JPS61292393A - Copper oxide kneaded material for ceramic wiring board - Google Patents

Copper oxide kneaded material for ceramic wiring board

Info

Publication number
JPS61292393A
JPS61292393A JP60134542A JP13454285A JPS61292393A JP S61292393 A JPS61292393 A JP S61292393A JP 60134542 A JP60134542 A JP 60134542A JP 13454285 A JP13454285 A JP 13454285A JP S61292393 A JPS61292393 A JP S61292393A
Authority
JP
Japan
Prior art keywords
paste
copper oxide
cuo
wiring board
ceramic wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60134542A
Other languages
Japanese (ja)
Other versions
JPH0554718B2 (en
Inventor
勉 西村
誠一 中谷
徹 石田
聖 祐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60134542A priority Critical patent/JPS61292393A/en
Priority to KR1019860004701A priority patent/KR900008781B1/en
Priority to US06/875,083 priority patent/US4695403A/en
Publication of JPS61292393A publication Critical patent/JPS61292393A/en
Publication of JPH0554718B2 publication Critical patent/JPH0554718B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、IC,LSI、チップ部品などを搭載し、か
つそれらを相互配線した回路の高密度実装用基板として
用いることのできるセラミック配線基板用酸化銅混練物
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an oxidized ceramic wiring board that can be used as a board for high-density mounting of circuits on which ICs, LSIs, chip parts, etc. are mounted and interconnected. This relates to a copper kneaded product.

従来の技術 従来より、セラミック配線基板の導体ペースト用金属と
しては、Au5Au−Pt、 Ag  Pd等の貴金属
、W、 Mo、 Mo−Mn等の高融点金属が広く用い
られていた。前者のAu、 Au−Pt、 Ag−Pd
等の貴金属ペーストは空気中で焼付けができるという反
面、コストが高いという問題を抱えている。また、後者
の、WSMO% MOMn等の高融点金属は1600℃
程度、すなわちグリーンシートの焼結温度(約1500
℃)以上の高温で同時焼成するため多層化しやすいが、
一方、導電性が低く、還元雰囲気中で焼成する必要があ
る。また、ハンダ付けのために導体表面にNi等による
メッキ処理を施す必要があるなどの問題を有している。
BACKGROUND ART Conventionally, noble metals such as Au5Au-Pt and AgPd, and high-melting point metals such as W, Mo, and Mo-Mn have been widely used as metals for conductive pastes of ceramic wiring boards. The former Au, Au-Pt, Ag-Pd
Although noble metal pastes such as can be baked in air, they have the problem of high cost. In addition, the latter high melting point metal such as WSMO% MOMn is heated at 1600℃.
degree, i.e. the sintering temperature of the green sheet (approximately 1500
It is easy to create multiple layers because it is simultaneously fired at high temperatures (℃) or higher, but
On the other hand, it has low conductivity and needs to be fired in a reducing atmosphere. Another problem is that the surface of the conductor must be plated with Ni or the like for soldering.

そこで、安価で導電性が良く、ハンダ付は性の良好なC
uペーストが用いられる様になって来た。ここでCuペ
ーストを用いたセラミック配線基板の製造方法の一例を
述べる。従来の方法はアルミナ等の焼結基板上にCuペ
ーストをスクリーン印刷し、配線パターンを形成し、乾
燥後、Cuの融点よりも低い温度で、かつCuが酸化さ
れず、導体ペースト中の有機成分が十分に燃焼する様に
酸素分圧を制御した窒素雰囲気中で焼成するというもの
である。また、Cuペーストを用いたセラミック多層配
線基板の場合は、さらに絶縁ペーストとCuペーストを
印刷後、乾燥、中性雰囲気中での焼成を所望の回数繰返
し、多層にしてゆくというものである。
Therefore, C is cheap, has good conductivity, and has good soldering properties.
U-paste has come to be used. Here, an example of a method for manufacturing a ceramic wiring board using Cu paste will be described. The conventional method is to screen print Cu paste on a sintered substrate such as alumina to form a wiring pattern, and then dry it at a temperature lower than the melting point of Cu and without oxidizing the organic components in the conductor paste. The process involves firing in a nitrogen atmosphere with a controlled oxygen partial pressure to ensure sufficient combustion. Further, in the case of a ceramic multilayer wiring board using Cu paste, after printing the insulating paste and Cu paste, drying and firing in a neutral atmosphere are repeated a desired number of times to form a multilayer.

発明が解決しようとする問題点 しかしながら、上記の様なCuペーストを用いた場合、
セラミック配線基板の製造方法においていくつかの大き
な問題点がある。まず第一に、焼成工程において、Cu
を酸化させず、なおかつCuペースト中の有機成分を完
全に燃焼させる様な酸素分圧に炉内を制御するという事
が非常に困難であるという事である。酸素分圧が少しで
も高ければ、Cu表面が酸化され、ハンダ付は性が悪く
なり、導電性の低下につながり、逆に酸素分圧が低過ぎ
ればCuメタライズの良好な接着が得られないばかりか
、Cuペースト中に含まれる有機成分の使用に困難が生
じる。つまり、ペーストのビヒクルに用いられる有機バ
インダ等が、完全に燃焼し除去されないという事である
。特にCuの融点以下の温度では、有機バインダは分解
しないといわれている。
Problems to be Solved by the Invention However, when using the above-mentioned Cu paste,
There are several major problems in the method of manufacturing ceramic wiring boards. First of all, in the firing process, Cu
It is extremely difficult to control the oxygen partial pressure in the furnace to such a level that the organic components in the Cu paste are completely combusted without oxidizing the Cu paste. If the oxygen partial pressure is even slightly high, the Cu surface will be oxidized, resulting in poor soldering properties and reduced conductivity.On the other hand, if the oxygen partial pressure is too low, good adhesion of Cu metallization will not be obtained. Otherwise, difficulties arise in using the organic components contained in the Cu paste. In other words, the organic binder used in the paste vehicle is not completely burned off and removed. It is said that organic binders do not decompose especially at temperatures below the melting point of Cu.

(文献名:例えば特開昭55−128899号公報)ま
た、金属Cuを用いた場合、たとえ脱バインダの工程と
、Cu焼付けの工程を分けたとしても、金属Cuが脱バ
インダの工程で酸化され、体積膨張を起こすため、基板
からの剥離等の問題を生ずる。
(Document name: For example, Japanese Patent Application Laid-Open No. 55-128899) Furthermore, when metal Cu is used, even if the binder removal process and the Cu baking process are separated, the metal Cu will be oxidized in the binder removal process. , which causes volumetric expansion, resulting in problems such as peeling from the substrate.

第二に、多層にする場合、印刷、乾燥後、その都度焼成
を行なうのでリードタイムが長くなる。さらに設備など
のコストアンプにつながるという問題を有している。そ
こで、特訓59−147833において、酸化銅ペース
トを用い、絶縁ペーストと導体ペーストの印刷を繰り返
し行ない多層化し、炭素に対して充分な酸化雰囲気で、
かつ内部の有機成分を熱分解させるに充分な温度で熱処
理を行ない、しかる後、Cuに対して非酸化性となる雰
囲気とし、印刷された酸化銅が金属Cuに還元され、焼
結する事を特徴とするセラミック多層配線基板の製造方
法について、すでに開示されている。この方法により焼
成時の雰囲気制御が容易になり、同時焼成が可能となっ
た。しかしながら以下に示す様な問題点が新たに見い出
された。それは、上記酸化銅ペーストにおいては、最適
なCuO粒径を選ばなければ、印刷性が悪い、ファイン
パターンが得られに<<、導体抵抗が高く、かつ収縮率
が大きいための剥離現象さらに、使用する酸化銅粉によ
って、導体層の特性、たとえば、接着強度、シート抵抗
にばらつきを生じる等である。
Second, in the case of multilayer printing, baking is performed each time after printing and drying, which increases the lead time. Furthermore, there is a problem in that it leads to increased costs for equipment and the like. Therefore, in special training 59-147833, using copper oxide paste, we repeatedly printed insulating paste and conductive paste to create multiple layers, and in an oxidizing atmosphere sufficient for carbon.
Heat treatment is performed at a temperature sufficient to thermally decompose the internal organic components, and then an atmosphere is created that is non-oxidizing to Cu, so that the printed copper oxide is reduced to metal Cu and sintered. A method for manufacturing a characteristic ceramic multilayer wiring board has already been disclosed. This method makes it easier to control the atmosphere during firing and allows simultaneous firing. However, the following new problems were discovered. In the above-mentioned copper oxide paste, if the optimum CuO particle size is not selected, printability is poor, fine patterns cannot be obtained. The properties of the conductor layer, such as adhesive strength and sheet resistance, may vary depending on the copper oxide powder used.

そこで、本発明は上記問題点に鑑み、焼成時の雰囲気制
御が容易であり、多層の場合に同時焼成が可能で、さら
に印刷性にすぐれ、安定した特性の得られるセラミック
配線基板用酸化銅ペーストを提供するものである。
Therefore, in view of the above problems, the present invention provides a copper oxide paste for ceramic wiring boards that allows easy atmosphere control during firing, allows simultaneous firing in the case of multiple layers, has excellent printability, and provides stable characteristics. It provides:

問題点を解決するための手段 上記問題点を解決するために本発明のセラミック配線基
板用酸化銅混練物は、無機固体分中の生成分である酸化
銅粉の粒子径を最適範囲内に調製したものである。
Means for Solving the Problems In order to solve the above problems, the copper oxide kneaded material for ceramic wiring boards of the present invention is produced by adjusting the particle size of the copper oxide powder, which is a product of the inorganic solid content, within an optimal range. This is what I did.

作用 本発明は上記した様に、酸化銅ペーストであるという事
で、導体中の有機成分を完全に燃焼除去するという工程
と、酸化銅をCuに還元させるという工程を分離してセ
ラミック配線基板の製造を行なう事が出来る。そのため
、焼成時の雰囲気制御が容易であり、多層の場合におい
ても脱バインダ時にCuから酸化銅への変化がないため
、体積膨張により眉間の剥離がなく、よって同時焼成が
可能となり、製造コストの低下、リーディングタイムの
短縮へとつながる。さらに、酸化銅粉の粒子径を1μm
〜9μmの範囲内に調製するという事により種々の問題
が一層解決される。まず、粒子径が9μm以上のものが
多い場合、スクリーン印刷時において、メソシュの通り
が悪く、印刷パターンにかすれが生じ、乾燥後、平滑な
表面が得にくい。また、粒子径が1μm以下のものが多
い場合、ペースト作製時に、印刷性の良い適当な粘度に
するために、ビヒクル量が多くなり、焼成時の収縮が大
きく、配線パターンが網目状になったり、断線したり、
また、剥離したりという事になり、さらには導電性は悪
化し、同時に精度の良い配線パターンも得られないとい
う問題がある。以上より、酸化銅粉の粒径は、1μm〜
9μmの範囲内に95重量%以上が含まれる事が必要で
、これによって粒子径から生ずる問題点は解決されるこ
ととなる。
Function As described above, since the present invention is a copper oxide paste, the process of completely burning off the organic components in the conductor and the process of reducing the copper oxide to Cu are separated, and the process of forming a ceramic wiring board is performed using a copper oxide paste. We can carry out manufacturing. Therefore, it is easy to control the atmosphere during firing, and even in the case of multiple layers, there is no change from Cu to copper oxide during binder removal, so there is no peeling between the eyebrows due to volume expansion, and simultaneous firing is possible, reducing manufacturing costs. leading to a reduction in reading time. Furthermore, the particle size of the copper oxide powder was reduced to 1 μm.
By adjusting the thickness within the range of ~9 μm, various problems can be further resolved. First, when most of the particles have a diameter of 9 μm or more, mesh flow is difficult during screen printing, the printed pattern becomes blurred, and it is difficult to obtain a smooth surface after drying. In addition, if many of the particles have a diameter of 1 μm or less, a large amount of vehicle is required to obtain an appropriate viscosity for good printability when making the paste, resulting in large shrinkage during firing and the wiring pattern becoming mesh-like. , disconnection,
Further, there is a problem that peeling occurs, conductivity deteriorates, and at the same time, a highly accurate wiring pattern cannot be obtained. From the above, the particle size of copper oxide powder is 1 μm ~
It is necessary that at least 95% by weight of the particles be contained within the range of 9 μm, which solves the problems caused by the particle size.

実施例 以下に本発明の実施例について説明する。Example Examples of the present invention will be described below.

市販の特級CuOを図2に示す様な温度プロフィルで大
気中で仮焼し、その後、粉砕用の三寸ポットを用いメタ
ノール中で24時間粉砕し、その後、乾燥して得た、粒
子径が1μm〜9μmの範囲内に95重量%以上が含ま
れる分級したCuOに、有機バインダとしてポリビニル
ブチラール、可塑剤として、デーn−ブチルフタレート
、溶剤としてテレピン油を加え、適度な粘度にし、Cu
Oペーストを調製した。以後このCuOペーストを、C
uOペース)(Atとする。また、同時に、平均粒子径
が1μm以下のCuOに上記の有機成分を加えて調製し
たCuOペーストを、CuOペースト(B)とし、さら
に、平均粒子径が10μmより大きいCuOに同様に有
機成分を加えて調製したCuOペーストを、CuOペー
スト(C1とする。この様にして調製した3種類のCu
Oペーストを用い、セラミック多層配線基板を作製し、
接着強度、シート抵抗等の緒特性を測定した。
Commercially available special grade CuO was calcined in the air with the temperature profile shown in Figure 2, then pulverized in methanol for 24 hours using a three-inch pot for pulverization, and then dried. Polyvinyl butyral as an organic binder, de-n-butyl phthalate as a plasticizer, and turpentine oil as a solvent are added to the classified CuO containing 95% by weight or more within the range of 1 μm to 9 μm to obtain an appropriate viscosity.
O paste was prepared. From now on, this CuO paste is
uO paste) (referred to as At. At the same time, a CuO paste prepared by adding the above organic component to CuO with an average particle size of 1 μm or less is referred to as CuO paste (B), and further, a CuO paste (B) with an average particle size of more than 10 μm A CuO paste prepared by adding an organic component to CuO in the same manner is referred to as CuO paste (C1).Three types of Cu prepared in this way
Create a ceramic multilayer wiring board using O paste,
Bond properties such as adhesive strength and sheet resistance were measured.

以下にセラミック多層配線基板の製造方法を示す。A method for manufacturing a ceramic multilayer wiring board will be described below.

まず、アルミナ焼結基板上に、絶縁ペーストを200メ
ソシユのスクリーンで約30μmの厚みとなる様に印刷
し、120℃で10分間乾燥した。なお、ここで、絶縁
ペーストは、無機成分として。ホウケイ酸ガラス粉末(
コーニング社製#7059)とアルミナ粉末を重量比1
対1となるように配合したものを用い、さらにこの混合
粉に有機バインダとしてポリビニルブチラール、可塑剤
としてデーn−ブチルフタレート、溶剤としてトルエン
とイソプロピルアルコールの混合液を用いたものを適当
な粘度になる様に混練したものである。絶縁ペースト印
刷後、前記の3種類のCuOペーストを250メツシユ
のスクリーンを用い約20μmの厚みとなる様に印刷し
、同様に乾燥させた。なお導体層は乾燥後10μm以上
の厚みを有していた。そして以上の印刷工程を所望の回
数繰り返した。本実施例においては導体層を2Nとした
。その断面図を図1に示した。次に印刷を完了した基板
のバインダ除去であるが、その−例として図3に示す様
な温度プロフィルで実施した。この時の雰囲気は、空気
中であり、500℃で導体ペースト及び絶縁体ペースト
中の有機成分のほとんどを分解させ、さらに800℃の
温度で上記有機成分を完全に除去するものである。なお
、このバインダ除去温度や雰囲気の設定については、あ
らかじめ、有機バインダの空気中での熱分析を行ない、
バインダの除去が完全に行なわれるかどうかを確認して
設定されるものである。したがってバインダの種類によ
っては、多少分解温度が異なるので、おのずと脱バイン
ダ時の温度プロフィルも異なってくるのは当然である。
First, an insulating paste was printed on an alumina sintered substrate using a 200 mesh screen to a thickness of about 30 μm, and dried at 120° C. for 10 minutes. Note that the insulating paste here is an inorganic component. Borosilicate glass powder (
Corning #7059) and alumina powder in a weight ratio of 1
A mixture of polyvinyl butyral as an organic binder, de-n-butyl phthalate as a plasticizer, and a mixture of toluene and isopropyl alcohol as a solvent was added to this mixed powder to an appropriate viscosity. It was kneaded to make it look like this. After printing the insulating paste, the three types of CuO pastes described above were printed using a 250 mesh screen to a thickness of about 20 μm and dried in the same manner. Note that the conductor layer had a thickness of 10 μm or more after drying. The above printing process was then repeated a desired number of times. In this example, the conductor layer was 2N. Its cross-sectional view is shown in FIG. Next, the binder was removed from the printed substrate, which was carried out using a temperature profile as shown in FIG. 3 as an example. The atmosphere at this time is air, and most of the organic components in the conductive paste and insulating paste are decomposed at 500° C., and the organic components are completely removed at a temperature of 800° C. In addition, regarding the binder removal temperature and atmosphere settings, we conducted a thermal analysis of the organic binder in the air in advance.
This is set after confirming whether the binder is completely removed. Therefore, since the decomposition temperature differs depending on the type of binder, it is natural that the temperature profile during binder removal also differs.

次にこの脱バインダ済基板を焼成する。Next, this binder-removed substrate is fired.

その焼成の温度プロフィルを図4に示す。雰囲気は、H
,ガスを10%含むN2ガス雰囲気中(流量2 It 
/min )で行なった。その結果、焼成によりCuO
が還元され、金属銅となり導電性パターンが形成された
。しかし、CuOペースト(B)を用いたものについて
は、配線パターンの収縮が大きく、基板表面から剥離し
、以後の測定には用いられなかった。また、CuOペー
スト(C)を用いたものについては、印刷時のかすれ、
ペーストのメツシュぬけが悪い等の影響、さらには、還
元時の収縮により断線が多く発生し、シート抵抗測定に
おいても安定して測定する事が出来なかった。一方、粒
子径を1μm〜9μmに調製したCuOを用いたCuO
ペースト囚の場合は、還元時の収縮はみられるものの、
そのシート抵抗は、線巾300μm、厚みが10μm程
度で約30mΩ/口が得られ、絶縁層の内部に形成され
た導電パターンにおいても3.5mΩ/口と表面層と同
様な結果が得られた。そして基板とCuのメツライズ性
能は、いわゆる引張りテストによって行なった結果、C
uOペースト(B)においては問題外であるが、CuO
ペースト(5)においては、1.5kg/mm” 〜1
.8kg/ms”が得られ、CuOペースト(C)にお
いても、1.2kg/mu”〜1.6に+r/112の
結果が得られた。以上の結果より、CuOペースト(B
)の場合、焼成により、導体層の剥離があるため実用不
可能であり、また、CuOペースト(C)の場合は、印
刷性が悪く、配線パターンにかすれや、切断が起こるた
めに、より細い配線パターンが要求される高密度実装用
セラミック多層配線基板の材料としては不適当であるの
は明らかでる。一方、CuOペース)(A)の場合、導
体抵抗、接着強度ともに良好で、銅多層配線基板として
充分に実用に供されるものと判断されるものであり、以
上より、CuOペースト作製に際しては、粒子径を1μ
m〜9μmの範囲内に調製する事が、ペースト作製にお
いて非常に大きな要因である事は明らかである。
The temperature profile of the firing is shown in FIG. The atmosphere is H
, in a N2 gas atmosphere containing 10% gas (flow rate 2 It
/min). As a result, CuO
was reduced to become metallic copper and a conductive pattern was formed. However, in the case of using CuO paste (B), the wiring pattern had a large shrinkage and was peeled off from the substrate surface, so that it could not be used for subsequent measurements. In addition, for those using CuO paste (C), there may be blurring during printing,
In addition to the effects of poor mesh penetration of the paste, many disconnections occurred due to shrinkage during reduction, and sheet resistance could not be measured stably. On the other hand, CuO using CuO whose particle size was adjusted to 1 μm to 9 μm
In the case of paste particles, although shrinkage is observed during reduction,
The sheet resistance was approximately 30 mΩ/hole when the line width was 300 μm and the thickness was about 10 μm, and the same result as the surface layer was obtained for the conductive pattern formed inside the insulating layer, which was 3.5 mΩ/hole. . As a result of the so-called tensile test, the methulization performance of the substrate and Cu was evaluated.
This is out of the question for uO paste (B), but CuO
In paste (5), 1.5 kg/mm” ~ 1
.. 8 kg/ms" was obtained, and a result of +r/112 of 1.2 kg/mu" to 1.6 was also obtained for CuO paste (C). From the above results, CuO paste (B
) is impractical because the conductor layer peels off during firing, and CuO paste (C) has poor printability and causes thinner wiring patterns to fade or break. It is obvious that this material is unsuitable as a material for ceramic multilayer wiring boards for high-density packaging, which require wiring patterns. On the other hand, in the case of CuO paste (A), both conductor resistance and adhesive strength are good, and it is judged that it can be used in practical use as a copper multilayer wiring board.From the above, when producing CuO paste, Particle size 1μ
It is clear that adjusting the thickness within the range of m to 9 μm is a very important factor in paste production.

なお、今回の実施例においては、導体二層の配線基板を
作製し、シート抵抗、接着強度を測定した場合の結果を
示したが、導体一層の配線基板においても確認したとこ
ろ前記と同様な結果が得られ、粒子径調製の重要性がそ
こでも示されている。
In addition, in this example, the results were shown when a wiring board with two layers of conductor was fabricated and the sheet resistance and adhesive strength were measured, but when a wiring board with one layer of conductor was also checked, the same results as above were obtained. was obtained, again demonstrating the importance of particle size control.

また、酸化銅としては、今回CuOを用いたが、Cuz
Oを用いた場合においても粒子径の影響は、大であった
。しかし、Cu、Oを用いる場合、脱バインダの工程に
おいて、CuzOペースト中のバインダが完全に燃焼除
去され、かつCu2Oが酸化され、CuOに変化する事
による体積膨張を起こさない様な0□濃度領域で行なう
必要があるのは言うまでもない。また、0□濃度が制限
されるため、ペーストに用いるバインダを02濃度が低
い状態においても十分に飛散されるアクリル系樹脂を用
いるというのも有効な方法である。
In addition, as the copper oxide, CuO was used this time, but Cuz
Even when O was used, the influence of particle size was large. However, when Cu and O are used, the binder in the CuzO paste is completely burned and removed in the binder removal process, and the 0□ concentration range is such that no volume expansion occurs due to CuO being oxidized and changing to CuO. Needless to say, it is necessary to do so. Furthermore, since the 0□ concentration is limited, it is also an effective method to use an acrylic resin that can be sufficiently dispersed even when the 02 concentration is low as the binder used in the paste.

発明の効果 以上述べた様に、本発明は、Cuを導体とする高性能な
セラミック配線基板の製造を可能にする導体材料を提供
するものである。
Effects of the Invention As described above, the present invention provides a conductor material that makes it possible to manufacture a high-performance ceramic wiring board using Cu as a conductor.

すなわち、本発明のセラミック配線基板用酸化銅混線物
ペーストを用いれば、 (1)  焼成時の雰囲気制御が容易である。
That is, by using the copper oxide hybrid paste for ceramic wiring boards of the present invention, (1) it is easy to control the atmosphere during firing;

(2)  多層基板の製造において、同時焼成が可能で
ある。
(2) Simultaneous firing is possible in the production of multilayer substrates.

(3)  印刷時の配線パターンに、かすれや切断を生
じない。
(3) Wiring patterns are not blurred or cut when printed.

(4)  非常に良好なメタライズ性が得られる。(4) Very good metallization properties can be obtained.

(5)  高い接着強度、低いシート抵抗を示し、さら
にその値にばらつきが少なく、非常に良い再現性が得ら
れる。
(5) It exhibits high adhesive strength and low sheet resistance, with little variation in its values and very good reproducibility.

この他に、本発明の酸化銅混練物ペーストを用いる事に
より、Cuの持っている導体抵抗の低さ、ハンダ付は性
の良さ、耐マイグレーション性の良さ、低コストを充分
に生かせるものであり、工業上極めて効果的な発明であ
る。
In addition, by using the copper oxide kneaded paste of the present invention, the low conductor resistance, good soldering properties, good migration resistance, and low cost of Cu can be fully utilized. , is an industrially extremely effective invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例として示した、銅多層配線基板の断面
図、第2図は、CuO仮焼工程を示す温度および雰囲気
プロファイルを示す図、第3図は、脱バインダ用熱処理
工程を示す温度および雰囲気プロファイルの一例を示す
図、第4図は、焼成工程を示す温度および雰囲気プロフ
ァイルの一例を示す図である。 l・・・アルミナ焼結基板、2・・・絶縁層、3・・・
Cuメタライズ層。 代理人の氏名 弁理士 中尾敏男 ほか1名第1図  
       3 WE2図 ime
Figure 1 is a cross-sectional view of a copper multilayer wiring board shown as an example, Figure 2 is a diagram showing the temperature and atmosphere profile showing the CuO calcination process, and Figure 3 is a diagram showing the heat treatment process for removing the binder. FIG. 4 is a diagram showing an example of a temperature and atmosphere profile showing an example of a firing process. l... Alumina sintered substrate, 2... Insulating layer, 3...
Cu metallized layer. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1
3 WE2 figure ime

Claims (1)

【特許請求の範囲】[Claims]  酸化銅を生成分とし、かつ酸化銅粉の95重量%以上
が粒子径1μm〜9μmの範囲内に含まれる無機固体分
と、少なくとも有機バインダと可塑剤と有機溶剤とを有
するビヒクルからなることを特徴とするセラミック配線
基板用酸化銅混練物。
Copper oxide powder is a product, and 95% by weight or more of the copper oxide powder is composed of an inorganic solid component with a particle size in the range of 1 μm to 9 μm, and a vehicle containing at least an organic binder, a plasticizer, and an organic solvent. Features: Copper oxide kneaded material for ceramic wiring boards.
JP60134542A 1985-06-17 1985-06-20 Copper oxide kneaded material for ceramic wiring board Granted JPS61292393A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60134542A JPS61292393A (en) 1985-06-20 1985-06-20 Copper oxide kneaded material for ceramic wiring board
KR1019860004701A KR900008781B1 (en) 1985-06-17 1986-06-13 Thick film conductor composition
US06/875,083 US4695403A (en) 1985-06-17 1986-06-17 Thick film conductor composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60134542A JPS61292393A (en) 1985-06-20 1985-06-20 Copper oxide kneaded material for ceramic wiring board

Publications (2)

Publication Number Publication Date
JPS61292393A true JPS61292393A (en) 1986-12-23
JPH0554718B2 JPH0554718B2 (en) 1993-08-13

Family

ID=15130750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60134542A Granted JPS61292393A (en) 1985-06-17 1985-06-20 Copper oxide kneaded material for ceramic wiring board

Country Status (1)

Country Link
JP (1) JPS61292393A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894184A (en) * 1986-08-27 1990-01-16 The Furukawa Electric Co., Ltd. Low-temperature burnt conductive paste and method of manufacturing printed circuit board
US5120473A (en) * 1987-10-12 1992-06-09 Ngk Spark Plug Co., Ltd. Metallizing composition for use with ceramics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052096A (en) * 1983-08-31 1985-03-23 松下電工株式会社 Method of producing ceramic circuit board
JPS6126293A (en) * 1984-07-17 1986-02-05 松下電器産業株式会社 Ceramic multilayer circuit board and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052096A (en) * 1983-08-31 1985-03-23 松下電工株式会社 Method of producing ceramic circuit board
JPS6126293A (en) * 1984-07-17 1986-02-05 松下電器産業株式会社 Ceramic multilayer circuit board and method of producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894184A (en) * 1986-08-27 1990-01-16 The Furukawa Electric Co., Ltd. Low-temperature burnt conductive paste and method of manufacturing printed circuit board
US5120473A (en) * 1987-10-12 1992-06-09 Ngk Spark Plug Co., Ltd. Metallizing composition for use with ceramics

Also Published As

Publication number Publication date
JPH0554718B2 (en) 1993-08-13

Similar Documents

Publication Publication Date Title
KR900008781B1 (en) Thick film conductor composition
JPS61292393A (en) Copper oxide kneaded material for ceramic wiring board
JPS63257107A (en) Metallizing composition
JPS61288484A (en) Kneaded conductor for ceramic wiring board
JPS61289691A (en) Metalized composition
US5167913A (en) Method of forming an adherent layer of metallurgy on a ceramic substrate
JPS62145896A (en) Manufacture of ceramic copper multilayer wiring board
JPH0588557B2 (en)
JPS63257108A (en) Metallizing composition
JPS6393193A (en) Manufacture of copper conductor thick film circuit board
JPS6126292A (en) Ceramic multilayer circuit board and method of producing same
JPS62232191A (en) Manufacture of ceramic multilayer interconnection board
JPH0320914B2 (en)
JPS63257109A (en) Metallizing composition
JPH0632379B2 (en) Method for manufacturing ceramic wiring board
JPS62150800A (en) Manufacture of ceramic copper multilayer circuit board
JP2002231049A (en) Conductive paste
JPS61292394A (en) Metalized composition for ceramic wiring board
JPS5915481B2 (en) Manufacturing method of glaze resistor
JPS63181496A (en) Manufacture of thick film circuit board
JPS5873185A (en) Method of producing thick film circuit board
JPS62149194A (en) Manufacture of ceramic copper multilayer circuit board
JPS63291304A (en) Metallized constituent
JPS62198198A (en) Manufacture of ceramic multilayer interconnecting board
JPH03285208A (en) Conductive paste

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees