en
Priority to US06/878,015 priority patent/US5006795A/en
Publication of JPS61294749A publication Critical patent/JPS61294749A/en
Publication of JPH0654648B2 publication Critical patent/JPH0654648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enable dimensional measurement of pattern with low differential contrast between the wiring section and the space section and detection of inter-line leak or shortcircuit through contactless means by additionally providing second beam irradiating means having lower acceleration voltage than charged beam. CONSTITUTION:At first, second electron beam 2 is deflected and irradiated onto the wiring to be measured. The electron accelerating voltage is set such that the secondary electron emission rate 8 will be lower than 1 to realize negative charge-up thus to increase emission of secondary electrons when compared with other portions. Then first electron beam 1 will perform line scanning while applying saw-tooth or triangular wave onto the deflection electrode 3 where the acceleration voltage of first electron beam is such that 8 is approximately same to 1. Although, secondary electrons are also emitted through irradiation of second electron beam 2, secondary electron signal to be produced through irradiation of second electron beam 2 is constant when irradiating on same wiring resulting in constant quantity of signal as background level.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主として製造途中のVLSIなどの電子デバ
イスの微細なバタン寸法を、荷電ビームを用いて測定す
る寸法測定装置または電子デバイスの試験を非接触で行
う試験装置の荷電ビーム照射装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention mainly relates to a dimension measuring device that uses a charged beam to measure minute dimensions of electronic devices such as VLSIs that are in the process of being manufactured, or to testing of electronic devices. This invention relates to a charged beam irradiation device for non-contact testing equipment.

〔従来の技術〕[Conventional technology]

VLSIの製造工程ではレジストあるいは配線等の寸法
の管理が重要であり、バタンか微細になるとともに走査
形電子顕微鏡を用いてバタン寸法を測定する装置が用い
られるようになってきた。
In the VLSI manufacturing process, it is important to control the dimensions of resists, wiring, etc., and as battens become finer, devices that measure batten dimensions using a scanning electron microscope have come into use.

このような装置としては、特公昭59−781に示され
た装置がある。この装置はCRT画面上で試料の走査像
あるいは二次電子信号波形に重ねて、2つの可動位置マ
ーカを表示させ、上記マーカの間隔から試料寸法等・の
距離を算出するものである。
As such a device, there is a device shown in Japanese Patent Publication No. 59-781. This device displays two movable position markers superimposed on a scanned image of a sample or a secondary electron signal waveform on a CRT screen, and calculates distances such as sample dimensions from the interval between the markers.

上記方式では、まず走査像を見ながら測定者が測定した
い目的のバタンを選び出し、電子ビームをライン走査モ
ードに切替える。それにより得られる二次電子信号波形
に重なって2本のマーカが画面に表示される。上記マー
カが測定したい位置にくるように測定者がマーカの位置
を調節した後、上記マーカの間隔と倍率とから距離を算
出する構成になっている。従って各測定点ごとに、測定
者が測定場所を指定しなければならず、連続して多数点
を自動測定することができなかった。
In the above method, the measurer first selects the desired button to measure while looking at the scanned image, and then switches the electron beam to line scanning mode. Two markers are displayed on the screen overlapping the resulting secondary electron signal waveform. After the measurer adjusts the position of the marker so that the marker is at the desired measurement position, the distance is calculated from the interval between the markers and the magnification. Therefore, the measurer had to specify the measurement location for each measurement point, making it impossible to automatically measure multiple points in succession.

自動でスライスレベルを設定して配線幅を測定するには
、二次電子信号量をデジタル値に変換し、配線部分を選
び出して測定する。従来から特開昭58−214259
に示されたように、外部から接触式手段によって電圧を
加え、電極配線から出る二次電子の量が電位によって異
なることを利用し、電極配線の電位の高低に対応して2
値化する方式がある。この場合には論理試験等の目的で
Ovの配線と5vの配線とを識別するというように、電
位が異なる配線や、電位が変化した配線を像観察するの
が目的である。従って外部から電圧を印加して測定する
ために、デジタル化する際にチャージアップなどによる
ノイズが生じにくい、しかし寸法測定を行う場合には、
二次電子放出量の材質による違いを、外部業ら電圧を印
加せずに測定するので、材質や照射条件によっては、配
線部分の二次電子信号量が下地材料の二次電子信号量に
ほぼ等しい第5図に示すような波形が得られることがあ
る。
To automatically set the slice level and measure the wiring width, convert the secondary electron signal amount into a digital value, select the wiring part, and measure it. Conventionally, JP-A-58-214259
As shown in Figure 2, by applying a voltage from the outside using a contact type means, and taking advantage of the fact that the amount of secondary electrons emitted from the electrode wiring differs depending on the potential, two
There is a method to convert it into a value. In this case, the purpose is to image-observe wires with different potentials or wires whose potentials have changed, such as distinguishing Ov wires from 5V wires for the purpose of logic tests or the like. Therefore, since measurements are made by applying a voltage from the outside, noise due to charge-up etc. is less likely to occur during digitization, but when measuring dimensions,
Differences in the amount of secondary electron emission depending on the material are measured without applying voltage from an external company, so depending on the material and irradiation conditions, the amount of secondary electron signal in the wiring section may be almost the same as the amount of secondary electron signal in the underlying material. An equivalent waveform as shown in FIG. 5 may be obtained.

第5図はS ioz上のpoΩy−S i配線を測定し
た例である。この場合には配線とSin、どの区別がで
きない、従って本来はLが配線でΩが5in2であるが
、Qが配線であると誤認識してしまうことがおこる。
FIG. 5 is an example of measuring poΩy-Si wiring on Sioz. In this case, it is impossible to distinguish between wiring and sin, and therefore, although L is originally a wiring and Ω is 5 in 2, it may be mistakenly recognized that Q is a wiring.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のようにSio、上にpoΩy−8i配線を行った
場合は配線とSio、との区別ができず、測定結果から
5intと配線とをそれぞれ誤認することが生じる。ま
たこの信号にスライスレベルを越えるノイズが加わると
、どこが測定したい部分か判らなくなり、測定したい個
所とは異なる間隔を測定してしまうという欠点があった
When poΩy-8i wiring is performed on top of Sio as described above, it is not possible to distinguish between the wiring and Sio, and it is possible to misidentify 5 int and wiring from the measurement results. Furthermore, if noise exceeding the slice level is added to this signal, it becomes difficult to determine which part is to be measured, and there is a drawback that the measurement is performed at a different interval from the part to be measured.

さらに、従来から完成した電子デバイスの配線に外部か
ら電圧を加えて走査形電子顕微鏡像を観察し、電圧コン
トラストにより動作試験を行うストロボ走査形電子顕微
鏡がある。しかしこの方法は外部から接触式手段によっ
て電圧を印加しなければならないという欠点があり、製
造途中のデバイスの試験には用いることができなかった
Furthermore, there is a strobe scanning electron microscope that applies an external voltage to the wiring of a completed electronic device, observes a scanning electron microscope image, and performs an operation test based on voltage contrast. However, this method has the disadvantage that voltage must be applied externally by contact means, and it cannot be used for testing devices that are in the process of being manufactured.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、材質によるコントラストの差が少ない場合に
、第2のビームを照射することにより、上記コントラス
トを強調してバタン寸法を測定し。
In the present invention, when there is little difference in contrast depending on the material, the second beam is irradiated to emphasize the contrast and measure the batten dimension.

また外部から接触式の手段によって電圧を印加すること
なく、配線間の断線、リーク、ショートを非接触で検出
するものである。
Furthermore, disconnection, leakage, and short circuits between wirings can be detected in a non-contact manner without applying voltage by external contact means.

〔作用〕[Effect]

本発明は、電子デバイスの所定位置に荷電ビームを照射
する寸法測定装置または走査形電子顕微鏡において、新
たに上記荷電ビームよりも加速電圧が低い第2のビーム
照射手段を付加し、上記第2ビームによってコントラス
トの差を強調して、被測定デバイスの各試験を行うよう
に装置の構成をしたものである。
The present invention provides a dimension measuring device or a scanning electron microscope that irradiates a charged beam to a predetermined position of an electronic device, in which a second beam irradiation means having an acceleration voltage lower than that of the charged beam is newly added, and the second beam The apparatus is configured so that each test of the device under test is performed by emphasizing contrast differences.

〔実施例〕〔Example〕

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による荷電ビーム照射装置の一実施例を
示した構成図、第2図は上記実施例の測定原理の説明図
で、(a)は測定パタンを示す図、(b)は第1の電子
ビームを照射したときの二次電子信号量の変化を示す図
、(C)は第2の電子ビームを照射したときの二次電子
信号量の変化を示す図、第3図は本発明の装置を用いて
電子デバイスの試験を行う手順の説明図、第4図は上記
試験の測定原理を示す図、(a)は線間にショート、リ
ークがない場合の二次電子信号量の変化、(b)はショ
ートがある場合の二次電子信号量の変化を示す図である
。第1図においては第1の電子ビーム1の鏡筒につき説
明するが、第2の電子ビーム2の鏡筒も同様の構造を備
えている。3は電子ビームを偏向させる丸めの偏向電極
、4は偏向電源、5は二次電子検出器、6はアンプ、7
はCRTである。8は電子デバイス(ウェハ)、9は電
子デバイスを搭載するステージ、10はビームの焦点を
合わせるための対物レンズ、11は対物レンズ電源、1
3はビームを加速する加速電源である。14はビームの
オン・オフを行うためのブランカ、15はブランキング
電源、12はブランキングアパーチャーである。16は
静電レンズ、17は静電レンズ電源である。上記装置を
動作させるには、まず測定したい配線に第2の電子ビー
ム2を偏向して照射する。
FIG. 1 is a block diagram showing an embodiment of a charged beam irradiation device according to the present invention, and FIG. 2 is an explanatory diagram of the measurement principle of the above embodiment, where (a) is a diagram showing a measurement pattern, and (b) is a diagram showing a measurement pattern. A diagram showing the change in the amount of secondary electron signal when irradiated with the first electron beam, (C) is a diagram showing the change in the amount of secondary electron signal when irradiated with the second electron beam, and FIG. An explanatory diagram of the procedure for testing electronic devices using the apparatus of the present invention, Figure 4 is a diagram showing the measurement principle of the above test, (a) is the amount of secondary electron signal when there is no short circuit or leak between the lines. (b) is a diagram showing a change in the amount of secondary electron signal when there is a short circuit. Although the lens barrel for the first electron beam 1 will be explained in FIG. 1, the lens barrel for the second electron beam 2 also has a similar structure. 3 is a round deflection electrode that deflects the electron beam, 4 is a deflection power source, 5 is a secondary electron detector, 6 is an amplifier, 7
is a CRT. 8 is an electronic device (wafer), 9 is a stage on which the electronic device is mounted, 10 is an objective lens for focusing the beam, 11 is an objective lens power supply, 1
3 is an acceleration power source that accelerates the beam. 14 is a blanker for turning on and off the beam, 15 is a blanking power supply, and 12 is a blanking aperture. 16 is an electrostatic lens, and 17 is an electrostatic lens power source. To operate the above device, first, the second electron beam 2 is deflected and irradiated onto the wiring to be measured.

この電子ビームの加速電圧は、二次電子放出比δが1よ
りも小さい加速電圧に設定することにより負にチャージ
アップさせる。これによって他の場所よりも二次電子放
出量を多くする。つぎに第1の電子ビーム1を、偏向電
極3に鋸歯状波または三角波の電圧を加えてライン走査
する。第1の電子ビームの加速電圧はδ=1に近い加速
電圧を用いる。この時発生する二次電子を二次電子検出
器5で検出し、第1の電子ビーム1のライン走査に対す
る二次電子信号の変化としてCRT7に表示する構成に
なっている。このとき、第2の電子ビーム2の照射によ
っても二次電子が発生するが。
The accelerating voltage of this electron beam is set to an accelerating voltage where the secondary electron emission ratio δ is smaller than 1 to charge up the electron beam negatively. This increases the amount of secondary electron emission compared to other locations. Next, the first electron beam 1 is line-scanned by applying a sawtooth wave or triangular wave voltage to the deflection electrode 3. As the acceleration voltage of the first electron beam, an acceleration voltage close to δ=1 is used. The secondary electrons generated at this time are detected by a secondary electron detector 5 and displayed on the CRT 7 as a change in the secondary electron signal with respect to the line scanning of the first electron beam 1. At this time, secondary electrons are also generated by the irradiation with the second electron beam 2.

同一配線を照射している場合には第2の電子ビーム2の
照射による二次電子信号は一定であるので。
If the same wiring is irradiated, the secondary electron signal due to irradiation with the second electron beam 2 is constant.

バックグランドレベルとして一定の信号量が得られるこ
とになる。第1の電子ビーム1の照射(ライン走査)に
よる二次電子信号だけを求めるには、第1の電子ビーム
1を照射しない場合の第2の電子ビーム2を照射したと
きのバックグランドレベルを求めておき、この信号量を
差引くか、または第1と第2の電子ビーム1.2をパル
スにして交互に照射し、第1の電子ビーム1を照射する
タイミングに合わせて二次電子を検出すればよい。バタ
ン寸法の測定方法は従来のものと同じである。
A constant amount of signal is obtained as a background level. To obtain only the secondary electron signal due to irradiation (line scanning) with the first electron beam 1, find the background level when irradiating with the second electron beam 2 without irradiating with the first electron beam 1. Then, either subtract this signal amount or alternately irradiate the first and second electron beams 1.2 as pulses, and detect the secondary electrons in accordance with the timing of irradiation with the first electron beam 1. do it. The method of measuring the baton dimensions is the same as the conventional method.

すなわち、第1の電子ビーム1のライン走査に対する二
次電子信号量の変化から配線のエツジを検出し、そのパ
ルス幅と倍率から配線の寸法を算出する。パルス幅を求
めるには、スライスレベルを設定して二次電子信号を2
値化して行う方法の他に、2本のスライスレベルを設定
して二次電子信号を3値化したのち、該3値化信号の並
び方で異物の付着、ノイズ等による信号と、エツジ部分
の信号を区別し補正してパルス幅を測定する先行出願に
述べた方法がある。
That is, the edge of the wiring is detected from the change in the amount of secondary electron signal with respect to the line scanning of the first electron beam 1, and the dimension of the wiring is calculated from the pulse width and magnification. To find the pulse width, set the slice level and divide the secondary electron signal into two
In addition to the digitization method, after digitizing the secondary electron signal by setting two slice levels, the way the ternary signals are arranged can be used to distinguish between signals due to adhesion of foreign matter, noise, etc., and signals due to edge portions. There are methods described in prior applications that distinguish and correct signals to measure pulse widths.

つぎに上記実施例の測定原理を説明する。二次電子放出
比δは一般に加速電圧が数百V程度のところでピークを
もち、それ以上の加速電圧領域では加速電圧の増加とと
もに減少する。δ〉1ならば入射電子よりも多くの二次
電子が放出されるので、照射された物質は正に、δく1
ならば負にチャージアップする。δ=1ならばチャージ
アップは生じない、試料全体の像観察のためには、通常
チャージアップしない加速電圧を選んで走査形電子顕微
鏡fR察等を行っている。加速電圧や材質によっては、
配線と下地材料の二次電子放出量に差が生じないために
、配線と下地材料との区別がつかず配線幅の測定ができ
ないことがある。この場合に第2のビームを照射して測
定する。第2図は上記原理を説明するための図である。
Next, the measurement principle of the above embodiment will be explained. The secondary electron emission ratio δ generally has a peak when the accelerating voltage is about several hundred volts, and decreases as the accelerating voltage increases in the accelerating voltage region higher than that. If δ>1, more secondary electrons will be emitted than incident electrons, so the irradiated material will have exactly δ×1
If so, charge up negatively. If δ=1, charge-up will not occur. In order to observe the image of the entire sample, an accelerating voltage that does not cause charge-up is usually selected to perform fR observation using a scanning electron microscope. Depending on the accelerating voltage and material,
Since there is no difference in the amount of secondary electron emission between the wiring and the underlying material, the wiring and the underlying material may not be distinguishable and the wiring width may not be measured. In this case, the measurement is performed by irradiating the second beam. FIG. 2 is a diagram for explaining the above principle.

(a)は測定バタンを示した図であり1点描部分が配線
を示している。(b)および(c)は第1の電子ビーム
のライン走査に対する二次電子信号量の変化を示してい
る。(b)は第1の電子ビームだけを照射した場合であ
り、配線と下地材料の二次電子放出量に差が生じていな
い。この状態で(a)に示したバタンのA点に第2の電
子ビームを照射する。
(a) is a diagram showing a measurement button, and each dotted part shows the wiring. (b) and (c) show changes in the amount of secondary electron signals with respect to line scanning of the first electron beam. (b) shows the case where only the first electron beam is irradiated, and there is no difference in the amount of secondary electron emission between the wiring and the underlying material. In this state, a second electron beam is irradiated to point A of the baton shown in (a).

ここで寸法を測定する第1のビームは低加速電圧であり
、第2のビームの加速電圧は負にチャージアップする高
加速電圧とする。第2のビーム照射によってA点を含む
配線は負にチャージアップし、二次電子を多く発生する
ために(c)に示すような第1の電子ビームのライン走
査に対する二次電子信号量の変化が得られる。従って配
線と下地材料との区別が容易になる。
Here, the first beam for measuring dimensions has a low accelerating voltage, and the accelerating voltage of the second beam has a high accelerating voltage that is negatively charged up. Due to the second beam irradiation, the wiring including point A is negatively charged up and many secondary electrons are generated, so that the amount of secondary electron signal changes with respect to the line scanning of the first electron beam as shown in (c). is obtained. Therefore, it becomes easy to distinguish between the wiring and the underlying material.

上記装置では配線部分を第2のビームで照射すると同時
に第1のビームでライン走査を行っており、第1および
第2の2本のビームを同一個所に照射する必要がある。
In the above-mentioned apparatus, line scanning is performed with the first beam at the same time as the wiring portion is irradiated with the second beam, and it is necessary to irradiate the same location with the two beams, the first and second beams.

その技術は特願昭59−8614〜6に開示されている
。ここで第2のビームを照射してチャーシア゛ツブさせ
た後に、このビーム照射を停止し、第1のビームをライ
ン走査して寸法測定を行ってもよい。なお、上記測定と
同一目的を達成するために、単一の鏡筒で加速電圧を切
換えて照射することも考えられる。加速電圧を変える方
法では照射位置やレンズの調整具合が加速電圧によって
変るので、あらかじめ最適値を求めておき、加速電圧を
切換えると同時に切換える。また試料として下地材料の
上に金属配線がある試料を例に説明したが、絶縁膜の上
のレジスト、金属膜の上のレジスト等のバタンであって
もよいし、完成品でなく製造途中のウェハであってもよ
い。
The technique is disclosed in Japanese Patent Application No. 59-8614-6. Here, after the second beam is irradiated to cause the chartreshape to collapse, this beam irradiation may be stopped, and the first beam may be line-scanned to perform dimension measurement. In addition, in order to achieve the same purpose as the above measurement, it is also possible to switch the acceleration voltage and irradiate using a single lens barrel. In the method of changing the accelerating voltage, the irradiation position and the adjustment of the lens change depending on the accelerating voltage, so the optimum value is determined in advance and changed at the same time as the accelerating voltage is switched. In addition, although the sample was explained using a sample with metal wiring on a base material, it may also be a resist on an insulating film, a resist on a metal film, etc. It may also be a wafer.

また、ここでは第1および第2のビームに電子ビームを
用いているが、第2のビームは負にチャージアップさせ
るためのビームであり、負に帯電した荷電ビームであれ
ばよい。第1のビームは検出用であり、ビーム照射によ
ってチャージアップが生じにくいようなビーム電流が小
さい荷電ビームを用いてもよい。なおチャージアップ用
ビームの照射はスポットに限らず、配線に沿ったライン
走査、平面走査であってもよい。
Further, although electron beams are used as the first and second beams here, the second beam is a beam for negatively charging up, and any negatively charged charged beam may be used. The first beam is for detection, and a charged beam with a small beam current that does not easily cause charge-up due to beam irradiation may be used. Note that the charge-up beam irradiation is not limited to spot irradiation, and may be line scanning along wiring or plane scanning.

第3図は本発明の装置を用いて電子デバイスの試験を行
う手順を説明するための図であり、点描部分は絶縁膜の
上の配線を示している0本例は線間のショートやリーク
を測定する方法であり、まず第2のビーム2を配線のA
点に照射する。ついで上記A点を含む配線およびその隣
の配線を第1のビーム1でLlのようにライン走査する
。第2のビーム2の加速電圧は負にチャージアップが生
じる高加速電圧であり、第1のビーム1はチャージアッ
プを生じない加速電圧である。第2のビームによってA
点を含む配線は負にチャージアップしており、もしも、
線間のショートやリークがなければ、A点の方が隣のB
点よりも電位が低くなり二次電子の放出量は多くなる。
Figure 3 is a diagram for explaining the procedure for testing an electronic device using the apparatus of the present invention. First, the second beam 2 is connected to A of the wiring.
Irradiate the point. Next, the wiring including the point A and the wiring adjacent thereto are line-scanned by the first beam 1 as indicated by Ll. The acceleration voltage of the second beam 2 is a high acceleration voltage that causes negative charge-up, and the acceleration voltage of the first beam 1 does not cause charge-up. A by the second beam
The wiring that includes the point is negatively charged up, so if
If there is no short circuit or leak between the lines, point A is closer to the neighboring point B.
The potential is lower than that at the point, and the amount of secondary electrons emitted increases.

しかしショートがあるとAとBとはほぼ同じ電位になり
、二次電子放出量もほぼ等しくなる。従って、線間のシ
ョートやリークがなければ第4図(a)のような二次電
子信号量の変化が得られ、ショートがあると第4図(b
)に示すような第1の電子ビームのライン走査に対する
二次電子信号量の変化が得られる。僅かなリークがある
場合には、上記A、Bの電位は等しくならないが、その
差は上記(a)に示すショートやリークがないものより
は小さくなる。この違いを検出するには、第2のビーム
照射がオンの時とオフの時の差を求めることにより、シ
ョートやリークを強調した信号を得ればよい。
However, if there is a short circuit, A and B will have approximately the same potential, and the amount of secondary electron emission will also be approximately equal. Therefore, if there is no short circuit or leak between the lines, the secondary electron signal amount will change as shown in Figure 4 (a), and if there is a short circuit, the change in the amount of secondary electron signal will be as shown in Figure 4 (b).
) The change in the amount of secondary electron signal with respect to the line scanning of the first electron beam is obtained. If there is a slight leak, the potentials of A and B will not be equal, but the difference will be smaller than when there is no short circuit or leak as shown in (a) above. In order to detect this difference, it is sufficient to obtain a signal that emphasizes shorts and leaks by determining the difference between when the second beam irradiation is on and when it is off.

ここで第1のビームの走査位置はA点の上を通る必要が
なく、第3図のL2のようにA点からずれていてもよい
Here, the scanning position of the first beam does not need to pass over point A, and may be shifted from point A as shown at L2 in FIG.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による荷電ビーム照射装置は、電子
デバイスの所定の位置に荷電ビームを照射する手段と、
上記照射位置の周辺個所に上記荷電ビームよりも加速電
圧が低い別の荷電ビームを走査して照射する手段と、上
記照射部分から発生した二次電子を検出する手段と、荷
電ビームの走査に対する二次電子信号量の変化を検出す
る手段とを備えたことにより、配線部分とスペース部分
のコントラスト差が少ないパタンの寸法測定、および非
接触手段による線間リークやショート等の検出を行うこ
とができる。
As described above, the charged beam irradiation apparatus according to the present invention includes means for irradiating a charged beam to a predetermined position of an electronic device;
means for scanning and irradiating a portion around the irradiation position with another charged beam having a lower acceleration voltage than the charged beam; means for detecting secondary electrons generated from the irradiated portion; and means for detecting secondary electrons generated from the irradiated portion; By being equipped with means for detecting changes in the amount of electronic signals, it is possible to measure the dimensions of patterns with a small contrast difference between the wiring part and the space part, and to detect leaks between lines, shorts, etc. by non-contact means. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による荷電ビーム照射装置の一実施例を
示す構成図、第2図は上記実施例の測定原理の説明図で
、(a)は測定パタンを示す図、(b)は第1の電子ビ
ーム照射時の二次電子信号量の変化を示す図、(C)は
第2の電子ビーム照射時の二次電子信号量の変化を示す
図、第3図は一本実施例を用いて電子デバイスの試験を
行う手順の説明図、第4図は上記試験の測定原理を示す
図で、(a)は線間にショート、リークがない場合の二
次電子信号量の変化、(b)はショートがある場合の二
次電子信号量の変化を示す図、第5図は従来技術の欠点
を説明するための図である。 1・・・荷電ビーム    2・・・荷電ビーム3・・
・偏向電極     5・・・二次電子検出器7・・・
陰極線管表示装置 8・・・電子デバイス特許出願人 
日本電信電話株式会社 代理人弁理士  中 村 純之助 矛1図 (C)」尤−H」1− 才3図 1’4図 IPS図
FIG. 1 is a configuration diagram showing an embodiment of a charged beam irradiation device according to the present invention, and FIG. 2 is an explanatory diagram of the measurement principle of the above embodiment, where (a) is a diagram showing a measurement pattern, and (b) is a diagram showing a measurement pattern. (C) is a diagram showing the change in the secondary electron signal amount during the second electron beam irradiation, and FIG. 3 is a diagram showing the change in the secondary electron signal amount during the second electron beam irradiation. Figure 4 is a diagram showing the measurement principle of the above test, where (a) shows the change in the amount of secondary electron signal when there is no short or leak between the lines, ( b) is a diagram showing changes in the amount of secondary electron signals when there is a short circuit, and FIG. 5 is a diagram for explaining the drawbacks of the prior art. 1... Charged beam 2... Charged beam 3...
・Deflection electrode 5...Secondary electron detector 7...
Cathode ray tube display device 8...Electronic device patent applicant
Junnosuke Nakamura, Patent Attorney for Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims]  電子デバイスの所定の位置に荷電ビームを照射する手
段と、上記照射位置の周辺個所に上記荷電ビームよりも
加速電圧が低い別の荷電ビームを走査して照射する手段
と、上記照射部分から発生した二次電子を検出する手段
と、荷電ビームの走査に対する二次電子信号量の変化を
検出する手段とを備えた荷電ビーム照射装置。
a means for irradiating a charged beam at a predetermined position of an electronic device; a means for scanning and irradiating another charged beam having an acceleration voltage lower than that of the charged beam at a location surrounding the irradiation position; A charged beam irradiation device comprising means for detecting secondary electrons and means for detecting a change in the amount of secondary electron signals in response to scanning of a charged beam.
JP60136147A 1985-06-24 1985-06-24 Pattern size measurement method Expired - Lifetime JPH0654648B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60136147A JPH0654648B2 (en) 1985-06-24 1985-06-24 Pattern size measurement method
DE19863621045 DE3621045A1 (en) 1985-06-24 1986-06-24 RADIANT GENERATING DEVICE
US06/878,015 US5006795A (en) 1985-06-24 1986-06-24 Charged beam radiation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60136147A JPH0654648B2 (en) 1985-06-24 1985-06-24 Pattern size measurement method

Publications (2)

Publication Number Publication Date
JPS61294749A true JPS61294749A (en) 1986-12-25
JPH0654648B2 JPH0654648B2 (en) 1994-07-20

Family

ID=15168406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60136147A Expired - Lifetime JPH0654648B2 (en) 1985-06-24 1985-06-24 Pattern size measurement method

Country Status (1)

Country Link
JP (1) JPH0654648B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127903A (en) * 2004-10-28 2006-05-18 Applied Materials Inc Scanning electron microscope and sample observation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201240A (en) * 1982-05-10 1983-11-24 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Electronic beam potential switching device
JPS59169133A (en) * 1983-03-16 1984-09-25 Hitachi Ltd Pattern correcting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201240A (en) * 1982-05-10 1983-11-24 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Electronic beam potential switching device
JPS59169133A (en) * 1983-03-16 1984-09-25 Hitachi Ltd Pattern correcting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127903A (en) * 2004-10-28 2006-05-18 Applied Materials Inc Scanning electron microscope and sample observation method

Also Published As

Publication number Publication date
JPH0654648B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
US4807159A (en) Apparatus and method for controlling irradiation of an electron beam at a fixed position in an electron beam tester system
US3678384A (en) Electron beam apparatus
US5006795A (en) Charged beam radiation apparatus
JPS59163506A (en) Electronic beam measuring device
JPH0562700B2 (en)
JP3101114B2 (en) Scanning electron microscope
CA1254670A (en) Method and apparatus for identifying points on a specimen having a defined time-dependent signal
JPS6231931A (en) Electron beam radiation device and test and measurement by said device
JP3751841B2 (en) Inspection apparatus using electron beam and inspection method using electron beam
JP3494068B2 (en) Charged particle beam equipment
JPS61294749A (en) Charged beam irradiating apparatus
JP3420037B2 (en) Dimension measuring device and dimension measuring method
EP0050475B1 (en) Scanning-image forming apparatus using photo electric signal
US6326798B1 (en) Electric beam tester and image processing apparatus
JP6995648B2 (en) Measurement inspection equipment
JPS6256807A (en) Electron beam length measuring instrument
US4733075A (en) Stroboscopic scanning electron microscope
JPS62219534A (en) Method and apparatus for measurement of signal related to time during which particle sonde is used
JPS61294748A (en) Charged beam irradiating apparatus
JPS61220261A (en) Method and apparatus for exciting subject zone of sample surface
JPS62112336A (en) Testing process of electronic device and apparatus thereof
JP2571110B2 (en) Pattern dimension measuring method and apparatus using charged beam
JPH10213427A (en) Method for measuring size of circuit pattern
JPS594298Y2 (en) Sample equipment such as scanning electron microscopes
US6459283B1 (en) Method and system for testing an electrical component

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term