JPS61291912A - Method and apparatus for producing cast ingot - Google Patents

Method and apparatus for producing cast ingot

Info

Publication number
JPS61291912A
JPS61291912A JP61135068A JP13506886A JPS61291912A JP S61291912 A JPS61291912 A JP S61291912A JP 61135068 A JP61135068 A JP 61135068A JP 13506886 A JP13506886 A JP 13506886A JP S61291912 A JPS61291912 A JP S61291912A
Authority
JP
Japan
Prior art keywords
mold
molten metal
heat
cooled
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61135068A
Other languages
Japanese (ja)
Inventor
ヘルベルト・バルク
ペーテル・マツハネル
ヴイルフリート・マイエル
ヴエルネル・ミツテル
クルト・シユヴアルツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Edelstahlwerke AG
Original Assignee
Vereinigte Edelstahlwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Edelstahlwerke AG filed Critical Vereinigte Edelstahlwerke AG
Publication of JPS61291912A publication Critical patent/JPS61291912A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • B22D27/06Heating the top discard of ingots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/06Ingot moulds or their manufacture
    • B22D7/10Hot tops therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Furnace Details (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属溶湯例えば溶鋼を単一または複数部分か
ら成り上載せ体をもつ鋳型へ入れ、それから熱を供給し
なから鋳塊を凝固させる鋳塊の製造方法および装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a process in which molten metal, such as molten steel, is poured into a mold consisting of a single or multiple parts and has an overlay, and then heat is supplied to solidify the ingot. The present invention relates to a method and apparatus for manufacturing an ingot.

〔従来の技術〕[Conventional technology]

発電所建設用鍛造片の原材料としての重い鍛造塊の製造
は、製綱業者にとって最大の誘惑の1つである。偏析の
ないことや純度に対するり7ビン製造業者の要求は、最
近の方法でも守ることが困難である。
The production of heavy forged ingots as raw material for forged pieces for power plant construction is one of the greatest temptations for rope manufacturers. The requirements of bottle manufacturers for non-segregation and purity are difficult to meet even with modern methods.

最近の取鍋冶金装置により、近年の製錬や溶湯処理は大
きく進歩したが、従来の鋳塊における凝固は、依然とし
て製造連鎖において最も影響を受けない部分である。
Although modern ladle metallurgy equipment has greatly advanced smelting and melt processing in recent years, solidification in traditional ingots remains the least sensitive part of the production chain.

典型的な欠陥現象は、多くの場合非金属介在物を含む負
に偏析した底円錐、鋳塊軸線にV偏析を伴う引は巣、鋳
塊頭部におけるC1SおよびPの富化を伴う正の偏析、
SおよびPの富化を伴うAまたはλ偏析である。これら
偏析の発生に関して、現在まだ一般に認められた理論は
ない。
Typical defect phenomena are a negatively segregated bottom cone, often with nonmetallic inclusions, a drag cavity with V segregation in the ingot axis, and a positive cone with C1S and P enrichment in the ingot head. segregation,
A or λ segregation with S and P enrichment. There is currently no generally accepted theory regarding the occurrence of these segregations.

底円錐から非金属介在物をなくすため、重い鋳塊では、
鋳塊底部の15%以上を除去せねばならない。失われる
頭部の割合は、重い鋳塊では25%以上になることがあ
る。凝固の制御は、鋳塊の形状や寸法または挿入結締帽
体の変更により、限られた程度にしか可能でない。
In order to eliminate non-metallic inclusions from the bottom cone, in heavy ingots,
At least 15% of the bottom of the ingot must be removed. The percentage of heads lost can be 25% or more in heavy ingots. Control of solidification is possible only to a limited extent by changing the shape and dimensions of the ingot or the insert cap.

これらの欠陥は次の方法で回避することができる。すな
わち従来の鍛造塊鋳型へ水冷環を挿入し、鋳型に溶湯を
入れ、溶湯を冶金学的に活性なスラブで覆い、このスラ
グへ電極を没入させる。電気エネルギーの供給によりス
ラグ浴が強く加熱されて、ts極が溶融し、凝固過程中
鋳塊の引は巣がなくなる。エネルギー供給の適切な変化
により凝固も制御することができる。この方法により製
造される鋳塊は負の底偏析とそれに伴う欠点をもたず、
V[析もなく、引は巣もほとんどない。これは、この方
法により製造された数1000個の鍛造塊について実証
できた。
These defects can be avoided in the following way. That is, a water-cooled ring is inserted into a conventional forged ingot mold, the mold is filled with molten metal, the molten metal is covered with a metallurgically active slab, and an electrode is immersed in the slug. The supply of electrical energy heats the slag bath intensely, melting the ts poles and making the ingot free of cavities during the solidification process. Coagulation can also be controlled by appropriate changes in the energy supply. The ingots produced by this method do not have negative bottom segregation and the associated defects;
V This could be demonstrated for several thousand forged ingots produced by this method.

さてタービン製造業者により、超音波検査の陥は、上述
した方法では充分確実に回避できなかった。
Now, according to the turbine manufacturer, ultrasonic inspection failures could not be avoided with sufficient certainty using the methods described above.

〔発明が解決しようとする間廟点〕[The critical point that the invention attempts to solve]

さて本発明の課題は、1IljIの大きさの等価欠陥も
確実に回避でき、同時にエネルギーや装置の費用の増大
も必要としない方法および装置を提供することである。
It is an object of the present invention to provide a method and a device that can reliably avoid even equivalent defects with a size of 1IljI, and at the same time do not require an increase in energy or equipment costs.

〔間頌点を解決するための手段〕[Means for resolving interlude points]

金属溶湯例えば溶鋼を単一または神数部分から成り上載
せ体特に水冷帽体をもつ鋳型へなるべく上載せ体より下
まで入れ、それから導電スラグなるべく液化した高温ス
ラグで溶湯面を覆い、場合によっては金属浴湯とほぼ同
じ組成の特に消耗性の電極を介して、溶湯に熱および場
合によってはさらに溶湯を供給する鋳塊の製造方法1こ
おいて、本発明によれば、鋳型の上部範囲したがって上
載せ体より下の凝固する鋳塊から、徐々に熱特に凝固熱
を排出し、鋳型のなるべく下部特に底板を冷却なるべく
液冷し、凝固する鋳塊に熱および場合によっては金!!
!溶湯を電極を介して供給する。
Molten metal, for example, molten steel, is poured into a mold consisting of a single or multiple parts and having an overlay, especially a water-cooled cap, as far as possible below the overlay, and then the surface of the molten metal is covered with conductive slag, preferably liquefied high-temperature slag. Method 1 for the production of an ingot, in which the upper region of the mold and therefore Heat, especially solidification heat, is gradually discharged from the solidifying ingot below the overlying body, and the lower part of the mold, especially the bottom plate, is cooled with liquid if possible, and the solidifying ingot is heated and, in some cases, gold! !
! Molten metal is supplied via electrodes.

この適切な熱供給および熱排出または冷却によって、鋳
塊を殻状に凝固させることができ、その際既に凝固した
溶湯のびん首状縮小部が生じないような期間だけ、鋳塊
頭部における凝固を狙止し、それにより上述した欠陥を
生ずる偏析や介在物等を回避することができる。さて全
く驚くべきことに、このような適切な凝固により、一部
は非金属介在物に帰因するこれらの欠陥を、これらの非
金属介在物の上昇または浮上により除去することができ
た。
With this appropriate heat supply and heat removal or cooling, the ingot can be solidified into a shell, with solidification at the ingot head only for a period that does not result in a neck-like reduction of the already solidified molten metal. This makes it possible to avoid segregation, inclusions, etc. that cause the above-mentioned defects. Now, quite surprisingly, with such a suitable solidification, it was possible to eliminate these defects, which are due in part to non-metallic inclusions, by lifting or floating of these non-metallic inclusions.

本発明の別の特徴によれば、スラグに0.4ないし2 
、’OKW /ct/lの出力密度とそれぞれ電極にお
ける8ないし25A/7の電流密度で熱を供給する。そ
れによりスラグ中に2つの重なる力が生じ、熱により生
ずる力により浴が動かされて、電極より下のスラグが上
昇し、表面に沿って帽体の外側へ移動し、それから今や
冷却したスラグが金属溶湯の表面へ達し、これを冷却す
る。
According to another feature of the invention, the slag has a
, 'OKW /ct/l and a current density of 8 to 25 A/7 at each electrode. This creates two superimposed forces in the slag, and the thermally generated forces move the bath, causing the slag below the electrode to rise and move along the surface to the outside of the cap, and then the now cooled slag It reaches the surface of the molten metal and cools it.

なるべく大きいローレンツ力により生ずるスラグの有利
な運動は、鋳塊内へほぼ逆向きに行なわれ、しかもSa
より下の高温スラブは金属表面まで下降して、その膿を
金属面へ放出し、それから上載せ体の縁の方へ動き、そ
こで壁に沿って上昇し、冷却されたスラグはスラグ面の
表面に沿って再び電極の方へ動く。それによりさらに凝
固したスラグから成る蓋が生ずるが、これは熱絶縁を行
なうため同様に望ましい。このようなスラグの運動によ
り、凝固の際における鋳塊のびん状くびれも回避される
The advantageous movement of the slag caused by the Lorentz forces, which are as large as possible, takes place approximately in the opposite direction into the ingot and, moreover, the Sa
The lower hot slab descends to the metal surface and releases its pus onto the metal surface, then moves towards the edge of the overlay where it rises along the walls and the cooled slag is deposited on the surface of the slag surface. along the direction towards the electrode again. This also results in a lid consisting of solidified slag, which is also desirable because it provides thermal insulation. This movement of the slag also avoids bottle-shaped necking of the ingot during solidification.

本発明による金属鋳塊W造装置は鋳型をもち、この鋳型
特に複数部分から成る鋳型が場合によっては液冷される
上載せ体をもち、この上載せ体内へ特に消耗性の電極が
突出し、この電極が電源の1つの極に接続され、別のS
極または鋳型の広範囲特に底板が電源の別の極に接続さ
れているが、この装置の特徴として、鋳型がなるべく上
載せ体より下にあるその上部範囲を熱絶縁され、特に熱
絶縁物を、特に上載せ体なしの鋳型の高さのなるべく3
分の1にわたる鋳型外壁にもち、なるべく底板が冷却特
に液冷可能である。
The apparatus for making metal ingots according to the invention has a mold, in particular a multi-part mold, which optionally has a liquid-cooled overlay into which a particularly consumable electrode projects. The electrodes are connected to one pole of the power source and the other S
Although the poles or large areas of the mold, especially the bottom plate, are connected to another pole of the power supply, it is a feature of this device that the mold is thermally insulated, preferably in its upper area below the overlay, and in particular the thermal insulation is connected to another pole of the power supply. In particular, the height of the mold without an overlay should be as high as 3
The outer wall of the mold extends over one-half of the length of the mold, and preferably the bottom plate can be cooled, especially liquid-cooled.

冷却される上載せ体より下で鋳型を熱絶縁することによ
って、#塊が所望の凝固特性をもち、液冷底板により鋳
塊基部の好ましい凝固が促進されるようすることができ
る。このような装置は特に簡単であるが、装置をこのよ
うに構想することは容易でなかった。なぜならば、鋳塊
には一見互いに逆の異なる作用、しかも熱の供給、徐々
の冷却および好ましい冷却が行なわれるからである。
By thermally insulating the mold below the cooled overlay, it is possible to ensure that the # ingot has the desired solidification properties and that the liquid-cooled bottom plate promotes favorable solidification of the ingot base. Although such a device is particularly simple, it was not easy to conceive the device in this way. This is because the ingot is subjected to different, seemingly opposite actions: supply of heat, gradual cooling and favorable cooling.

本発明によるfjffの特徴によれば、複数部分から成
る鋳型のほぼ全上部が熱絶縁物をもっている。
According to a feature of the fjff according to the invention, substantially the entire upper part of the multi-part mold has thermal insulation.

最後に別の構成により、鋳型がその下部範囲特に底板に
属する範囲で、その上部範囲より大きい壁厚をもってい
ると、異なる放熱の効果が強められる。下部範囲におけ
る大きい壁厚・は、大きい質量のため大きい熱容量をも
ち、さらに底板との接触面が大きくなり、一方上部範囲
の小さい壁厚は熱容量を小さくする。
Finally, according to another feature, if the mold has a wall thickness greater in its lower region, in particular in the region belonging to the bottom plate, than in its upper region, a different heat dissipation effect is enhanced. A large wall thickness in the lower region has a large heat capacity due to the large mass and also a large contact surface with the bottom plate, while a small wall thickness in the upper region results in a small heat capacity.

〔実施例〕〔Example〕

鋳塊頭部を加熱される鋳型を釈す図面および例により本
発明を以下に説明する。
The invention will be explained below by means of figures and examples showing a mold in which the ingot head is heated.

図面に概略的に示す鋳塊製造装置は底板1をもち、この
底板は水供給および排出導管2,3゛を介して冷却水を
供給される。他の液体例えば液状金属、ガス等による冷
却も同様に行なうことができる。底板l上には鋳型の下
部4が載り、その凹所5へ上昇する溶湯用の注入通路が
通じている。鋳型の中間部分6は上方へ少し円錐状に開
く断面をもっている。この鋳型部分6上には上の鋳型部
分7が載せられて、その外側に熱絶縁物8をもっている
。この熱絶縁物は鉱物質絶縁物例えば鉱質綿、ひる石ま
たは石綿を満たされ、かつ機械的損傷から保護するだめ
の金属板外被をもっている。さらに水冷上載せ体9が設
けられ、この中に溶融性tl1g1oが設けられている
。。底板lと電極IOは概略的に示す電源11に接続さ
れている。図面かられかるように、金属溶m12は上載
せ体9の所まで達せず、上載せ体9と金属溶湯!2との
間に溶融スラグ13がある。
The ingot making apparatus shown diagrammatically in the drawing has a bottom plate 1 which is supplied with cooling water via water supply and discharge conduits 2, 3'. Cooling with other liquids, such as liquid metals, gases, etc., can be performed in a similar manner. On the bottom plate l rests the lower part 4 of the mold, into which the recess 5 is connected an injection channel for the rising molten metal. The middle part 6 of the mold has a cross section that opens slightly conically upwards. An upper mold part 7 is placed on this mold part 6 and has a thermal insulation 8 on its outside. The thermal insulation is filled with mineral insulation, such as mineral wool, vermiculite or asbestos, and has a metal plate jacket which protects it from mechanical damage. Furthermore, a water-cooled overlay 9 is provided, in which meltable tl1g1o is provided. . The bottom plate l and the electrode IO are connected to a power source 11 which is schematically shown. As can be seen from the drawing, the molten metal m12 does not reach the overlying body 9, and the overlying body 9 and the molten metal! There is a molten slag 13 between the two.

例1 図面による装置へ、重量%でCO,27、S 0.00
+、P O,003、Mn O,40、Cr 1.32
、Mo O,44、Ni 2.64、V O,Q5の化
学組成を含む36tの68が入れられ、それから300
v1の直径をもつ電極が入れられた。金属溶湯が液状の
溶融スラグで覆われ、それから上載せ体がスラグへ没入
され、その際金B溶湯への上載せ体の没入は回避された
。それから直径300++u+の電極がスラグへ没入さ
れた。
Example 1 To the device according to the drawing, CO, 27, S 0.00 in weight %
+, P O,003, Mn O,40, Cr 1.32
, Mo O, 44, Ni 2.64, V O, Q5, and then 300
An electrode with a diameter of v1 was inserted. The molten metal was covered with liquid molten slag, and then the overlay was immersed into the slag, avoiding immersion of the overlay into the Gold B melt. Then an electrode with a diameter of 300++u+ was immersed into the slug.

それから10時間の凝固中に、電極を介して溶潟へ熱が
、最初+、33KW/fflの出力密度と電極における
12A/cIの電流密度で供給された。鋳塊は16時時
間先全に凝固し、それから底板および土蔵せ体への冷媒
供給が断たれ、同時に溶融する電極を介してそれ以上の
熱は供給されなかった。こうして得られた鋳塊が超音波
で検査され、基部にも中心にも頭部にも、IIJの大き
さの等価欠陥をもつ介在物をもっていなかった。
During the subsequent 10 hours of solidification, heat was initially supplied to the melt lagoon via the electrodes with a power density of +33 KW/ffl and a current density of 12 A/cI at the electrodes. The ingot completely solidified after 16 hours, and then the coolant supply to the bottom plate and storehouse was cut off, and at the same time no further heat was supplied via the melting electrodes. The ingot thus obtained was examined ultrasonically and was free of inclusions at the base, center, or head with an equivalent defect of IIJ size.

例2 例1と類似な過程がとられたが、装置は鋳型の上3分の
1に熱絶縁物をもっていなかった。
Example 2 A similar procedure to Example 1 was followed, but the device did not have thermal insulation in the upper third of the mold.

鋳塊は一部分粗い非金属介在物のある負に偏析した底円
錐をもたず、λ線または偏析線をほとんどもたす、■偏
析は全く現われず、引は巣はほとんど現われなかったが
、超音波検査の際111mの大きさの非金属等価介在物
が認められた。
The ingot did not have a negatively segregated bottom cone with some coarse nonmetallic inclusions, and had almost no λ rays or segregation lines. A nonmetallic equivalent inclusion with a size of 111 m was observed during ultrasonic examination.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明による鋳塊製造装置の垂直断面図である。 1・・・底板、4・・・鋳型の下部範囲、7・・・鋳型
の上部範囲、8・・・熱絶縁物、9自・土蔵せ体、10
・・・電極、11・・・rs諒、+2・・・金属浴湯、
+3・・・スラグ。
The figure is a vertical sectional view of an ingot manufacturing apparatus according to the present invention. DESCRIPTION OF SYMBOLS 1... Bottom plate, 4... Lower range of the mold, 7... Upper range of the mold, 8... Heat insulator, 9 Self-storehouse body, 10
...electrode, 11...rsyon, +2...metal bath water,
+3...Slag.

Claims (1)

【特許請求の範囲】 1 金属溶湯例えば溶鋼を単一または複数部分から成り
上載せ体特に水冷帽体をもつ鋳型へなるべく上載せ体よ
り下まで入れ、それから導電スラグなるべく液化した高
温スラグで溶湯面を覆い、場合によつては金属溶湯とほ
ぼ同じ組成の特に消耗性の電極を介して、溶湯に熱およ
び場合によつてはさらに溶湯を供給する方法において、
鋳型の上部範囲したがつて上載せ体より下の凝固する鋳
塊から、徐々に熱特に凝固熱を排出し、鋳型のなるべく
下部特に底板を冷却なるべく液冷し、凝固する鋳塊に熱
および場合によつては金属溶湯を電極を介して供給する
ことを特徴とする、鋳塊の製造方法。 2 液状スラグに、少なくとも0.4ないし2.0KW
/cm^2の出力密度とそれぞれ電極における8ないし
25A/cm^2の電流密度で熱を供給することを特徴
とする、特許請求の範囲第1項に記載の方法。 3 鋳型特に複数部分から成る鋳型が場合によつては液
冷される上載せ体をもち、この上載せ体内へ特に消耗性
の電極が突出し、この電極が電源の1つの極に接続され
、別の電極または鋳型の底範囲特に底板が電源の別の極
に接続されているものにおいて、鋳型がなるべく上載せ
体(9)より下にあるその上部範囲(7)を熱絶縁され
、特に熱絶縁物(8)を、特に上載せ体なしの鋳型の高
さのなるべく3分の1にわたる鋳型外壁にもち、なるべ
く底板(1)が冷却特に液冷可能であることを特徴とす
る、鋳塊の製造装置。 4 複数部分から成る鋳型のほぼ全上部(7)が熱絶縁
物(8)をもっていることを特徴とする、特許請求の範
囲第3項に記載の装置。 5 鋳型がその下部範囲(4)またはその下部範囲(4
)に近い側で、その上部範囲(7)またはその上部範囲
(7)に近い側より大 きい壁厚をもつていることを特徴とする、特許請求の範
囲第4項に記載の装置。
[Scope of Claims] 1. Molten metal, for example, molten steel, is poured into a mold consisting of a single or multiple parts and having an overlay body, especially a water-cooled cap body, as far as possible below the overlay body, and then conductive slag, preferably liquefied high-temperature slag, is applied to the molten metal surface. in a method of supplying heat and optionally further molten metal to the molten metal via a particularly consumable electrode, possibly of approximately the same composition as the molten metal,
Heat, especially solidification heat, is gradually discharged from the solidifying ingot in the upper region of the mold, and therefore below the overlying body, and the lower part of the mold, especially the bottom plate, is cooled with liquid if possible, and the heat and heat are released into the solidifying ingot. In some cases, a method for producing an ingot, characterized by supplying molten metal through an electrode. 2 At least 0.4 to 2.0KW to liquid slag
2. A method according to claim 1, characterized in that the heat is supplied with a power density of /cm^2 and a current density of 8 to 25 A/cm^2 at each electrode. 3 Molds, in particular multi-part molds, have an overlay, possibly liquid-cooled, into which a particularly consumable electrode projects, which electrode is connected to one pole of a power source and connected to another. The electrode or the bottom area of the mold, in particular in those where the bottom plate is connected to another pole of the power supply, the mold preferably has its upper area (7) below the top body (9) thermally insulated, in particular thermally insulated. (8) on the outer wall of the mold, preferably covering as much as one-third of the height of the mold without an overlay, and preferably having a bottom plate (1) that can be cooled, especially liquid-cooled. Manufacturing equipment. 4. Device according to claim 3, characterized in that substantially the entire upper part (7) of the multi-part mold has a thermal insulation (8). 5 If the mold is in its lower area (4) or its lower area (4
5. Device according to claim 4, characterized in that the side closer to the upper region (7) has a greater wall thickness than the upper region (7) or the side closer to the upper region (7).
JP61135068A 1985-06-19 1986-06-12 Method and apparatus for producing cast ingot Pending JPS61291912A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0182885A AT395296B (en) 1985-06-19 1985-06-19 METHOD AND DEVICE FOR PRODUCING BLOCKS
AT1828/85 1985-06-19

Publications (1)

Publication Number Publication Date
JPS61291912A true JPS61291912A (en) 1986-12-22

Family

ID=3521861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61135068A Pending JPS61291912A (en) 1985-06-19 1986-06-12 Method and apparatus for producing cast ingot

Country Status (6)

Country Link
EP (1) EP0207066B1 (en)
JP (1) JPS61291912A (en)
KR (1) KR870000120A (en)
AT (1) AT395296B (en)
BR (1) BR8602815A (en)
DE (1) DE3676748D1 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE855151C (en) * 1950-11-11 1954-04-08 Gussstahlwerk Bochumer Ver Ag Casting mold and process for the production of steel blocks
CH351719A (en) * 1956-02-22 1961-01-31 Bochumer Verein Fuer Gussstahl Method and apparatus for producing heavy steel ingots, e.g. Forging blocks, with good mechanical properties inside
GB948161A (en) * 1959-09-11 1964-01-29 British Oxygen Co Ltd Manufacture of steel ingots or castings
AT287215B (en) * 1968-01-09 1971-01-11 Boehler & Co Ag Geb Method and device for electroslag remelting of metals, in particular steels
AT297959B (en) * 1968-06-28 1972-04-25 Boehler & Co Ag Geb Process for electroslag remelting of metals and alloys
US3820587A (en) * 1969-01-20 1974-06-28 Boehler & Co Ag Geb Apparatus for making metal ingots
AT295061B (en) * 1969-09-18 1971-12-27 Boehler & Co Ag Geb Methods and devices for electroslag remelting of metals, in particular steels
JPS51149824A (en) * 1975-06-18 1976-12-23 Nippon Kokan Kk Downwardly divergent mold
IT1040998B (en) * 1975-07-23 1979-12-20 Centro Speriment Metallurg ROLLER FOR THE PRODUCTION OF MELTED INGOTS UNDER ELECTROSCORIA
DE2604817A1 (en) * 1976-02-07 1977-08-11 Ver Edelstahlwerke Ag METHOD AND DEVICE FOR THE PRODUCTION OF BLOCKS
DE2654834C2 (en) * 1976-12-03 1984-05-30 Vereinigte Edelstahlwerke AG (VEW) Wien AT Niederlassung Vereinigte Edelstahlwerke AG (VEW) Verkaufsniederlassung Büderich, 4005 Meerbusch Procedure for block head heating
DE2655602C2 (en) * 1976-12-08 1982-12-02 Vereinigte Edelstahlwerke AG (VEW) Wien AT Niederlassung Vereinigte Edelstahlwerke AG (VEW) Verkaufsniederlassung Büderich, 4005 Meerbusch Method and apparatus for making blocks
IT1077822B (en) * 1977-02-04 1985-05-04 Terni Ind Elettr DEVICE FOR THE SUPPLY OF MELTED METAL DURING THE SOLIDIFICATION OF THE LINGOTTS

Also Published As

Publication number Publication date
ATA182885A (en) 1992-04-15
DE3676748D1 (en) 1991-02-14
KR870000120A (en) 1987-02-16
AT395296B (en) 1992-11-10
EP0207066A2 (en) 1986-12-30
EP0207066B1 (en) 1991-01-09
BR8602815A (en) 1987-02-10
EP0207066A3 (en) 1989-03-29

Similar Documents

Publication Publication Date Title
JPH08187566A (en) Pressure forming method and pressure forming machine
KR20160105428A (en) Method and plant for the production of long ingots having a large cross-section
CN201150980Y (en) Composite crystallizer device for continuous casting of titanium-nickel alloy
US7243701B2 (en) Treating molten metals by moving electric arc
AU2002222478A1 (en) Treating molten metals by moving electric arc
US6758259B1 (en) Method and arangement for producing casting moulds from metal
US3610320A (en) Unit for manufacturing hollow metal ingots
WO2012083671A1 (en) Method for enhancing self-feeding ability of heavy section casting blank
JP4548483B2 (en) Casting method for molten alloy
JPS61291912A (en) Method and apparatus for producing cast ingot
SU341323A1 (en) Method of electroslag casting of ingots
EP0457502B1 (en) Method and apparatus for precision casting
JPH08279B2 (en) Manufacturing method of steel forgings
US4807688A (en) Submerged casting
JP2008142717A (en) METHOD AND APPARATUS FOR MAKING INGOT OF Ti AND Ti ALLOY OR TiAl
JP2005059015A (en) Device for melting and casting metal
JPS63207984A (en) Melter for metal
RU2319752C2 (en) Method for induction melting of metal and apparatus for performing the same
JPH0531571A (en) Method and apparatus for manufacturing casting
JP2006289431A (en) Method for casting molten alloy
JPH0775854A (en) Core cracking preventing mold
JPH105979A (en) Immersion casting method of metal
AU2008200261B2 (en) Treating molten metals by moving electric arc
JPH07227653A (en) Method and device for reducing shrinkage hole in continuous casting
KR810000573B1 (en) Method of producing ingots of unalloyed and alloyed steels