JPS6129378B2 - - Google Patents

Info

Publication number
JPS6129378B2
JPS6129378B2 JP8537178A JP8537178A JPS6129378B2 JP S6129378 B2 JPS6129378 B2 JP S6129378B2 JP 8537178 A JP8537178 A JP 8537178A JP 8537178 A JP8537178 A JP 8537178A JP S6129378 B2 JPS6129378 B2 JP S6129378B2
Authority
JP
Japan
Prior art keywords
parts
resin composition
thermoplastic resin
flame
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8537178A
Other languages
Japanese (ja)
Other versions
JPS5512163A (en
Inventor
Kazumasa Kamata
Isao Sasaki
Hiroshi Nakanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP8537178A priority Critical patent/JPS5512163A/en
Publication of JPS5512163A publication Critical patent/JPS5512163A/en
Publication of JPS6129378B2 publication Critical patent/JPS6129378B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐衝撃性、耐熱性、耐候性及び成形加
工性に優れた難燃性熱可塑性樹脂組成物に関す
る。 プラスチツク材料が自動車部品、電気部品、建
築材料、工業用部品等エンジニアリングプラスチ
ツクスとして多方面に使用されるためには耐衝撃
性、耐熱性、耐候性、易成形加工性等の性質を具
備していなければならない。しかるにこれら個々
の性質が優れた熱可塑性樹脂組成物は種々知られ
ているが、すべてを満足する様な樹脂組成物はい
まだ見出されていない。本発明者らはこのような
現状に鑑み、耐衝撃性、耐熱性、耐候性及び成形
加工性に優れた熱可塑性樹脂組成物を得るべく
種々検討を行ない、アクリル系ゴム成分を含有す
るビニル系共重合体、スチレン系樹脂及び芳香族
ポリカーボネート樹脂から成る熱可塑性樹脂組成
物が所望の性能を有することを見出し、先に特許
出願した。 ところで合成樹脂は上記熱可塑性樹脂組成物も
そうであるが、一般に易燃性であり、安全性の面
から用途が制限される。例えば電気部品、建築用
材料に用いられる樹脂組成物はUL規格に示され
るような高度な難燃性が要求される。従来合成樹
脂の難燃化にはハロゲン含有化合物、リン含有化
合物あるいはこれら化合物を併用して添加する方
法が知られているが一応の難燃化の目的を果し得
てもその合成樹脂本来の物性を著しく低下させた
り、使用合成樹脂との相溶性の問題、さらには成
形加工時における昇華や発臭等の作業性不良を起
こしやすくなるという種種の欠点がある。 本発明者らはこのような現状をふまえ、更に難
燃性熱可塑性樹脂組成物の性質を改善すべく種々
検討したところ、芳香族ポリカーボネート樹脂を
一成分として含有する熱可塑性樹脂組成物に対し
て難燃化剤として特定の溶融温度を有する2,2
(4,4′ジヒドロキシ―3,3′,5,5′―テトラブ
ロムジフエニル)プロパンの縮重合体及び難燃化
助剤として三酸化アンチモンを特定割合にて配合
せしめることにより優れた耐衝撃性、耐熱性、耐
候性、成形加工性に加え高度の難燃性を与える難
燃性熱可塑性樹脂組成物とし得ることを見出し本
発明に到達した。 すなわち本発明の要旨とするところはアクリル
系ゴム成分を含有するビニル系共重合体、芳香族
ビニル単量体を主成分とする単量体混合物を共重
合して得られた芳香族ビニル系共重合体及び芳香
族ポリカーボネート樹脂から成る熱可塑性樹脂組
成物A100重量部当り溶融温度が140〜190℃なる
2,2(4,4′ジヒドロキシ―3,3′,5,5′―
テトラブロムジフエニル)プロパンの縮重合体
B3〜25重量部及び三酸化アンチモンCがB成分
とC成分との重量比(B/C)で10/1〜1/1
なる割合で配合された難燃性熱可塑性樹脂組成物
にある。 本発明において用いられるアクリル系ゴム成分
を含有するビニル系共重合体はアクリル酸エチ
ル、アクリル酸ブチル、アクリル酸2エチルヘキ
シル等のアクリル酸エステル単量体を単量体の主
成分として重合して得られるゴム状重合体の存在
下でアクリル酸エステル単量体、メタクリル酸エ
ステル単量体、シアン化ビニル単量体、芳香族ビ
ニル単量体等からなるビニル化合物の少なくとも
1種の共重合可能な単量体を重合して得られる共
重合体である。該共重合体は塊状重合、懸濁重
合、乳化重合等又はそれらの組合せ重合のいずれ
の方法でも製造することができる。本発明におい
ては上記アクリル系ゴム成分を含有するビニル系
共重合体は特にアクリル系ゴム成分とビニル系重
合体とがグラフト構造を形成していることが好ま
しく、その具体的な製造例としては例えばアクリ
ル酸ブチルを主成分とし、これとスチレン、アク
リロニトリルあるいはメタクリル酸メチルを共重
合して得られる共重合体ゴムラテツクス存在下で
メタクリル酸メチル、アクリロニトリル、スチレ
ン等の単量体混合物を適当な開始剤を用いて乳化
重合し得られたラテツクスを凝固乾燥する方法が
挙げられる。 また本発明における上記アクリル系ゴム成分を
含有するビニル系共重合体の一例としては例えば
2〜10個の炭素原子をアルキル基中に有するアク
リル酸エステル単量体を主成分として重合して得
られるゴム状重合体25〜90重量部の存在下でアク
リル酸エチル、アクリル酸ブチル、アクリル酸2
エチルヘキシル等のアクリル酸エステル単量体、
メタクリル酸メチル等のメタクリル酸エステル単
量体、アクリロニトリル又はメタクリロニトリル
等のシアン化ビニル単量体、スチレン又はα―メ
チルスチレン等の芳香族ビニル単量体等のビニル
化合物の少なくとも1種を75〜10重量部重合して
得られるアクリル系ゴム成分を含有する樹脂重合
体が挙げられる。本発明におけるアクリル系ゴム
成分を含有するビニル系共重合体の使用量は熱可
塑性樹脂組成物A中5〜50重量%である。 本発明において用いられる芳香族ビニル系共重
合体はスチレン、α―メチルスチレン、トリメチ
ルスチレン、ハロゲン化スチレン等の芳香族ビニ
ル単量体を主成分とし、さらにこれら単量体に共
重合可能なアクリル酸エステル単量体、メタクリ
ル酸エステル単量体、シアン化ビニル単量体、芳
香族ビニル単量体等の群より選ばれた少なくとも
1種のビニル単量体との単量体混合物を共重合し
て得られるものである。共重合可能なアクリル酸
エステル単量体としてはアクリル酸エチル、アク
リル酸ブチル、アクリル酸2エチルヘキシル等が
挙げられる。またメタクリル酸エステル単量体と
してはメタクリル酸メチル、メタクリル酸エチル
等が挙げられる。アン化ビニル単量体としてはア
クリルニトリル、メタクリロニトリル等が挙げら
れる。さらに芳香族ビニル単量体としてはスチレ
ン、α―メチルスチレン、トリメチルスチレン、
ハロゲン化スチレン等が挙げられる。本発明にお
いてはスチレン―アクリロニトリル共重合体が特
に好ましいものである。本発明における芳香族ビ
ニル系共重合体は塊状重合、懸濁重合、乳化重合
等又はそれらの組合せ重合のいずれの方法でも製
造することができる。本発明における芳香族ビニ
ル単量体を主成分とする単量体混合物を共重合し
て得られた芳香族ビニル系共重合体の使用量は熱
可塑性樹脂組成物A中5〜80重量%である。 本発明において用いられる芳香族ポリカーボネ
ート樹脂とは4,4′―ジオキシジアリールアルカ
ン系ポリカーボネート樹脂であり、代表的なもの
としては2,2′(4,4―ジヒドロキシジフエニ
ル)プロパンのカーボネート樹脂が挙げられる。
芳香族ポリカーボネート樹脂の製造方法としては
公知の方法、例えばホスゲン法、エステル交換法
等いずれの方法を用いることができる。本発明に
おける熱可塑性樹脂組成物A中の芳香族ポリカー
ボネート樹脂の量は15〜80重量%である。 上述した本発明において用いられる熱可塑性樹
脂組成物Aを構成する各樹脂成分の使用量が上述
した如き各使用量範囲内にある場合に後述する難
燃化剤及び難燃化助剤との相互作用により優れた
効果を発揮するため特に好ましいものである。 本発明の難燃化剤として用いられる2,2
(4,4′ジヒドロキシ―3,3′,5,5′―テトラブ
ロムジフエニル)プロパンの縮重合体(以下臭素
化ポリカーボネートと略す)。とは一般式 で示されるものである。式中R,R′はフエノー
ル類末端残基であり、nは平均重合度を示す。n
としては2〜60のものが好ましいのである。本発
明を実施するに際して用いられる臭素化ポリカー
ボネートは溶融温度が140〜190℃の範囲のもので
あり、好ましくは160〜170℃の範囲のものであ
る。溶融温度が140℃未満の臭素化ポリカーボネ
ートを使用する場合には耐熱性が低下するので好
ましくない。また溶融温度が190℃を超えると臭
素化ポリカーボネートを使用する場合には熱可塑
性樹脂組成物A中への均一な分散状態が低下し耐
衝撃性が低下するので好ましくない。上記臭素化
ポリカーボネートは難燃化助剤として用いる三酸
化アンチモンと併用して使用することが必要であ
り、その使用量としては上記熱可塑性樹脂組成物
A100重量部当り3〜25重量部である。臭素化ポ
リカーボネートの使用量が3重量部未満では三酸
化アンチモンと併用としても難熱効果が小さく、
また25重量部を超える量を使用しても難燃化の効
果の向上は得られず、しかも樹脂組成物の諸特性
の低下をもたらすため好ましくない。 臭素化ポリカーボネートBと併用して用いられ
る三酸化アンチモンCは難燃化助剤として使用さ
れるものであり、その使用量は臭素化ポリカーボ
ネートBと三酸化アンチモンCとの重量比(B/
C)で10/1〜1/1なる割合で使用することが
必要である。本発明の難燃性熱可塑性樹脂組成物
は上記臭素化ポリカーボネートBと三酸化アンチ
モンCとの併用による相乗効果により高度の難燃
性及び諸物性のバランスを保持するものであり、
このような効果は上記重量比により得られ上記重
量比の範囲を外れることは好ましくない。 本発明においては上記臭素化ポリカーボネート
B及び三酸化アンチモンCは要求される難燃度に
応じ本発明の範囲内で自由に増減することができ
る。一方臭素化ポリカーボネートB以外の他のハ
ロゲン化合物を難燃化剤として使用すると可塑化
による耐熱性の低下等熱可塑性樹脂組成物Aの優
れた物性バランスを崩すばかりでなく、これを用
いて成形した場合成形物の発泡や着色等をきたす
ので好ましくない。 本発明の難燃性熱可塑性樹脂組成物の製造方法
の実施態様としては特に限定されるものでなく、
一例を示せばアクリル系ゴム成分を含有するビニ
ル系共重合体、芳香族ビニル系共重合体、芳香族
ポリカーボネート樹脂、臭素化ポリカーボネート
及び三酸化アンチモンをV型ブレンダーの如き混
合機で予備混合し、加熱ロールあるいは単軸又は
多軸押出機等で溶融混練することによつて得るこ
とができる。 本発明の難燃性熱可塑性樹脂組成物には必要に
応じて各種安定剤、染顔料、無機充填剤等の通常
用いられる各種添加剤を含んでいてもよい。 本発明における熱可塑性樹脂組成物Aは耐衝撃
性、耐熱性、耐候性、易成形加工性に優れたもの
であり、しかも上記難燃化剤及び難燃化助剤との
相溶性も良好であり熱可塑性樹脂組成物A本来の
物性の低下は殆んど認められない。一般に芳香族
ポリカーボネート樹脂とビニル系共重合体との相
溶性は悪く相分離を起こし易くポリカーボネート
樹脂本来の優れた耐衝撃性が大巾に低下する欠点
を有する。一方ゴム含有樹脂は比較的溶融粘度が
大きいため成形加工性が悪い傾向があり、とりわ
け成形による耐熱性の低下が大きい。しかしなが
ら本発明の特定の3種の樹脂成分を特定の割合で
配合した樹脂組成物Aは樹脂相互の相溶性が良好
であり、アクリル系ゴムの耐候性、耐衝撃性、芳
香族ビニル系共重合体の良流動性及び芳香族ポリ
カーボネート樹脂の耐熱性、耐衝撃性が相乗的に
生かされた優れた樹脂組成物である。 本発明の難燃性熱可塑性樹脂組成物は上述した
如き樹脂組成物Aの優れた諸特性に加え優れた難
燃性を有するものである。 以下実施例により本発明を具体的に説明する。
なお実施例中部は重量部を示す。 実施例 1 (1) アクリル系ゴムを含有するビニル系共重合体
()の合成 乳化剤としてジオクチルスルホサクシネート
(ペレツクスOTP,花王アトラス社製)1.5部を水
300部に溶解した後65℃に昇温し、次いで過硫酸
カリウム0.5部を水50部に溶解した水溶液を添加
した。しかる後アクリル酸ブチル75部、アクリル
酸メチル10部、スチレン15部及びエチレングリコ
ールジメタクリレート1.0部からなる単量体混合
物を撹拌下で1時間連続滴下し、さらに1時間重
合反応を行なつた。次に上記重合反応混合物にメ
タクリル酸メチル30部、スチレン20部及びラウリ
ルメルカブタン0.075部からなる単量体混合物を
30分間連続滴下し、さらに1時間重合反応を行な
つた。得られた重合反応混合物を冷却後80℃の
0.1%塩化カルシウム水溶液にて塩析凝固し、得
られた粉末を充分水洗し70℃で乾燥しビニル系共
重合体()を得た。 (2) 芳香族ビニル系共重合体()の合成 水120部にポバール(重合度2000)3部を溶解
した水溶液にスチレン75部、アクリロニトリル25
部、アゾビスイソブチロニトリル0.2部及びラウ
リルメルカブタン0.15部からなる単量体混合物を
添加し充分撹拌した。単量体が充分分散した後70
℃まで昇温しそのまま5分間重合した。しかる後
90℃で1時間後熱処理して反応を完結した。得ら
れた粉末を充分水洗した後80℃で乾燥し重合体
()を得た。 (3) 難燃性樹脂組成物の調製及び評価 上記共重合体()20部、上記共重合体()
15部、芳香族ポリカーボネート樹脂(ノバレツク
ス7022A,三菱化成社製)65部、溶融温度160℃
の臭素化ポリカーボネート15部及び三酸化アンチ
モン5部の割合で配合された配合物25mmφベント
式押出機で溶融混練してペレツト化を行ない本発
明の難燃性熱可塑性樹脂組成物を得た。 次に得られたペレツトを5オンスのスクリユー
タイプ射出成形機により1号ダンベル、1/8イン
チ厚の曲げ試験片、1/4インチ厚の熱変形温度測
定用試験片を作成し各種物性を評価した結果を表
1に示す。 比較のため難燃化剤としてテトラブロムビスフ
エノールA(比較例1)、デカブロムビフエノー
ルエーテル(比較例2)、臭素化無水フタル酸
(比較例3)を用いる以外は上記と全く同じ割合
で配合した組成物を同様の方法で成形したものの
各種物性を評価した結果を表1に併せて示す。 表1の結果から明らかなようにテトラブロムビ
スフエノールA,臭素化無水フタル酸を使用した
ものは著しく帯色し成形品の表面外観が悪い。ま
たデカブロムビフエニールエーテルを使用したも
のは発泡したり銀条線が発生し表面外観が悪い。
さらにこれら本発明で規定する以外の難燃化剤を
使用した成形品は熱変形温度が低い。これらに対
し臭素化ポリカーボネートを使用したものは種々
の物性で非常に優れていることがわかる。
The present invention relates to a flame-retardant thermoplastic resin composition having excellent impact resistance, heat resistance, weather resistance, and moldability. In order for plastic materials to be used in a variety of fields as engineering plastics such as automobile parts, electrical parts, building materials, and industrial parts, they must have properties such as impact resistance, heat resistance, weather resistance, and easy moldability. There must be. However, although various thermoplastic resin compositions that are excellent in each of these properties are known, a resin composition that satisfies all of these properties has not yet been found. In view of the current situation, the present inventors conducted various studies in order to obtain a thermoplastic resin composition with excellent impact resistance, heat resistance, weather resistance, and moldability. It was discovered that a thermoplastic resin composition consisting of a copolymer, a styrene resin, and an aromatic polycarbonate resin had the desired performance, and a patent application was previously filed. By the way, synthetic resins, like the above-mentioned thermoplastic resin compositions, are generally flammable, and their uses are limited from the standpoint of safety. For example, resin compositions used in electrical parts and building materials are required to have high flame retardancy as shown in UL standards. Conventionally, it has been known to add halogen-containing compounds, phosphorus-containing compounds, or a combination of these compounds to make synthetic resins flame retardant, but even if the purpose of flame retardation is achieved, the original properties of the synthetic resin There are various drawbacks such as a significant decrease in physical properties, problems with compatibility with the synthetic resin used, and a tendency to cause poor workability such as sublimation and odor during molding. Based on the current situation, the present inventors conducted various studies in order to further improve the properties of flame-retardant thermoplastic resin compositions, and found that for thermoplastic resin compositions containing aromatic polycarbonate resin as one component, 2,2 with a specific melting temperature as a flame retardant
Excellent impact resistance achieved by blending a condensation polymer of (4,4'dihydroxy-3,3',5,5'-tetrabromidiphenyl)propane and antimony trioxide as a flame retardant aid. The present inventors have discovered that a flame-retardant thermoplastic resin composition can be produced which provides a high degree of flame retardancy in addition to heat resistance, weather resistance, and moldability, and has thus arrived at the present invention. That is, the gist of the present invention is to provide an aromatic vinyl copolymer obtained by copolymerizing a vinyl copolymer containing an acrylic rubber component and a monomer mixture containing an aromatic vinyl monomer as a main component. 2,2(4,4'dihydroxy-3,3',5,5'-
Condensation polymer of tetrabromodiphenyl)propane
B3 to 25 parts by weight and antimony trioxide C are 10/1 to 1/1 in weight ratio (B/C) of B component and C component
The flame retardant thermoplastic resin composition is formulated in the following proportions. The vinyl copolymer containing the acrylic rubber component used in the present invention is obtained by polymerizing acrylic ester monomers such as ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate as the main monomer component. Copolymerizable at least one vinyl compound consisting of an acrylic ester monomer, a methacrylic ester monomer, a vinyl cyanide monomer, an aromatic vinyl monomer, etc. in the presence of a rubbery polymer. It is a copolymer obtained by polymerizing monomers. The copolymer can be produced by any method such as bulk polymerization, suspension polymerization, emulsion polymerization, etc., or a combination thereof. In the present invention, the vinyl copolymer containing the acrylic rubber component preferably has a graft structure in which the acrylic rubber component and the vinyl polymer form a graft structure. A mixture of monomers such as methyl methacrylate, acrylonitrile, and styrene is mixed with a suitable initiator in the presence of a copolymer rubber latex which is obtained by copolymerizing butyl acrylate with styrene, acrylonitrile, or methyl methacrylate. A method of coagulating and drying a latex obtained by emulsion polymerization using the above method is mentioned. An example of the vinyl copolymer containing the acrylic rubber component in the present invention is obtained by polymerizing an acrylic ester monomer having 2 to 10 carbon atoms in the alkyl group as a main component. Ethyl acrylate, butyl acrylate, acrylic acid 2 in the presence of 25 to 90 parts by weight of rubbery polymer.
Acrylic acid ester monomers such as ethylhexyl,
At least one vinyl compound such as a methacrylic acid ester monomer such as methyl methacrylate, a vinyl cyanide monomer such as acrylonitrile or methacrylonitrile, and an aromatic vinyl monomer such as styrene or α-methylstyrene. Examples include resin polymers containing an acrylic rubber component obtained by polymerization of ~10 parts by weight. The amount of the vinyl copolymer containing the acrylic rubber component used in the present invention is 5 to 50% by weight in the thermoplastic resin composition A. The aromatic vinyl copolymer used in the present invention is mainly composed of aromatic vinyl monomers such as styrene, α-methylstyrene, trimethylstyrene, and halogenated styrene, and also has an acrylic acid copolymerizable with these monomers. Copolymerizing a monomer mixture with at least one vinyl monomer selected from the group of acid ester monomers, methacrylic acid ester monomers, vinyl cyanide monomers, aromatic vinyl monomers, etc. It is obtained by doing. Examples of copolymerizable acrylic ester monomers include ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate. Examples of the methacrylic acid ester monomer include methyl methacrylate and ethyl methacrylate. Examples of the anionized vinyl monomer include acrylonitrile and methacrylonitrile. Furthermore, aromatic vinyl monomers include styrene, α-methylstyrene, trimethylstyrene,
Examples include halogenated styrene. In the present invention, styrene-acrylonitrile copolymer is particularly preferred. The aromatic vinyl copolymer in the present invention can be produced by any method such as bulk polymerization, suspension polymerization, emulsion polymerization, or a combination thereof. In the present invention, the amount of the aromatic vinyl copolymer obtained by copolymerizing the monomer mixture containing aromatic vinyl monomer as the main component is 5 to 80% by weight in the thermoplastic resin composition A. be. The aromatic polycarbonate resin used in the present invention is a 4,4'-dioxydiarylalkane-based polycarbonate resin, and a typical example is a carbonate resin of 2,2'(4,4-dihydroxydiphenyl)propane. Can be mentioned.
As a method for producing the aromatic polycarbonate resin, any known method such as the phosgene method or the transesterification method can be used. The amount of aromatic polycarbonate resin in thermoplastic resin composition A in the present invention is 15 to 80% by weight. When the usage amount of each resin component constituting the thermoplastic resin composition A used in the present invention is within the usage amount range as described above, mutual interaction with the flame retardant and flame retardant aid described below. It is particularly preferred because it exhibits excellent effects. 2,2 used as flame retardant of the present invention
(4,4'dihydroxy-3,3',5,5'-tetrabromidiphenyl)propane condensation polymer (hereinafter abbreviated as brominated polycarbonate). is a general expression This is shown in . In the formula, R and R' are terminal residues of phenols, and n indicates the average degree of polymerization. n
A value of 2 to 60 is preferable. The brominated polycarbonate used in carrying out the present invention has a melting temperature in the range of 140 to 190°C, preferably in the range of 160 to 170°C. It is not preferable to use a brominated polycarbonate having a melting temperature of less than 140° C. because the heat resistance decreases. Furthermore, if the melting temperature exceeds 190°C, the uniform dispersion state in the thermoplastic resin composition A will deteriorate and the impact resistance will decrease when brominated polycarbonate is used, which is not preferable. The above-mentioned brominated polycarbonate needs to be used in combination with antimony trioxide used as a flame retardant additive, and the amount used is the same as that of the above-mentioned thermoplastic resin composition.
The amount is 3 to 25 parts by weight per 100 parts by weight of A. If the amount of brominated polycarbonate used is less than 3 parts by weight, the heat retardant effect will be small even when used in combination with antimony trioxide.
Further, if the amount exceeds 25 parts by weight, no improvement in the flame retardant effect can be obtained, and furthermore, the various properties of the resin composition are deteriorated, which is not preferable. Antimony trioxide C used in combination with brominated polycarbonate B is used as a flame retardant additive, and the amount used is determined by the weight ratio of brominated polycarbonate B and antimony trioxide C (B/
It is necessary to use C) at a ratio of 10/1 to 1/1. The flame-retardant thermoplastic resin composition of the present invention maintains a high degree of flame retardancy and a balance of various physical properties due to the synergistic effect of the combination of the above-mentioned brominated polycarbonate B and antimony trioxide C,
Such an effect is obtained by the above weight ratio, and it is not preferable to deviate from the above weight ratio range. In the present invention, the above-mentioned brominated polycarbonate B and antimony trioxide C can be freely increased or decreased within the scope of the present invention depending on the flame retardance required. On the other hand, if a halogen compound other than brominated polycarbonate B is used as a flame retardant, it will not only disrupt the excellent physical property balance of thermoplastic resin composition A, such as a decrease in heat resistance due to plasticization, but also cause molding using this composition. In this case, foaming and discoloration of the molded product may occur, which is undesirable. The embodiments of the method for producing the flame-retardant thermoplastic resin composition of the present invention are not particularly limited,
For example, a vinyl copolymer containing an acrylic rubber component, an aromatic vinyl copolymer, an aromatic polycarbonate resin, a brominated polycarbonate, and antimony trioxide are premixed in a mixer such as a V-type blender, It can be obtained by melt-kneading using a heated roll or a single-screw or multi-screw extruder. The flame-retardant thermoplastic resin composition of the present invention may contain various commonly used additives such as various stabilizers, dyes and pigments, and inorganic fillers, as required. The thermoplastic resin composition A of the present invention has excellent impact resistance, heat resistance, weather resistance, and easy moldability, and also has good compatibility with the flame retardant and flame retardant aid. Yes, almost no deterioration in the physical properties inherent to thermoplastic resin composition A was observed. Generally, aromatic polycarbonate resins and vinyl copolymers have poor compatibility and are prone to phase separation, which has the disadvantage that the excellent impact resistance inherent to polycarbonate resins is greatly reduced. On the other hand, rubber-containing resins tend to have poor moldability because of their relatively high melt viscosity, and in particular, their heat resistance is greatly reduced by molding. However, resin composition A, which is a mixture of three specific resin components of the present invention in a specific ratio, has good mutual compatibility among the resins, and has good weather resistance and impact resistance of acrylic rubber, and aromatic vinyl copolymer. This is an excellent resin composition that synergistically takes advantage of the good fluidity of the composite and the heat resistance and impact resistance of the aromatic polycarbonate resin. The flame-retardant thermoplastic resin composition of the present invention has excellent flame retardancy in addition to the excellent properties of resin composition A as described above. The present invention will be specifically explained below using Examples.
Note that the middle part of the example indicates parts by weight. Example 1 (1) Synthesis of vinyl copolymer () containing acrylic rubber 1.5 parts of dioctyl sulfosuccinate (Pelex OTP, manufactured by Kao Atlas Co., Ltd.) as an emulsifier was added to water.
After dissolving in 300 parts, the temperature was raised to 65°C, and then an aqueous solution of 0.5 part of potassium persulfate dissolved in 50 parts of water was added. Thereafter, a monomer mixture consisting of 75 parts of butyl acrylate, 10 parts of methyl acrylate, 15 parts of styrene, and 1.0 part of ethylene glycol dimethacrylate was continuously added dropwise under stirring for 1 hour, and the polymerization reaction was further carried out for 1 hour. Next, a monomer mixture consisting of 30 parts of methyl methacrylate, 20 parts of styrene, and 0.075 parts of lauryl mercabutane was added to the above polymerization reaction mixture.
The dropwise addition was continued for 30 minutes, and the polymerization reaction was further carried out for 1 hour. The resulting polymerization reaction mixture was cooled to 80°C.
The powder was salted out and coagulated with a 0.1% calcium chloride aqueous solution, and the resulting powder was thoroughly washed with water and dried at 70°C to obtain a vinyl copolymer (). (2) Synthesis of aromatic vinyl copolymer () 75 parts of styrene and 25 parts of acrylonitrile are added to an aqueous solution of 3 parts of Poval (degree of polymerization 2000) dissolved in 120 parts of water.
A monomer mixture consisting of 0.2 parts of azobisisobutyronitrile and 0.15 parts of lauryl mercabutane was added and thoroughly stirred. After the monomer is well dispersed 70
The temperature was raised to 0.degree. C., and polymerization was continued for 5 minutes. After that
The reaction was completed by heat treatment at 90°C for 1 hour. The obtained powder was thoroughly washed with water and then dried at 80°C to obtain a polymer (2). (3) Preparation and evaluation of flame-retardant resin composition 20 parts of the above copolymer (), the above copolymer ()
15 parts, aromatic polycarbonate resin (Novarex 7022A, manufactured by Mitsubishi Chemical Corporation) 65 parts, melting temperature 160°C
A mixture of 15 parts of brominated polycarbonate and 5 parts of antimony trioxide was melt-kneaded in a 25 mm diameter vented extruder and pelletized to obtain the flame-retardant thermoplastic resin composition of the present invention. Next, the obtained pellets were used to make No. 1 dumbbells, 1/8 inch thick bending test pieces, and 1/4 inch thick heat deformation temperature measurement test pieces using a 5-ounce screw-type injection molding machine, and various physical properties were determined. The evaluation results are shown in Table 1. For comparison, the same proportions as above were used, except that tetrabromo bisphenol A (Comparative Example 1), decabromo biphenol ether (Comparative Example 2), and brominated phthalic anhydride (Comparative Example 3) were used as flame retardants. Table 1 also shows the results of evaluating various physical properties of the blended compositions molded in the same manner. As is clear from the results in Table 1, the molded products using tetrabromobisphenol A and brominated phthalic anhydride were significantly discolored and had poor surface appearance. In addition, those using decabrom biphenyl ether foam or have silver streaks, and the surface appearance is poor.
Furthermore, molded articles using flame retardants other than those specified in the present invention have a low heat distortion temperature. In contrast, those using brominated polycarbonate are found to be extremely superior in various physical properties.

【表】 実施例2〜5,比較例4 実施例1で合成した共重合体()25部並びに
共重合体()10部及び芳香族ポリカーボネート
樹脂(ノバレツクス7022A,三菱化成社製)65
部、さらに溶融温度170℃の臭素化ポリカーボネ
ート及び三酸化アンチモンを表2に示す割合で配
合した組成物を実施例1と同様にペレツト化及び
試験片を作成し各種物性を評価した。この結果を
表2に示す。また臭素化ポリカーボネート及び三
酸化アンチモンを添加しない場合の上記樹脂組成
物の各種物性を評価した結果を比較例4として表
2に併せて示す。 表2の結果から明らかなように実施例2〜4に
係る樹脂組成物は難燃化剤及び難燃化助剤を含有
しない比較例4の樹脂組成物に比較し強度、耐熱
性の低下は認められずかつ優れた難燃性を示すこ
とがわかる。 また実施例5は加速曝露した樹脂組成物を使用
したにもかかわらず表面外観の変化は全く見られ
ず物性においても本質的な低下は見られない。こ
のことからも本発明の難燃性熱可塑性樹脂組成物
が優れた耐候性を有することがわかる。
[Table] Examples 2 to 5, Comparative Example 4 25 parts of the copolymer ( ) synthesized in Example 1 and 10 parts of the copolymer ( ) and 65 parts of aromatic polycarbonate resin (Novarex 7022A, manufactured by Mitsubishi Chemical Corporation)
A composition containing brominated polycarbonate having a melting temperature of 170° C. and antimony trioxide in the proportions shown in Table 2 was pelletized and test pieces were prepared in the same manner as in Example 1, and various physical properties were evaluated. The results are shown in Table 2. Table 2 also shows the results of evaluating various physical properties of the resin composition without adding brominated polycarbonate and antimony trioxide as Comparative Example 4. As is clear from the results in Table 2, the resin compositions of Examples 2 to 4 showed no decrease in strength and heat resistance compared to the resin composition of Comparative Example 4, which did not contain a flame retardant or flame retardant aid. It can be seen that no flame retardance was observed and that it exhibited excellent flame retardancy. Further, in Example 5, although a resin composition subjected to accelerated exposure was used, no change was observed in the surface appearance, and no substantial deterioration was observed in the physical properties. This also shows that the flame-retardant thermoplastic resin composition of the present invention has excellent weather resistance.

【表】 実施例6〜9,比較例5 溶融温度170℃の臭素化ポリカーボネート15
部、三酸化アンチモン5部さらに実施例1で合成
した共重合体(),共重合体()及び芳香族
ポリカーボネート樹脂(ノバレツクス7022A、三
菱化成社製)を表3に示す割合で配合した組成物
を実施例1と同様にペレツト化及び試験片を作成
し各種物性を評価した。この結果を表3に示す。 また比較例5として上記芳香族ポリカーボネー
ト樹脂のみに上記と同じ量の臭素化ポリカーボネ
ート及び三酸化アンチモンを添加したものを併せ
て示す。 表3の結果から明らかなように本発明範囲内の
樹脂組成物はいずれも良好な物性を示し、特に芳
香族ポリカーボネート樹脂の配合量が多い程高度
の難燃性を与えることがわかる。これに対し比較
例5の樹脂組成物では耐衝撃性が著しく低下する
ことがわかる。
[Table] Examples 6 to 9, Comparative Example 5 Brominated polycarbonate 15 with a melting temperature of 170°C
1 part, antimony trioxide 5 parts, and a composition containing the copolymer (2) synthesized in Example 1, the copolymer (2), and an aromatic polycarbonate resin (Novarex 7022A, manufactured by Mitsubishi Chemical Corporation) in the proportions shown in Table 3. were pelletized and test pieces were prepared in the same manner as in Example 1, and various physical properties were evaluated. The results are shown in Table 3. Comparative Example 5 is also shown in which the same amounts of brominated polycarbonate and antimony trioxide as above were added to the aromatic polycarbonate resin alone. As is clear from the results in Table 3, all the resin compositions within the scope of the present invention exhibit good physical properties, and in particular, it can be seen that the higher the amount of aromatic polycarbonate resin blended, the higher the flame retardance. In contrast, it can be seen that the resin composition of Comparative Example 5 has significantly lower impact resistance.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 アクリル系ゴム成分を含有するビニル系共重
合体、芳香族ビニル単量体を主成分とする単量体
混合物を共重合して得られた芳香族ビニル系共重
合体及び芳香族ポリカーボネート樹脂から成る熱
可塑性樹脂組成物A100重量部当り溶融温度が140
〜190℃なる2,2(4,4′ジヒドロキシ―3,
3′,5,5′―テトラブロムジフエニル)プロパン
の縮重合体B3〜25重量部及び三酸化アンチモン
CがB成分とC成分との重量比(B/C)で10/
1〜1/1なる割合で配合された難燃性熱可塑性
樹脂組成物。
1. From an aromatic vinyl copolymer and an aromatic polycarbonate resin obtained by copolymerizing a vinyl copolymer containing an acrylic rubber component, a monomer mixture whose main component is an aromatic vinyl monomer The melting temperature per 100 parts by weight of the thermoplastic resin composition A is 140
2,2(4,4'dihydroxy-3,
3 to 25 parts by weight of condensation polymer B of 3',5,5'-tetrabromodiphenyl)propane and antimony trioxide C in a weight ratio of component B to component C (B/C) of 10/
A flame-retardant thermoplastic resin composition blended in a ratio of 1 to 1/1.
JP8537178A 1978-07-13 1978-07-13 Flame-retardant thermoplastic resin composition Granted JPS5512163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8537178A JPS5512163A (en) 1978-07-13 1978-07-13 Flame-retardant thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8537178A JPS5512163A (en) 1978-07-13 1978-07-13 Flame-retardant thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS5512163A JPS5512163A (en) 1980-01-28
JPS6129378B2 true JPS6129378B2 (en) 1986-07-07

Family

ID=13856847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8537178A Granted JPS5512163A (en) 1978-07-13 1978-07-13 Flame-retardant thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS5512163A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE790385A (en) * 1971-11-01 1973-02-15 Gen Electric IMPROVEMENTS IN THERMOPLASTIC COMPOSITIONS WITH DELAYED IGNITION, AND PROCESSES FOR THEIR
JPS578138B2 (en) * 1973-11-30 1982-02-15

Also Published As

Publication number Publication date
JPS5512163A (en) 1980-01-28

Similar Documents

Publication Publication Date Title
US3988389A (en) Moulding compositions contain polycarbonate and graft copolymer of a resin forming monomer on a rubber
JP2001040204A (en) Thermoplastic resin composition having flame retardance
JPS60229946A (en) Thermoplastic forming composition
EP3858915A1 (en) Thermoplastic resin composition and molded product using same
US4472554A (en) Polycarbonate ABS blends of improved impact strength
NO139444B (en) PRESS MASSES BASED ON POLYCARBONATE AND CHEWING POWDER POLYMERS
JP2001220486A (en) Thermoplastic resin composition having excellent recyclability and regenerated molding material
JPS6237671B2 (en)
WO1991013937A1 (en) Flame-retardant resin composition
JP3703490B2 (en) Dibromostyrene-glycidyl (meth) acrylate copolymer
JPH02199162A (en) Flame-retardant resin composition
JPS6129378B2 (en)
JP3646414B2 (en) Method for producing flame retardant thermoplastic resin composition
JP2775471B2 (en) Thermoplastic resin composition with improved impact resistance
JP3636350B2 (en) Flame retardant resin composition
JP4176878B2 (en) Manufacturing method of resin molded product with wood grain pattern
KR100508147B1 (en) Styrene- Containing Thermoplastic Resin Composition Having Excellent Flame Resistance and Weatherability
KR100680480B1 (en) Flame retardant thermoplastic resin composition with good heat resistance and impact strength
JPS5837333B2 (en) Flame-retardant styrenic resin composition
JPH1030045A (en) Production of flame-retardant thermoplastic resin composition
JP3388855B2 (en) Flame retardant resin composition
JPS63135442A (en) Flame-retarding rubber-reinforced resin composition
JPH03281561A (en) Thermoplastic resin composition improved in fatigue characteristic
JPS5946270B2 (en) Flame retardant resin composition
KR100722146B1 (en) High humidity resistant, good impact resistance and flame retardant polycarbonate resin composition for extrusion molding