JPS61293116A - Ground fault protector - Google Patents

Ground fault protector

Info

Publication number
JPS61293116A
JPS61293116A JP13090585A JP13090585A JPS61293116A JP S61293116 A JPS61293116 A JP S61293116A JP 13090585 A JP13090585 A JP 13090585A JP 13090585 A JP13090585 A JP 13090585A JP S61293116 A JPS61293116 A JP S61293116A
Authority
JP
Japan
Prior art keywords
transformer
current
ground fault
transformers
breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13090585A
Other languages
Japanese (ja)
Inventor
打田 和正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13090585A priority Critical patent/JPS61293116A/en
Publication of JPS61293116A publication Critical patent/JPS61293116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、3相4線式配電系統C二おける地絡保護装置
口開するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention provides a ground fault protection device for a three-phase, four-wire power distribution system C2.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第6図、第7図、第8図により、従来技術を説明する。 The prior art will be explained with reference to FIGS. 6, 7, and 8.

第6図において、1,2,5.6は受電断路器、3.4
は受電しゃ断器であシ、これらを経由し、変圧器1次断
路器7.8を介し、変圧器9.10が設けられる。この
変圧器9.10の2次側には、3相4線の蛇篭系統を構
成する。3相4線系統は400 Vの低圧で構成される
のが一般的でおp、電路の開閉には4憶のしゃ断器が適
用される。
In Figure 6, 1, 2, 5.6 are power receiving disconnectors, 3.4
is a power reception breaker, and a transformer 9.10 is provided via a transformer primary disconnector 7.8. A three-phase, four-wire gabion system is configured on the secondary side of the transformer 9.10. Three-phase, four-wire systems are generally constructed with a low voltage of 400 V, and 400 million circuit breakers are used to open and close the electrical circuits.

すなわち、図において、11.12は変圧器2次しゃ断
器、13は母線連絡しゃ断器、14〜17はフィーダし
や断器で、これらには前述した4他のしゃ断器を用いて
いる。変圧器、′、 1002次側中性点は大地に接地
され、その中性相と三相電源とで3相4線配電系統を構
成している。また、変圧器9,1002次側中性点と、
大地との間の接地線4二は、変流器18.19を設け、
その2次側は地絡過電流継電器%、24に接続される。
That is, in the figure, reference numerals 11 and 12 are transformer secondary circuit breakers, 13 is a busbar communication circuit breaker, and 14 to 17 are feeder circuit breakers, and the other four circuit breakers described above are used for these circuit breakers. The neutral point on the secondary side of the transformer, ', 100, is grounded to the earth, and the neutral phase and three-phase power supply constitute a three-phase, four-wire power distribution system. In addition, the secondary neutral point of the transformer 9, 100,
The grounding wire 42 between the earth and the earth is provided with a current transformer 18, 19,
Its secondary side is connected to a ground fault overcurrent relay %, 24.

地絡過電流継電器る。24は、変圧器2次側母線の地絡
時(−動作すると共にフィーダの地絡時に、フィーダ(
−設けられた図示しない地絡過電流継電器が動作せず、
地絡故障が継続している場合に動作し、変圧器2次しゃ
断器11.121ニトリツブ信号を送り、地絡故障を除
去する。
Ground fault overcurrent relay. 24 is activated when the transformer secondary side bus bar is grounded (-) and when the feeder is grounded, the feeder (
- The installed ground fault overcurrent relay (not shown) does not operate,
It operates when the ground fault continues and sends the transformer secondary circuit breaker 11.121 nitrite signal to eliminate the ground fault.

る。Ru.

しかしながら、上記地絡保護方式の場合、次の問題点が
ある。すなわち、変圧器2次しゃ断器11゜12及び母
線連絡しゃ断器13が投入状態の場合、大地を通した単
相回路ができ、第6図の破線の経路で第3高調波の循環
電流が流れる。このため、地絡故障が発生していなくて
も、地絡過電流継電器23.24が動作し、変圧器2次
しゃ断器11.12がトリップし、低圧側が全停となる
(電気書院発行「自ば用電気設備の保護継電システムj
 P151.152参照)。そこで、一般的には第7図
のよう(−12台の変圧器の中性点を互い(′−接続し
、その接続点と大地との間の接地線に液流器5を設け、
その2次側に地絡過電流継電器26を設直し、上述の単
相回路を流れる第3高調波循環電流が地絡過電流継電器
26(1流れ込まないようにしている。第7図における
地絡保護装置では、変圧器2次側しゃ断器11.12及
び母線連絡しゃ断器」3が全て投入されている場合(−
1F点で一線地絡故障が発生すると、各々の変圧器2次
中性点を介し、地絡電流Igl +Ig2が流れ、その
合計値Ig (−Ig工+工g2)が地絡故障点及び、
接地点(1流れる。変流器502次側に設けた地絡過電
流継電器6はこの電流Igを検出し、変圧器2次しゃ断
器11,1.2をトリップさせる。このトリップ回路を
第8図(ユ示す。図で、llTc 。
However, the above ground fault protection method has the following problems. In other words, when the transformer secondary circuit breakers 11 and 12 and the busbar connection circuit breaker 13 are in the closed state, a single-phase circuit passing through the ground is created, and the circulating current of the third harmonic flows through the path indicated by the broken line in Fig. 6. . For this reason, even if no ground fault has occurred, the ground fault overcurrent relays 23 and 24 will operate, the transformer secondary circuit breaker 11 and 12 will trip, and the low voltage side will be completely shut down. Protective relay system for electrical equipment
(See P151.152). Therefore, generally, as shown in Fig. 7, the neutral points of 12 transformers are connected to each other ('-, and a liquid flow device 5 is installed on the grounding wire between the connection point and the earth.
The ground fault overcurrent relay 26 is reinstalled on the secondary side to prevent the third harmonic circulating current flowing through the single-phase circuit described above from flowing into the ground fault overcurrent relay 26 (1).The ground fault protection device in Fig. 7 Now, if the transformer secondary side circuit breakers 11 and 12 and the busbar connection circuit breaker 3 are all turned on (-
When a single-line ground fault occurs at the 1F point, a ground fault current Igl + Ig2 flows through the secondary neutral point of each transformer, and the total value Ig (-Ig + Ig2) is at the ground fault point and
The ground fault current relay 6 provided on the secondary side of the current transformer 50 detects this current Ig and trips the transformer secondary circuit breaker 11, 1.2. This trip circuit is shown in FIG. In the figure, llTc.

1’2 T Cは変圧器2次しゃ断器11.12のトリ
ップコイルである。lla 、 12aは各しゃ断器1
1.12の補助接点で、対応するしゃ断器11.12の
閉で閉となるa接点である。26aは地絡過電流継電器
26が・a接点であシ、地絡過電流継電器あの動作する
と閉とな9、トリップコイルIITC、12TCを励磁
ししゃ断器11.12をトリップさせる。
1'2 T C is a trip coil of the transformer secondary circuit breaker 11.12. lla, 12a are each breaker 1
1.12 is an auxiliary contact, and is an a contact that closes when the corresponding breaker 11.12 closes. 26a is the contact A of the ground fault overcurrent relay 26. When the ground fault overcurrent relay 26 operates, it closes, energizing the trip coils IITC and 12TC and tripping the circuit breaker 11.12.

しかしながら、上述の方式においては、次の問題点がめ
った。変圧器2次しゃ断器11.12が閉で母線連絡し
ゃ断器13が開の場合、すなわち、変圧器9.12を並
列運転していない場合に、変圧器9側の母線のF点で地
絡が発生すると、過電流継電器26が動作するため、変
圧器10側のバンクが健全であるにもかかわらず、変圧
器2次しゃ断器11゜12を両方ともトリップしてしま
う。
However, the above-mentioned method often suffers from the following problems. When the transformer secondary circuit breakers 11 and 12 are closed and the busbar connection circuit breaker 13 is open, that is, when the transformers 9 and 12 are not operated in parallel, a ground fault occurs at point F on the busbar on the transformer 9 side. When this occurs, the overcurrent relay 26 operates, tripping both the transformer secondary circuit breakers 11 and 12 even though the bank on the transformer 10 side is healthy.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、変圧器並列時、各変圧器の中性点を介
して流れる第3高調波循環電流の影響も受けず、かつ、
母線連絡しゃ断器を開の状態すなわちバンク単独運転時
において片バンクに地絡が発生しても、故障バンク側の
変圧器二次しゃ断器のみを選択しゃ断し、健全バンク側
の運転は継続させることができる地絡保護装置を提供す
ることにある。
An object of the present invention is to avoid the influence of the third harmonic circulating current flowing through the neutral point of each transformer when transformers are connected in parallel, and
Even if a ground fault occurs in one bank when the busbar connection breaker is open, that is, when the bank is operating alone, only the transformer secondary breaker on the faulty bank side will be selectively shut off, and operation on the healthy bank side will continue. The objective is to provide a ground fault protection device that can

〔発明の概要〕[Summary of the invention]

本発明は、二次側に中性点を有する2台以上の変圧器と
、その各々の変圧器と対応する母線とを接続する変圧器
二次しゃ断器と、各変圧器毎の母線間を接続する母線連
絡しゃ断器を備えfc、3相4線式配電系統の地絡保護
装置(′″−おいて、前記各変圧器中性点と大地間を接
続する接地線にそれぞれ設けられた変流器と、前記各変
流器からの出力を入力し複数の変流器から同時に同一方
向の出力が生じた場合はこれら変流器に対応する変圧器
二次側の母線間(−設けられた母線連絡しゃ断器に旧姓
し指令を与え、各変流器から個別に出力が生じた場合は
その変流器が設けられた変圧器の二次側しゃ断器に旧姓
し指令を与える判定装置とを備えており、変圧器並列運
転時の第3高調波循環電流C二誤動作せず、かつ地絡事
故発生時は事故発生系統のみを解列して健全系統の運転
を継続できるよう(ニしたものである。
The present invention provides two or more transformers having a neutral point on the secondary side, a transformer secondary breaker that connects each of the transformers to a corresponding bus bar, and a transformer secondary breaker that connects each transformer with a corresponding bus bar. A ground fault protection device for a 3-phase, 4-wire power distribution system with a connecting busbar connection breaker (fc), a ground fault protection device for a 3-phase, 4-wire power distribution system (''-, a transformer installed in each grounding wire connecting the neutral point of each transformer and the earth). If the outputs from the current transformer and each of the current transformers are input, and outputs from multiple current transformers occur in the same direction at the same time, the voltage between the busbars (- A determination device that gives a command based on the maiden name to the busbar connecting breaker, and when an output is generated individually from each current transformer, gives a command based on the maiden name to the secondary side breaker of the transformer in which the current transformer is installed. It is equipped with a system that prevents third harmonic circulating current C2 from malfunctioning when transformers are operated in parallel, and in the event of a ground fault, only the faulty system can be disconnected and the healthy system can continue operating. It is something.

〔発明の実施例〕[Embodiments of the invention]

以下に図面を参照し、本発明の一実施例を述べる。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、18.19は変流器で各変圧器9゜1
0の中性点と大地との間の接地線に設けられる。
In Figure 1, 18.19 is a current transformer, and each transformer is 9°1
It is installed on the ground wire between the neutral point of 0 and the earth.

これら各変流器18.19の二次側には、電流方向判別
装置加を設ける。また第3図は本発明口おけるしゃ断器
トリップ制御回路で、13bは母線連絡しゃ断器13の
補助接点でしゃ断器間で閉となる。IITC。
A current direction determining device is provided on the secondary side of each of these current transformers 18, 19. FIG. 3 shows a circuit breaker trip control circuit according to the present invention, in which 13b is an auxiliary contact of the busbar connecting circuit breaker 13, which is closed between the circuit breakers. IITC.

12Tc 、 13TCは、L −a wr器11.1
2.13+/) ) ’J ツブコイル、lla 、 
12a 、 13aは谷々しゃ断器11,12゜13の
補助接点で、しゃ断器閉で閉となる。2f)al 。
12Tc, 13TC are L-a wr devices 11.1
2.13+/) ) 'J Tubucoil, lla,
Reference numerals 12a and 13a are auxiliary contacts of the valley circuit breakers 11, 12 and 13, which are closed when the circuit breakers are closed. 2f) al.

20a2は各々第1図の電流方向判別装置側の出力帳点
で、入力電流つまり、変流器18,1.9の二次電流が
同一方向の時は両接点20a1 、20a2が閉じる。
Reference numerals 20a2 are output points of the current direction determining device shown in FIG. 1, and when the input currents, that is, the secondary currents of the current transformers 18 and 1.9 are in the same direction, both contacts 20a1 and 20a2 are closed.

また変流器18側の入力のみの時は接点20a1が閉じ
、変流器1941111の入力のみの時は接点20a2
が閉となる。
Also, when there is only input from the current transformer 18 side, contact 20a1 is closed, and when only input from current transformer 1941111 is received, contact 20a2 is closed.
is closed.

ここで、電流方向判別装置加は第4図のように構成され
ている。図において、20−1.20−2は電流レベル
検出部で、変流器18.19の2次電流工1.。
Here, the current direction determining device is constructed as shown in FIG. In the figure, reference numerals 20-1 and 20-2 are current level detection units, and secondary current connections 1. .

■。の大きさを検出する。20−3は電流加算部で、上
記電流レベル検出部20−1.20−2の検出′電流の
瞬時値をサンプリングして加算(ig□十Ig 2 =
 Ie)する。20−4は電流比較部で、加算された電
流値I。
■. Detect the size of. Reference numeral 20-3 denotes a current addition unit which samples and adds the instantaneous values of the currents detected by the current level detection units 20-1 and 20-2 (ig□+Ig2=
Ie) Do. 20-4 is a current comparison section, and the added current value I.

が設定値X以上であることを判定(IG>X )する。is greater than or equal to the set value X (IG>X).

2o−5は系統状態判別部で、前記電流レベル検出部2
0−1.20−2の検出電流1g□+  1g2と、電
流比較部20−4の比較出力とのアンド条件にて、しゃ
断器用外し用接点20al 、 20a2 +二対する
動作出力を生じる。
2o-5 is a system status determination unit, and the current level detection unit 2
By ANDing the detected current 1g□+1g2 of 0-1.20-2 and the comparison output of the current comparator 20-4, an operating output for the breaker disconnecting contacts 20al, 20a2+2 is generated.

上記構成において、第1図の変圧器9.10が並列運転
時には、第3高調波循環電流工3が破線のように容度圧
器の中性点を介して流れ、各変圧器9゜100中性点回
路に設けた変流器18,1.9の二次回路には変流器2
次電流i、が流れる。このとき電流方向判別装置かのi
、l側の入力、つまり変流器18の二次電流に対し、1
1側の入力つま9変流器19の二次電流の位相は180
°違うため、第4図で示した電流方向判別装置側は動作
しない。従って第3図において、電流方向判別装置茄の
a接点20at 、 20a2閉じないため、しゃ断器
11.12のトリップコイル11TC、12Tcは励磁
されず、しゃ断器11.12はトリップしない。
In the above configuration, when the transformers 9 and 10 in FIG. A current transformer 2 is installed in the secondary circuit of the current transformers 18 and 1.9 provided in the sex point circuit.
The next current i flows. At this time, the current direction discriminator i
, 1 for the input on the l side, that is, the secondary current of the current transformer 18.
The phase of the secondary current of the input terminal 9 current transformer 19 on the 1st side is 180
Since the current direction is different, the current direction determining device shown in FIG. 4 does not operate. Therefore, in FIG. 3, since the A contacts 20at and 20a2 of the current direction determining device do not close, the trip coils 11TC and 12Tc of the circuit breaker 11.12 are not excited, and the circuit breaker 11.12 does not trip.

また変圧器単独運転時、すなわち、変圧器二次しゃ断器
11.12が閉で母線連絡しゃ断器13が開の場合、第
2図で示すように、変圧器9側バンクの母線のF点で地
絡が発生すると、地絡電流1g1は第2図の破線の経路
で流れ、これに対応する変流器18の二次電流ig+が
流れる。このとき、他方の変流器19の二次電流を鮭は
零であるため、゛電流方向判別装置かの入力が単一人力
となり、電流方向判別装置旬が動作する。このため第3
図において、前記単一人力の変流器181″一対応した
電流方向判別装置側のa接点20a、だけが閉となり母
線連絡しゃ断器13のb接点13bが閉のため変圧器二
次しゃ断器11のトリップコイルIITCが付勢され、
しゃ断器11がトリップする。同様に変圧器10側の母
線で地絡発生の場合も単一人力となp、故障バンクであ
る変圧器10側のしゃ断器12のみトリップする。
In addition, when the transformer is operating independently, that is, when the transformer secondary circuit breakers 11 and 12 are closed and the busbar connecting circuit breaker 13 is open, as shown in Fig. 2, at point F of the busbar of the transformer 9 side bank. When a ground fault occurs, the ground fault current 1g1 flows along the path indicated by the broken line in FIG. 2, and the corresponding secondary current ig+ of the current transformer 18 flows. At this time, since the secondary current of the other current transformer 19 is zero, the input to the current direction discriminating device is made by a single human power, and the current direction discriminating device operates. For this reason, the third
In the figure, only the A contact 20a on the side of the current direction determining device corresponding to the single human-powered current transformer 181'' is closed, and the B contact 13b of the busbar connection breaker 13 is closed, so the transformer secondary breaker 11 The trip coil IITC is energized,
The circuit breaker 11 trips. Similarly, if a ground fault occurs on the busbar on the transformer 10 side, only the breaker 12 on the transformer 10 side, which is the faulty bank, trips.

また並列運転時(−1母線地絡が発生すると、地絡電流
は各々の変圧器中性点C二分散して流れるため、電流方
向判別装置側の入力i□、ig□は同一方向となり、第
3図::おいて、20al 、 20a2が閉となり、
母線連絡しゃ断器13をしゃ断し、変圧器単独運転の系
統構成に変化させる。その後、前記単独運転時と同様に
故障バンクしゃ断を行なう。
In addition, during parallel operation (when a -1 bus ground fault occurs, the ground fault current flows in two parts at the neutral point C of each transformer, so the inputs i□ and ig□ on the current direction discriminating device side are in the same direction, Figure 3: ::, 20al and 20a2 are closed,
The busbar communication breaker 13 is disconnected, and the system configuration is changed to one in which the transformer operates alone. Thereafter, failure bank cutoff is performed in the same manner as during the individual operation.

上記動作をまとめると第5図の通りとなる。このように
変圧器9.10の並列運転時に6変圧器9゜10の中性
点を介しての流れる第3高調波循環電流により、従来の
ように地絡過電流継電器が誤動作し、しゃ断器がトリッ
プすることを防止できる。
The above operation can be summarized as shown in FIG. In this way, when the transformers 9 and 10 are operated in parallel, the third harmonic circulating current flowing through the neutral points of the six transformers 9 and 10 causes the ground fault overcurrent relay to malfunction, as in the past, and the breaker to shut down. Trips can be prevented.

また変圧器の単独、並列運転にかかわらず、健全バンク
の変圧器二次しゃ断器をトリップすることがなく、故障
バンクの変圧器二次しゃ断器を選択しゃ断することがで
きる。
In addition, regardless of whether the transformers are operated individually or in parallel, the transformer secondary breaker of a healthy bank is not tripped, and the transformer secondary breaker of a faulty bank can be selectively cut off.

なお、本発明は、変圧器2バンク以上の系統においても
適用できることはもちろんである。
It goes without saying that the present invention can also be applied to systems with two or more banks of transformers.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、2普以上の変圧器の配電系統(ユおい
て、変圧器並列運転時の変圧器二次側の中性点を介して
流れる第3高調波循環電流の地絡過電流継電器の動作で
、変圧器二次しゃ断器は誤しゃ断されず、また、変圧器
単独及び並列運転時の片側バンク地絡時(−1地絡発生
バンクの変圧6二 ′次しゃ断器のみを選択しゃ断する
ことが可能となる。
According to the present invention, a ground fault overcurrent relay for the third harmonic circulating current flowing through the neutral point of the secondary side of the transformer when the transformers are operated in parallel in a power distribution system of two or more transformers is provided. With this operation, the secondary breaker of the transformer is not accidentally disconnected, and when a single bank ground fault occurs when the transformer is operated alone or in parallel (only the transformer 6' secondary breaker of the -1 bank where the ground fault occurs) is selectively disconnected. It becomes possible to do so.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による地絡保護装置の一実施例ン示す系
統構成図、第2図は第1図の系統における事故時の状態
を示す系統構成図、第3図は本発明におけるトリップ制
御回路例を示す図、第4図は第1図および第2図におけ
る要部構成を示すブロック図、第5図は第3図の回路に
おける動作状悪な狭にして示す図、弗6図および第7図
は従来装置を示す系統図、第8図は従来装置におけるト
リップ制御回路図である。 1、2.5.6  ・・・受電断路器 3.4   ・・・・・・・・・受′嘔しゃ断器7.8
   ・・・・・・・・・変圧器−次断路器9.10 
  ・・・・・・・・・変圧器11.12   ・・・
・・・・・・変圧器二次しゃ断器(4懺)13    
・・・・・・・・・・・・母線連絡しゃ断器(4極)I
3   ・・・・・・・・・・・・変圧器二次側循環電
流14、15.16.17・・・フィーダしゃ断器(4
極)18、19   ・・・・・・・・・変圧器中性点
変流参加   ・・・・・・・・・・・・電流方向判別
装置13   ・・・・・・・・・・・・・I、 i二
よる変流器2次発生電流(7317)代理人 弁理士 
則 近 憲 16(ほか1名)第1図 第6図 第7図
Fig. 1 is a system configuration diagram showing one embodiment of the earth fault protection device according to the present invention, Fig. 2 is a system configuration diagram showing the state of the system in Fig. 1 at the time of an accident, and Fig. 3 is a trip control diagram according to the present invention. FIG. 4 is a block diagram showing the main part configuration in FIGS. 1 and 2, FIG. 5 is a diagram showing an example of the circuit in FIG. 3, and FIG. FIG. 7 is a system diagram showing a conventional device, and FIG. 8 is a trip control circuit diagram in the conventional device. 1, 2.5.6 ... Power receiving disconnector 3.4 ...... Power receiving disconnector 7.8
・・・・・・・・・Transformer-secondary disconnector 9.10
・・・・・・・・・Transformer 11.12 ・・・
・・・・・・Transformer secondary breaker (4 lines) 13
・・・・・・・・・Busbar connection breaker (4 poles) I
3 ......... Transformer secondary circulating current 14, 15.16.17... Feeder breaker (4
Pole) 18, 19 ・・・・・・・・・Participation in transformer neutral point current transformation ・・・・・・・・・Current direction determination device 13 ・・・・・・・・・・・・・・Secondary generated current of current transformer due to I, i2 (7317) Agent Patent attorney
Nori Chika Ken 16 (and 1 other person) Figure 1 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 二次側に中性点を有する2台以上の変圧器と、その各々
の変圧器と対応する母線とを接続する変圧器二次しや断
器と、各変圧器毎の母線間を接続する母線連絡しや断器
を備えた3相4線式配電系統の地絡保護装置において、 前記各変圧器中性点と大地間を接続する接地線にそれぞ
れ設けられた変流器と、 前記各変流器からの出力を入力し複数の変流器から同時
に同一方向の出力が生じた場合はこれら変流器に対応す
る変圧器二次側の母線間に設けられた母線連絡しや断器
に引外し指令を与え、各変流器から個別に出力が生じた
場合はその変流器が設けられた変圧器の二次側しや断器
に引外し指令を与える判定装置と、 を備えたことを特徴とする地絡保護装置。
[Claims] Two or more transformers having a neutral point on the secondary side, a transformer secondary disconnector for connecting each of the transformers to the corresponding bus bar, and a transformer for each transformer. In a ground fault protection device for a 3-phase, 4-wire distribution system equipped with busbar connections and disconnectors that connect the busbars of the If the output from each of the current transformers is input and outputs from multiple current transformers occur in the same direction at the same time, a Gives a trip command to the busbar connection or disconnector, and if an output is generated from each current transformer individually, gives a trip command to the secondary side of the transformer where that current transformer is installed. A ground fault protection device comprising: a determination device;
JP13090585A 1985-06-18 1985-06-18 Ground fault protector Pending JPS61293116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13090585A JPS61293116A (en) 1985-06-18 1985-06-18 Ground fault protector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13090585A JPS61293116A (en) 1985-06-18 1985-06-18 Ground fault protector

Publications (1)

Publication Number Publication Date
JPS61293116A true JPS61293116A (en) 1986-12-23

Family

ID=15045466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13090585A Pending JPS61293116A (en) 1985-06-18 1985-06-18 Ground fault protector

Country Status (1)

Country Link
JP (1) JPS61293116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440214U (en) * 1987-09-07 1989-03-10

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440214U (en) * 1987-09-07 1989-03-10

Similar Documents

Publication Publication Date Title
JP2000511400A (en) Ground fault protection circuit for multi-power system
JPH08317548A (en) Protective device for bipolar converting place in high- pressure dc transmission equipment
JPS60255012A (en) Protecting relay
US2376201A (en) Protective arrangement
JP7347952B2 (en) protection device
JPS61293116A (en) Ground fault protector
Guzmán et al. Reliable busbar and breaker failure protection with advanced zone selection
Zimmerman Microprocessor-based distribution relay applications
JP3249830B2 (en) Transformer operation system
JP2000184578A (en) Method of locating a fault point of power transmission line and protection relaying system
RU2695643C1 (en) Method of transforming power supply systems tn-cs and tt and power supply system for implementing method with protective input heterogeneous communication switching device
JPS61251416A (en) Ground-fault protector
JPH0210654B2 (en)
JPH0510512Y2 (en)
JPS6134833Y2 (en)
JP3403752B2 (en) Islanding detection device
JP3008427B2 (en) In-house stand-alone operation transfer equipment for thermal power generation equipment
JPS605727A (en) Defect current breaking system
JPH07107656A (en) Protecting device for electric power system
JPS60207416A (en) Low voltage ground-fault protecting device
JPH07236226A (en) Ground protector
JPS6223222Y2 (en)
JPH07143666A (en) Ground-fault protective circuit
JPH035134B2 (en)
JPH0515606U (en) Single-phase three-wire type distribution board neutral line open phase protection mechanism