JPS61294382A - Method and device for measuring direction with high precision - Google Patents

Method and device for measuring direction with high precision

Info

Publication number
JPS61294382A
JPS61294382A JP13592685A JP13592685A JPS61294382A JP S61294382 A JPS61294382 A JP S61294382A JP 13592685 A JP13592685 A JP 13592685A JP 13592685 A JP13592685 A JP 13592685A JP S61294382 A JPS61294382 A JP S61294382A
Authority
JP
Japan
Prior art keywords
clock
receiving station
frequency
phase difference
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13592685A
Other languages
Japanese (ja)
Other versions
JPH0410990B2 (en
Inventor
Yuji Sugimoto
裕二 杉本
Hitoshi Kiuchi
等 木内
Masato Imae
理人 今江
Noriyuki Kono
河野 宣之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RADIO RES LAB
Original Assignee
RADIO RES LAB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RADIO RES LAB filed Critical RADIO RES LAB
Priority to JP13592685A priority Critical patent/JPS61294382A/en
Publication of JPS61294382A publication Critical patent/JPS61294382A/en
Publication of JPH0410990B2 publication Critical patent/JPH0410990B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PURPOSE:To measure the distance from a radio wave source to a receiving station in a short period by separating and extracting a clock of a modulated code of the objective radio wave source and measuring the phase difference between this clock and clock of the receiving station. CONSTITUTION:A received radio wave is allowed to pass a band pass filter 6 and a frequency converter 7 and has the clock of the modulated code extracted by a modulated clock reproducer 8. The phase difference between this clock and a signal of a reference oscillator 10 of a receiving station 2 is measured with a phase difference measurer 9 to determine the distance between the receiving station and an artificial satellite. Since a Doppler shift frequency to be measured is very lower is comparison with said clock frequency, the clock frequency is reduced while keeping the phase difference in a frequency converter 91 and is converted to an intermediate frequency signal subjected to Doppler shift. This signal and the intermediate frequency signal generated by the reference oscillator in the receiving station are measured by a time interval counter 92 to obtain time intervals.

Description

【発明の詳細な説明】 (1)発明の属する技術分野の説明 本発明は測距、測位及び時刻同期に関するものである。[Detailed description of the invention] (1) Description of the technical field to which the invention pertains The present invention relates to ranging, positioning, and time synchronization.

(2)従来の技術の説明 従来用いられている光学測距装置は、見通し外の基線あ
るいは数十キロメートルを超す基線の場合、教区間に分
割しなければならず、測量誤差が積み重々って、測定精
度が悪くなる。また、測定誤差は天候に左右されやすい
という欠点がある。
(2) Explanation of the prior art The optical distance measuring devices used in the past have to be divided between parishes when the baseline is beyond line of sight or is longer than several tens of kilometers, resulting in accumulation of surveying errors. , measurement accuracy deteriorates. Another drawback is that measurement errors are easily affected by the weather.

一方、1000キロメートルを超す基線で用いられる超
長基線電波干渉計(VLB I )装置は、距離にほと
んど関係なく高精度で測量できるが、装置が大型で高価
であるという欠点がある。
On the other hand, a very long baseline radio interferometer (VLB I) device used for baselines exceeding 1,000 kilometers can perform measurements with high accuracy almost regardless of distance, but has the disadvantage that the device is large and expensive.

地球局からレーザー光を発射し、人工衛星からの反射光
を受信し、往復に要した時間から距離を測定し測位に用
いる、S L R(5atellite LaserR
anding )装置が運用されている。この方法では
、大型レーザ発振器が必要なことから装置が大きくなシ
、高価である。また、ビーム幅が狭いため、人工衛星の
ボインティングが難しく、雨天での運用が不可能で、更
に大気通過による屈折の影響による誤差が大きいという
欠点がある。
SLR (5atellite Laser
anding) equipment is in operation. This method requires a large laser oscillator, making the device large and expensive. In addition, the beam width is narrow, making it difficult to point the satellite, making it impossible to operate in rainy weather, and causing large errors due to the effects of refraction as it passes through the atmosphere.

アメリカ合衆国で打ち上げられた、ナプスタ(Navs
tar ) G P S (Global Posit
ioning System)衛星を利用した測位・時
刻同期装置として、拡散変調コードを使用したものが実
用化されているが、高精度測位用の拡散変調コードは軍
用ということで、一般には公開されていない。拡散変調
コードを必要としないものとして、変調符号のクロック
再生型と相関型とがある。前者は指向性アンテナを用い
て複数のGP8衛星を分離しているため、移動性に問題
がある。また、後者は無指向性アンテナを用いているが
、相関処理ソフトウェア、搬送波の波長ごとに現れるあ
いまいさの除去及びアンテナ近傍での反射の影響の除去
が必要になるため、測定に時間がかかり処理が複雑(な
る。
Napsta (Navs) launched in the United States
tar ) GPS (Global Posit
(ioning system) satellite-based positioning and time synchronization devices that use spread modulation codes have been put into practical use, but spread modulation codes for high-precision positioning are for military use and are not available to the public. There are clock recovery type and correlation type modulation codes that do not require a spread modulation code. The former uses directional antennas to separate multiple GP8 satellites, so there is a problem with mobility. In addition, although the latter uses an omnidirectional antenna, it requires correlation processing software, removal of ambiguity that appears for each wavelength of the carrier wave, and removal of the effects of reflection near the antenna, so it takes time to process the measurement. is complicated.

(3)発明の目的 本発明の目的は、山岳地帯や離島にも容易に移動可能な
小型の装置で、上空の電波源からそれぞれの受信局まで
の距離を高精度で測定することにより、測位しようとす
る基線を教区間に分割することなく、また、天候に左右
されずに各地点間の距離を高精度で得ることである。
(3) Purpose of the Invention The purpose of the present invention is to provide a small device that can be easily moved to mountainous areas and remote islands, and is capable of positioning by measuring the distance from a radio wave source in the sky to each receiving station with high precision. The objective is to obtain the distance between each point with high precision without dividing the baseline between parishes and without being affected by the weather.

(4)発明の構成及び作用の説明 第1図は本発明の実施例である。人工衛星(1)からの
電波が2相PSK拡散変調されている場合を考える。こ
のような人工衛星は例えばアメリカ合衆国で打ち上げら
れた、ナプスタ(Navstar )GPS衛星がある
。受信局(2)のアンテナ(3)を地上のある点に置き
、その位置を「受信局の位置」という。アンテナ(3)
の二つの直交する軸、アジマス軸(方位)及びエレベー
ション軸(仰角)、をそれぞれ回転可能なように組み立
てられているモータ(4)に、人工衛星の位置から計算
された予測方向を指示することにより、アンテナ(3)
は受信しようとしている人工衛星(以下、「希望人工衛
星」という。)の方向に指向される。アンテナ(3)で
受信した電波は微弱なため、高周波増幅器(5)によシ
高周波増幅された後、他の電波源からの混信を除去する
ため、帯域フィルタ(6)によシ希望人工衛星の電波の
送信周波数帯域に制限し、周波数変換器(7)によシ中
間周波数に変換される。
(4) Description of structure and operation of the invention FIG. 1 shows an embodiment of the invention. Consider a case where radio waves from an artificial satellite (1) are subjected to two-phase PSK spread modulation. An example of such an artificial satellite is the Navstar GPS satellite launched in the United States. The antenna (3) of the receiving station (2) is placed at a certain point on the ground, and that position is called the "position of the receiving station." antenna (3)
The predicted direction calculated from the position of the satellite is instructed to the motor (4), which is assembled so that it can rotate two orthogonal axes, the azimuth axis (azimuth) and the elevation axis (elevation angle). By this, the antenna (3)
is directed in the direction of the artificial satellite from which the signal is to be received (hereinafter referred to as the "desired artificial satellite"). Since the radio waves received by the antenna (3) are weak, they are high-frequency amplified by the high-frequency amplifier (5) and then passed through the bandpass filter (6) to remove interference from other radio wave sources. The radio waves are limited to the transmission frequency band of the radio waves, and are converted to an intermediate frequency by a frequency converter (7).

次に、変調クロック再生器(8)により変調符号のクロ
ックを抽出する。変調クロック再生器(8)は、例えば
第2図のようなビット・シンクロナイザ(bit  5
ynchronizer )を利用したものを用いれば
、変調拡散コードを知る必要がなくクロックを抽出でき
る。
Next, a modulation clock regenerator (8) extracts the clock of the modulation code. The modulated clock regenerator (8) is, for example, a bit synchronizer (bit 5) as shown in FIG.
ynchronizer), the clock can be extracted without the need to know the modulation spreading code.

移動している人工衛星の場合、ドプラ偏移を受けている
ため、受信される搬送波及び再生されたクロックの周波
数は、人工衛星から送信される周波数とわずかに異なっ
ていて、各人工衛星により異なる。拡散されたデータ列
をD(t)、受信した搬送波をsin wtとすると、
1/2クロック遅延回路(81)により、2分の1クロ
ツクずらされた信号と元の信号とが、混合器(82)に
より混合されたときの信号0’(t)は、 冒        T O(t) = −D (t)・D(t−−)(cosw
−↓−cos(2wt−w半)) (1)になシ、受信
したクロックの角周波数をXとすると、 D(t)−D(t−T−)=sinX−t−sin2G
(t−工)となる。
For a moving satellite, it is subject to a Doppler shift, so the frequency of the received carrier and recovered clock will be slightly different from the frequency transmitted from the satellite and will vary for each satellite. . If the spread data string is D(t) and the received carrier wave is sin wt, then
When the signal shifted by 1/2 clock by the 1/2 clock delay circuit (81) and the original signal are mixed by the mixer (82), the signal 0'(t) is expressed as follows: t) = -D (t)・D(t--)(cosw
−↓−cos(2wt−whalf)) (1) If the angular frequency of the received clock is X, then D(t)−D(t−T−)=sinX−t−sin2G
(t-work).

変調クロック再生器(8)では、中心周波数が制御可能
な狭帯域PLL回路(83)を狭帯域フィルタとして利
用することによって、ドプラ偏移を受けたクロックの周
波数を予測し、中心周波数の初期値として端子(84)
から指示する。クロック周波数周辺のみについて考える
と、(1)式の第1項と(2)式の第2項の積だけにな
シ、 T     XT O(t)=−coswφ−cos(XT−一番一)(3
)になる。今、人工衛星からの信号が、w= 2nXに
設計しである場合、 w−(T/2) = 2nπ、  (X/2) ・(T
/2) =7’/2   (4)から 0 (t) =  (1/4) s in XT   
     (5)すなわち、ドプラ偏移を受けたクロッ
クが得られる。
The modulated clock regenerator (8) uses a narrowband PLL circuit (83) whose center frequency is controllable as a narrowband filter to predict the frequency of the clock that has undergone Doppler shift, and sets the initial value of the center frequency. As terminal (84)
give instructions from Considering only the area around the clock frequency, only the product of the first term of equation (1) and the second term of equation (2) becomes T XT O(t) = -coswφ-cos (XT - Ichibanichi) (3
)become. Now, if the signal from the artificial satellite is designed so that w = 2nX, then w-(T/2) = 2nπ, (X/2) ・(T
/2) =7'/2 (4) to 0 (t) = (1/4) s in XT
(5) That is, a clock subjected to Doppler shift is obtained.

以上の過程はD(t)とl)(t−(T/2) )とが
同一の人工衛星の場合であるが、次に同一搬送波周波数
で異なる拡散コードを用いている人工衛星が複数。
The above process is for the case where D(t) and l)(t-(T/2)) are the same satellite, but then there are multiple satellites using the same carrier frequency and different spreading codes.

個ある場合を考える。アンテナが小型の場合はビ−ム幅
が広いため、希望人工衛星以外の人工衛星(以下、「非
希望人工衛星」という。)からの電波も受信され得る。
Consider the case where there are several. If the antenna is small, the beam width is wide, so radio waves from satellites other than the desired satellite (hereinafter referred to as "non-desired satellites") can also be received.

このだめ、ある人工衛星からの信号と異なる人工衛星か
らの信号が(T/2)ずれたものとの積成分が現れる。
In this case, a product component of a signal from one artificial satellite and a signal from a different artificial satellite shifted by (T/2) appears.

この積成分は、2種の拡散コードの積になり周波数拡散
されるので、レベルが極めて小さくなる。
This product component becomes the product of two types of spreading codes and is frequency spread, so the level becomes extremely small.

以上のようにして、人工衛星の拡散コードをまったく用
いないで、希望人工衛星からの信号のクロックのみを取
り出すことができる。
As described above, only the clock signal from the desired satellite can be extracted without using the satellite's spreading code at all.

取り出された人工衛星からの信号のクロックと、受信局
(2)の基準発振器(10)の信号との位相差を位相差
測定器(9)を用いて測定することによシ、受信局と人
工衛星との間の距離を決定する。
By measuring the phase difference between the clock of the extracted signal from the satellite and the signal of the reference oscillator (10) of the receiving station (2) using a phase difference measuring device (9), the receiving station and Determine the distance between the satellites.

クロック周波数に対して測定しようとしているドプラ偏
移周波数は極めて小書いため、第3図に示すように周波
数変換器(91)で、位相差を保存したままでクロック
周波数を低下させ、ドプラ偏移を受けだ第2中間周波数
信号に変換する。この第2中間周波数信号と受検局内の
基準発振器で作成した第2中間周波数信号の信号とを、
タイム・インターバル・カウンタ(92)の、それぞれ
スタート入力端子(93)とストップ入力端子(94)
とに接続し、その時間間隔を測定する。
Since the Doppler shift frequency that we are trying to measure with respect to the clock frequency is extremely small, as shown in Figure 3, a frequency converter (91) is used to lower the clock frequency while preserving the phase difference, and calculate the Doppler shift. Converts the received signal into a second intermediate frequency signal. This second intermediate frequency signal and the second intermediate frequency signal generated by the reference oscillator in the station under test,
Start input terminal (93) and stop input terminal (94) of the time interval counter (92), respectively.
and measure the time interval.

雑音が精度に与える影響を軽減するため、得られた時間
間隔を数十ないし数百回積分する。ここで得られた時間
間隔の積分値に光速を乗じたものは、希望人工衛星から
受信局までの真の距離(d)のみではなく、希望人工衛
星に搭載されている時計と受信局の時計との差、大気及
び電離層通過による電波の遅延等が含まれているため、
「擬似距離」と呼ぶ。数秒間の測定によシ、擬似距離は
数ミリメートルの精度で測定可能である。
To reduce the effect of noise on accuracy, the resulting time interval is integrated several tens to hundreds of times. The integral value of the time interval obtained here multiplied by the speed of light is not only the true distance (d) from the desired satellite to the receiving station, but also the clock on board the desired satellite and the clock of the receiving station. This includes the difference between the
This is called "pseudo distance." Pseudoranges can be measured with an accuracy of a few millimeters over a few seconds of measurement.

第5図に示すように、ある直交する座標系(X、y、z
)において、2受信局(2−1,2−2)の座標3成分
を、それぞれ(Xi、Yl、Zl)、 (X2゜Y2.
Z2)と表すと、2点間の差成分(ΔX、ΔY。
As shown in Figure 5, a certain orthogonal coordinate system (X, y, z
), the three coordinate components of the two receiving stations (2-1, 2-2) are respectively (Xi, Yl, Zl), (X2°Y2.
Z2) is the difference component (ΔX, ΔY) between two points.

ΔZ)は、 ΔX=X2−XI Δy=y2−Yl ΔZ=Z2−Zl で表される。これを測地学の分野では「基線」(ベース
ライン: Ba5eline )あるいは「基線ベクト
ル」と呼ぶ。仮に(Xi、 Yl、 Zl )を既知の
座標とすると、以上の方法で得た基線ベクトルから受信
局(2−2)の絶対座標が得られ、測位がなされたこと
になる。
ΔZ) is expressed as ΔX=X2−XI Δy=y2−Yl ΔZ=Z2−Zl. In the field of geodesy, this is called a "baseline" (baseline) or "baseline vector." Assuming that (Xi, Yl, Zl) are known coordinates, the absolute coordinates of the receiving station (2-2) can be obtained from the baseline vector obtained by the above method, and positioning has been performed.

第4図は本発明を利用した測位の概念図である。まず、
基地局(21)で作成した観測スケジュールを2受信局
(2−1,2−2)に有線、無線あるいはその他の方法
で連絡する。観測スケジュールを受は取った2受信局(
2−1,2−2)は測量しようとしている目標地に移動
し、方向の異なる4個の人工衛星(1−1〜1−4)か
らの電波をそれぞれの受信局アンテナの方向を順次同一
スケジュールで制御し同時に受信し、各人工衛星と受信
局間の擬似距離を上記の方法によシ測定する。その後各
受信局で得られた4個の人工衛星までの擬似距離データ
(d11〜d24)を基地局に転送し、別途得た人工衛
星の位置情報、大気及び電離層通過による電波の遅延デ
ータ等を用いて測地学で周知の方法によシ処理すること
によシ、基線長100キロメートルの場合、2受信局間
の基線ベクトルを数センチメートルの精度で決定でき、
また、受信局内の基準発振器(10)の時刻差を0.1
ナノ秒程度で求められる。
FIG. 4 is a conceptual diagram of positioning using the present invention. first,
The observation schedule created by the base station (21) is communicated to the two receiving stations (2-1, 2-2) by wire, wireless or other methods. The two receiving stations that received the observation schedule (
2-1, 2-2) moves to the target location to be surveyed, and sequentially receives radio waves from four artificial satellites (1-1 to 1-4) in different directions, with each receiving station antenna pointing in the same direction. The satellites are controlled by a schedule and received simultaneously, and the pseudo distances between each satellite and the receiving station are measured using the method described above. After that, the pseudorange data (d11 to d24) to the four satellites obtained at each receiving station is transferred to the base station, and the separately obtained satellite position information, radio wave delay data due to passage through the atmosphere and ionosphere, etc. If the baseline length is 100 kilometers, the baseline vector between two receiving stations can be determined with an accuracy of a few centimeters.
Also, the time difference of the reference oscillator (10) in the receiving station is set to 0.1
It can be determined in about nanoseconds.

受信局内のアンテナ(3)から位相差測定器(9)まで
には、当然〒延が生じ擬似距離測定の誤差になるた5め
、補正が必要である。特に狭帯域フィルタを運車する際
に、導通信号の周波数によって、遅延量が大きく異なり
、また、温度変化も大きい。本実施例ではクロックを抽
出するために、狭帯域PLL回路(83)を用いている
ので、ドプラ偏移量にかかわらず、すなわち、どの人工
衛星からの信号のクロックを再生する場合でも、同一遅
延量であり補正が容易である。遅延較正器(11)によ
って、高周波増幅器(5)の入力端から既知の信号を入
力し、位相差測定器(9)により高周波増幅器(5)か
ら位相差測定器(9)までの遅延を測定する。まだ、ア
ンテナにおける遅延は、アンテナ・給電系組立図から計
算できる。
Naturally, there is a delay between the antenna (3) in the receiving station and the phase difference measuring device (9), which causes an error in pseudorange measurement5, so correction is necessary. Particularly when transporting a narrowband filter, the amount of delay varies greatly depending on the frequency of the conductive signal, and temperature changes are also large. In this embodiment, a narrowband PLL circuit (83) is used to extract the clock, so the delay is the same regardless of the amount of Doppler shift, that is, no matter which satellite is regenerating the clock of the signal. It is easy to correct. The delay calibrator (11) inputs a known signal from the input terminal of the high frequency amplifier (5), and the phase difference measuring device (9) measures the delay from the high frequency amplifier (5) to the phase difference measuring device (9). do. Still, the delay in the antenna can be calculated from the antenna/feed system assembly diagram.

前述の電離層補正は、周知のとおシミ離層通過による電
波の遅延量は周波数の関数であることを利用して、同一
人工衛星から送信されている2個の異なる周波数の電波
に対し、それぞれ擬似距離測定を行い、擬似距離差から
電離層遅延量を補正する方法がある。また、周知のとお
シ、乾燥大気の遅延については、地上で測定した温度、
湿度及び気圧から数式により近似的に求めることができ
、水蒸気による遅延については、2周波水蒸気ラジオメ
ータ等による補正が可能である。
The above-mentioned ionospheric correction uses the well-known fact that the amount of delay of radio waves due to passage through the outer layer is a function of frequency. There is a method of measuring distance and correcting the amount of ionospheric delay from the pseudo-range difference. In addition, as is well known, regarding the delay of dry air, the temperature measured on the ground,
It can be approximately determined using a mathematical formula from humidity and atmospheric pressure, and the delay due to water vapor can be corrected using a two-frequency water vapor radiometer or the like.

(5)効果の説明 以上のように、この装置によれば、中断点を設定するこ
となしに、複雑な地形の2点間の距離を極めて高精度で
測定可能である。本発明は、複数の電波信号源を分離で
きるため、アンテナを小型化することが可能であシ、装
置の重量、体積、費用を軽減したシステムが構成可能で
ある。したがって、地殻変動、測地、測位の各分野で広
く応用できる。
(5) Description of Effects As described above, according to this device, it is possible to measure the distance between two points on a complex terrain with extremely high accuracy without setting an interruption point. Since the present invention can separate a plurality of radio wave signal sources, it is possible to miniaturize the antenna, and it is possible to configure a system that reduces the weight, volume, and cost of the device. Therefore, it can be widely applied in the fields of crustal deformation, geodetic, and positioning.

また、受信局内の基準発振器の時刻差がわかるだめ、時
刻同期、時刻比較の分野にも利用できる
It can also be used in the fields of time synchronization and time comparison, since it allows you to know the time difference between the reference oscillators in the receiving station.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のブロック図、第2図は第1図
の変調クロック再生器のブロック図、第3図は第1図の
位相差測定器のブロック図、第4図は本発明を利用した
測位の概念図、第5図は基線ベクトルの説明図である。 特許出願人 郵政省電波研究所長 第1図 第2図 第6図
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a block diagram of the modulation clock regenerator shown in Fig. 1, Fig. 3 is a block diagram of the phase difference measuring device shown in Fig. 1, and Fig. 4 is a block diagram of the main A conceptual diagram of positioning using the invention, FIG. 5 is an explanatory diagram of a baseline vector. Patent applicant Director of Radio Research Institute, Ministry of Posts and Telecommunications Figure 1 Figure 2 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 複数の電波源から発射される電波を小型で広い指向性の
アンテナを用いて受信し、変調信号のコードを使用せず
に、目的の電波源の変調符号のクロック(周期的パルス
列)のみを変調クロック再生器を用いて分離・抽出し、
それと受信局のクロックとの位相差を測定することによ
り、電波源から受信局までの距離を短時間で測定するこ
とを特徴とする高精度測位方法及び装置。
Radio waves emitted from multiple radio wave sources are received using a small and wide directional antenna, and only the clock (periodic pulse train) of the modulation code of the target radio wave source is modulated without using the code of the modulation signal. Separate and extract using a clock regenerator,
A high-precision positioning method and device characterized by measuring the distance from a radio wave source to a receiving station in a short time by measuring the phase difference between the clock and the clock of the receiving station.
JP13592685A 1985-06-24 1985-06-24 Method and device for measuring direction with high precision Granted JPS61294382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13592685A JPS61294382A (en) 1985-06-24 1985-06-24 Method and device for measuring direction with high precision

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13592685A JPS61294382A (en) 1985-06-24 1985-06-24 Method and device for measuring direction with high precision

Publications (2)

Publication Number Publication Date
JPS61294382A true JPS61294382A (en) 1986-12-25
JPH0410990B2 JPH0410990B2 (en) 1992-02-27

Family

ID=15163082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13592685A Granted JPS61294382A (en) 1985-06-24 1985-06-24 Method and device for measuring direction with high precision

Country Status (1)

Country Link
JP (1) JPS61294382A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002534695A (en) * 1999-01-08 2002-10-15 トゥルーポジション,インコーポレイティド Calibration for wireless location systems
JP2007033095A (en) * 2005-07-25 2007-02-08 Japan Radio Co Ltd Method of determining antenna delay
US8320931B2 (en) 1999-01-08 2012-11-27 Trueposition, Inc. Geo-fencing in a wireless location system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158570A (en) * 1982-03-01 1983-09-20 マクロメトリクス・インコ−ポレイテツド Method and device for measuring base line vector by radio interferometer using radio signal from gps artificial satellite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158570A (en) * 1982-03-01 1983-09-20 マクロメトリクス・インコ−ポレイテツド Method and device for measuring base line vector by radio interferometer using radio signal from gps artificial satellite

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002534695A (en) * 1999-01-08 2002-10-15 トゥルーポジション,インコーポレイティド Calibration for wireless location systems
JP2010148112A (en) * 1999-01-08 2010-07-01 Trueposition Inc Calibration for wireless location system
US8320931B2 (en) 1999-01-08 2012-11-27 Trueposition, Inc. Geo-fencing in a wireless location system
US8509805B2 (en) 1999-01-08 2013-08-13 Trueposition, Inc. Advanced triggers for location-based service applications in a wireless location system
US8838139B2 (en) 1999-01-08 2014-09-16 Trueposition, Inc. Advanced triggers for location-based service applications in a wireless location system
US9288628B2 (en) 1999-01-08 2016-03-15 Trueposition, Inc. Advanced triggers for location-based service applications in a wireless location system
JP2007033095A (en) * 2005-07-25 2007-02-08 Japan Radio Co Ltd Method of determining antenna delay

Also Published As

Publication number Publication date
JPH0410990B2 (en) 1992-02-27

Similar Documents

Publication Publication Date Title
US5359332A (en) Determination of phase ambiguities in satellite ranges
US5944770A (en) Method and receiver using a low earth orbiting satellite signal to augment the global positioning system
Humphreys et al. On the feasibility of cm-accurate positioning via a smartphone's antenna and GNSS chip
US6492945B2 (en) Instantaneous radiopositioning using signals of opportunity
US5187485A (en) Passive ranging through global positioning system
US7466264B2 (en) System and method for providing assistance data within a location network
US6100842A (en) Chained location determination system
US7656352B2 (en) Troposphere corrections for ground based positioning systems
US7642956B2 (en) System and method for monitoring and surveying movements of the terrain, large infrastructures and civil building works in general, based upon the signals transmitted by the GPS navigation satellite system
JPH09505664A (en) System and method for accurate position determination using code-based carrier phase
US7272495B2 (en) System and method for inverse multilateration
US6434509B1 (en) Method and apparatus for measuring displacement of object using GPS
US5781151A (en) Interferometric trajectory reconstruction technique for flight inspection of radio navigation aids
US6104339A (en) All-terrain error correction
Connselman III et al. Backpack VLBI terminal with subscentimeter capability
CN104678078B (en) A kind of soil moisture calibration measuring method based on GPS reflected signal
JPS61294382A (en) Method and device for measuring direction with high precision
Tyler et al. Location and guidance for site‐specific management
AMAMI Enhancing Stand-Alone GPS Code Positioning Using Stand-Alone Double Differencing Carrier Phase Relative Positioning
JPS592870B2 (en) GPS gyroscope
JPS6395369A (en) Highly accurate position measurement method and apparatus therefor
Peres et al. GNSS Reflected Signal Acquisition with Galileo Signals
Stone et al. Carrier phase integer ambiguity resolution using dual frequency pseudolites
Khan et al. Statistical sensor fusion of ultra wide band ranging and real time kinematic satellite navigation
Aloi et al. A relative technique for characterization of PCV error of large aperture antennas using GPS data

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term