JPS6129077A - Cooling device for fuel cell - Google Patents

Cooling device for fuel cell

Info

Publication number
JPS6129077A
JPS6129077A JP14995184A JP14995184A JPS6129077A JP S6129077 A JPS6129077 A JP S6129077A JP 14995184 A JP14995184 A JP 14995184A JP 14995184 A JP14995184 A JP 14995184A JP S6129077 A JPS6129077 A JP S6129077A
Authority
JP
Japan
Prior art keywords
cooling
manifold
stack
plate
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14995184A
Other languages
Japanese (ja)
Inventor
Masaru Tsutsumi
堤 勝
Hideo Hagino
秀雄 萩野
Kazushi Goto
後藤 一志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14995184A priority Critical patent/JPS6129077A/en
Publication of JPS6129077A publication Critical patent/JPS6129077A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To uniformize temperature at both upper and lower sides, by feeding cooling air to be fed to a cooling plate of a cell stack with pressure from the underside of an inlet side manifold whose thickness is reduced in proportion as it goes upward from the lower part. CONSTITUTION:A unit cell and a gas separator plate are alternately stacked up and at every stacked cell, a cooling plate is interposed in between, thus a fuel cell stack 1 is formed. A cooling gas manifold 21 at the inlet side and a manifold 21' at the outlet side, made up into such a form as being reduced the thickness in proportion as it goes upward from the lower part, are attached to the side, while a pressure-feed duct 23 of a blower 22 is connected to an interconnecting port at the underside of the manifold 21 at the inlet side, and further straightening plates 24 and distributing plates 25 are installed in the inside, distributing air quantities, and cooling air is fed to four substacks of the stack 1. Accordingly, air velocity distribution to each cooling plate over both upper and lower parts is uniformized, equalizing temperature, thus a cell characteristic is improvable.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は気体冷却式燃料電池、特に冷却専用気体が入
口側マニホルドの下方より電池スタック積重方向圧圧送
される方式の冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field This invention relates to a gas-cooled fuel cell, and particularly to a cooling device in which a cooling gas is pumped from below an inlet side manifold in the stacking direction of the cell stack. It is.

(ロ)従来の技術 燃料電池は反応熱により昇温するので180℃前後の作
動温度に維持するには冷却を必要とする。
(b) Conventional technology Since the temperature of a fuel cell increases due to the heat of reaction, cooling is required to maintain the operating temperature at around 180°C.

冷却気体の供給方法として電池スタック積重面に向って
供給する方法と、電池スタック積重面に沿って供給する
方法とがある。しかし前者は入口ダクトが横方向に突出
すると共にスタック高が大きくなるにつれて入口側マニ
ホルドの厚み寸法本大きくかり、特に複数基のスタック
に対する冷却気体経路を共通化する場合スペース的に不
利である。−劣後者は入口ダクトがマニホルド下面に形
成できると共にマニホルドの厚み寸法も小さくなるとい
う利点があるけれどもスタック高さの増大につれて冷却
気体を均一に分配することがむつかしく、電池スタック
の上下で温度のバラツキが生じて電池特性を劣化させる
原因に力る々どの問題があった。
There are two methods for supplying the cooling gas: one method is to supply the cooling gas toward the battery stack stacking surface, and the other is to supply the cooling gas along the battery stack stacking surface. However, in the former case, as the inlet duct protrudes laterally and the height of the stack increases, the thickness of the inlet manifold increases, which is disadvantageous in terms of space, especially when a cooling gas path is shared for a plurality of stacks. -The latter has the advantage that the inlet duct can be formed on the bottom surface of the manifold and the thickness of the manifold can be reduced, but as the stack height increases, it becomes difficult to distribute the cooling gas evenly, and the temperature varies between the top and bottom of the battery stack. There were many problems that caused this to occur and deteriorate the battery characteristics.

CI  発明が解決しようとする問題点この発明は電池
スタック積重面に沿って供給される冷却気体をスタック
上下に亘り冷却通路に均一に配分してスタック温度の均
一化を図ることである。
CI Problems to be Solved by the Invention The present invention aims to make the stack temperature uniform by uniformly distributing cooling gas supplied along the stacking surface of the battery stack to the cooling passages above and below the stack.

に)問題点を解決するための手段 この発明は電池スタックの冷却通路が開口する周面に堰
付けた入口側マニホルドが、下方より上方に向い厚みの
縮小する形状であり且その下面に冷却気体の圧送ダクト
を連結し、前記ダクト内を各分割路の風量が均一と々る
よう複数の整流板で分割すると共に前記マニホルド内を
前記各整流板に連繋された分配板で区分して前記スタッ
クを均等に分けるサブスタック毎に冷却気体を分流せし
めた本のである。
B) Means for Solving the Problems This invention is characterized in that the inlet side manifold, which is dammed on the peripheral surface where the cooling passage of the battery stack opens, has a shape whose thickness decreases from the bottom to the top, and a cooling gas is provided on the bottom surface of the inlet manifold. The pressure-feeding ducts are connected, the inside of the duct is divided by a plurality of rectifying plates so that the air volume in each divided passage is uniform, and the inside of the manifold is divided by a distribution plate connected to each of the rectifying plates, so that the stack This is a book in which the cooling gas is divided into each substack, which is divided into equal parts.

(ホ)作用 この発明によればプロワにより圧送された冷却空気は、
整流板と分配板によって各サブスタックに均等に配分さ
れて冷却通路に導入されるため、スタック高さが大きく
々つてもスタック上下に亘る温度を均一化するととがで
きる。
(E) Effect According to this invention, the cooling air pumped by the blower is
Since the current is evenly distributed to each sub-stack by the current plate and the distribution plate and introduced into the cooling passage, even if the stack height is large, the temperature can be made uniform across the top and bottom of the stack.

(へ)実施例 この発明の実施例を図について説明する。(f) Example Embodiments of the invention will be described with reference to the drawings.

電池スタックillは、学位セル(2)とガス分離板(
3)とを交互に多数積重して数単位セル毎に冷却板(4
)を介在させ、抑圧片(5)と連杆(6)とよりなる締
付部材により上下端板i7) [71間で締付けられる
。電池スタック(1)の一方の対向周面には、冷却板の
冷却通路(8)が開口し、他方の対向周面には、水素ガ
ス通路の出入口(9)と反応空気通路の出入口(10)
が開口している。
The battery stack ill consists of degree cell (2) and gas separation plate (
3) are stacked alternately in large numbers, and a cooling plate (4
), and is tightened between the upper and lower end plates i7) by a tightening member consisting of a suppressing piece (5) and a connecting rod (6). A cooling passage (8) of a cooling plate is opened on one opposing circumferential surface of the battery stack (1), and an inlet/outlet (9) for a hydrogen gas passage and an inlet/outlet (10) for a reaction air passage are opened on the other opposing circumferential surface. )
is open.

電池スタックft)の各周面には枠状シール材(ll)
を介して剛性枠体f+20alを当接し、互に隣接する
剛性枠体間は、その一方に溶接した保合片Hと他方に植
設したポルH19とを係合すると共に各ポル)(fli
tにスプリング0橢を介してナツト0ηを螺合し、これ
ら4つの枠体H(+1相互間を弾性的に連繋することに
より電池スタック(1)が外周より締付けられる。
A frame-shaped sealing material (ll) is placed on each circumferential surface of the battery stack (ft).
The rigid frame f+20al is brought into contact with the rigid frame f+20al, and between the adjacent rigid frames, the retaining piece H welded to one side and the pole H19 implanted in the other are engaged, and each pole) (fli
The battery stack (1) is tightened from the outer periphery by screwing together a nut 0η through a spring 0 and elastically connecting these four frames H (+1) to each other.

尚一方の剛性枠体0乃には水素ガスと反応空気の各流通
面に区分する仕切体(図示せず)を有し、この仕切体は
枠状シール材(ll)と一体の遮敏シール部を介してス
タック面に圧接している。この仕切体を有する剛性枠体
(1ηには、第2のシール材QIIGを介して水素ガス
と反応空気の各マニホルドよりなる複合マニホルドO(
至)がビス翰で締付固定される。
In addition, one rigid frame 0 has a partition (not shown) that divides each flow surface of hydrogen gas and reaction air, and this partition has a sensitive seal integrated with the frame-shaped sealing material (ll). It is in pressure contact with the stack surface through the section. A rigid frame (1η) having this partition body is connected to a composite manifold O (1η) consisting of hydrogen gas and reaction air manifolds via a second sealing material QIIG.
) is tightened and fixed with screws.

冷却気体マニホルド″(211(21)も前記複合マニ
ホルド四と同様第2のシール材Hを介して剛性枠体α(
支)にビス翰で締付固定される。入口側の冷却気体マニ
ホルド(21)は、下方よね上方に向って厚み寸法が縮
小する形状であって、その下面の連通口には第3図に示
すようにプロワ(2りの圧送ダクト瞥が連結されている
。このダクト(財)のプロワ吐出口より離れた部分は整
流根因)で分割された各通路の風量が等しくなるよう構
成される。
Similar to the composite manifold 4, the cooling gas manifold '' (211 (21) is also connected to the rigid frame α (
(support) is tightened and fixed with screws. The cooling gas manifold (21) on the inlet side has a shape in which the thickness decreases as it moves downward and upward, and a blower (two pressure-feeding ducts) are installed at the communication port on the bottom surface of the manifold (21), as shown in Figure 3. The part of this duct away from the blower discharge port is constructed so that the air volume in each passage divided by the rectification factor is equal.

一方入口側マニホル)’I’21)内は前記各整流根伐
4)と連繋された分配板(2均により区分され、スタッ
クmを均等に分ける4つのサブスタック毎に冷却空気を
配分して各冷却通路(8)に分流させる。
On the other hand, inside the inlet side manifold) 'I' 21) is a distribution plate (divided by 2 uniforms, which distributes cooling air to each of the four sub-stacks that evenly divides the stack m) connected to each of the rectified root cuttings 4). The flow is divided into each cooling passage (8).

各冷却通路(8)を貫流してスタックmより出る高温の
冷却空気は、出口側マニホル)’(21+より排出ダク
ト(イ)を経て再びプロワ(22に還流するが、その間
に高温冷却気体が熱交換器(図示せず)で冷却される。
The high-temperature cooling air that flows through each cooling passage (8) and exits from the stack m is returned to the blower (22) via the outlet manifold (21+) and the exhaust duct (a), but in the meantime, the high-temperature cooling gas is It is cooled by a heat exchanger (not shown).

この出口側マニホルド(21)及び排気ダクHa)け夫
々前記のようガ分配板(24)及び整流板a5)を必要
としない。
The outlet side manifold (21) and the exhaust duct Ha) do not require the gas distribution plate (24) and the rectifying plate a5) as described above.

第3図け300セルスタツクの場合を示し、分配板(2
鴎で4つに区分された各サブスタックけ75の単位セル
(2)と14の冷却板(4)を含んでいる。
Figure 3 shows the case of 300 cell stack, and the distribution plate (2
Each substack includes unit cells (2) of 75 and 14 cooling plates (4) divided into four parts.

第4図はこの300セルスタツクについて上下計56の
冷却通路(8)における風速分布を示す特性図で、1つ
おきの冷却通路Na 1〜階28の入口側と出口側の差
圧(+印点間)を測定して通路断面積より各風速を算出
した。同様に第5図に示す縦来方式の入口側マニホルド
を用いて風速分布を測定した結果が第6図の特性図に示
されている。
Figure 4 is a characteristic diagram showing the wind speed distribution in the cooling passages (8) of the upper and lower totals 56 for this 300-cell stack. ) was measured and each wind speed was calculated from the cross-sectional area of the passage. Similarly, the results of measuring the wind speed distribution using the longitudinal type inlet side manifold shown in FIG. 5 are shown in the characteristic diagram of FIG.

これらの特性図の比較から明らかなように、本発明装置
によってスタック上下に亘る冷却通路の風速分布が著し
く改善されることがわかる。
As is clear from the comparison of these characteristic diagrams, it can be seen that the device of the present invention significantly improves the air velocity distribution in the cooling passages extending above and below the stack.

以上の実施例は電池スタック+1)を外周よ抄締付ける
剛性枠体011に各マニホルドを取付けた場合について
説明したが、通常の如く電池スタック[1)に直接マニ
ホルドを取付けてもよい。との場合入ロ側マニホルド噛
1)内を区分する各分配板(社)の先端が、スタック面
に絶縁間隔を存して対向する状態となることは、剛性枠
体を介して取付けた場合と同様である。
In the above embodiment, the case has been described in which each manifold is attached to the rigid frame body 011 that tightens the battery stack +1) from the outer periphery, but the manifolds may be attached directly to the battery stack [1] as usual. In this case, the tip of each distribution plate that divides the inside of the input manifold (1) will face the stack surface with an insulating gap when it is installed through a rigid frame. It is similar to

(ト)効果 本発明によればブロワで圧送された冷却気体は、ダクト
内を分割する整流板で各分割通路の風量を予め均一化し
、ついで下方より上方に向って厚みが縮小する入口側マ
ニホルドの下面より送り込まれるが、このマニホルド内
は前記整流板に連繋する分配板で区分されスタックを均
等に分けるサブスタック毎に冷却気体が分流するように
したので、前記特性図のようにスタック上下に亘って各
冷却通路の風速分布が著しく改善され、特にスタック高
さが大きくなるほど有利となる。従ってスタック温度を
上下に亘り均一化して電池特性を向上することができる
(G) Effects According to the present invention, the cooling gas pumped by the blower is distributed in the duct by a rectifying plate that divides the inside of the duct to equalize the air volume in each divided passage, and then to the inlet side manifold whose thickness decreases from the bottom to the top. The inside of this manifold is divided by a distribution plate connected to the rectifying plate, and the cooling gas is divided into each sub-stack to evenly divide the stack. As a result, the air velocity distribution in each cooling passage is significantly improved, which becomes particularly advantageous as the stack height increases. Therefore, it is possible to make the stack temperature uniform both above and below, thereby improving battery characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置を備える電池の平面図、第2図は同
上の要部分解による斜面図、第3図は300セルスタツ
クに本発明装置を採用17た場合の縦断面図、第5図は
本発明装置を備え力い場合の縦断面図、第4図及び第6
図は、夫々第3図の本発明品及び第5図の従来品につい
てスタック上下に亘る冷却通路の風速分布を比較して示
す特性図である。 1:電池スタック、2:単位セル、3:ガス分離板、4
:冷却板、8;冷却通路、12113 :剛性枠体、2
1,21:冷却気体の入口側及び出口側合マニホルド、
22ニブ冒ワ、23:圧送ダクト、24:整流板、25
:分配板。
Fig. 1 is a plan view of a battery equipped with the device of the present invention, Fig. 2 is an exploded perspective view of the same essential parts as above, Fig. 3 is a vertical cross-sectional view of a 300-cell stack in which the device of the present invention is adopted, and Fig. 5 4 and 6 are longitudinal cross-sectional views of the case in which the device of the present invention is equipped with force.
The figures are characteristic diagrams showing a comparison of the wind speed distribution in the cooling passages extending above and below the stack for the product of the present invention shown in FIG. 3 and the conventional product shown in FIG. 5, respectively. 1: Battery stack, 2: Unit cell, 3: Gas separation plate, 4
: Cooling plate, 8; Cooling passage, 12113 : Rigid frame, 2
1, 21: Cooling gas inlet and outlet side manifold,
22 Nib blower, 23: Pressure feeding duct, 24: Current plate, 25
: Distribution board.

Claims (1)

【特許請求の範囲】[Claims] 単位セルとガス分離板とを交互に多数積重し数単位セル
毎に冷却通路を有する冷却板を介在させてなる電池スタ
ックであって、前記冷却通路が開口する前記スタックの
周面に装着された入口側の冷却気体マニホルドが、下方
より上方に向って縮小する形状であり且その下面に冷却
気体の圧送ダクトを連結し、前記ダクト内を各分割路の
風量が均一となるよう複数の整流板で分割すると共に前
記マニホルド内を前記整流板に連繋された分配板により
区分して、前記スタックを均等に分けたサブスタック毎
に冷却気体を分流せしめたことを特徴とする燃料電池の
冷却装置。
A battery stack in which a large number of unit cells and gas separation plates are alternately stacked and a cooling plate having a cooling passage is interposed for every several unit cells, the battery stack being mounted on the circumferential surface of the stack where the cooling passage opens. The cooling gas manifold on the inlet side has a shape that contracts from the bottom to the top, and a cooling gas pressure feeding duct is connected to the bottom surface of the cooling gas manifold. A cooling device for a fuel cell, characterized in that the manifold is divided by a plate and the inside of the manifold is divided by a distribution plate connected to the rectifying plate, so that cooling gas is divided into each sub-stack evenly divided into the stack. .
JP14995184A 1984-07-19 1984-07-19 Cooling device for fuel cell Pending JPS6129077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14995184A JPS6129077A (en) 1984-07-19 1984-07-19 Cooling device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14995184A JPS6129077A (en) 1984-07-19 1984-07-19 Cooling device for fuel cell

Publications (1)

Publication Number Publication Date
JPS6129077A true JPS6129077A (en) 1986-02-08

Family

ID=15486148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14995184A Pending JPS6129077A (en) 1984-07-19 1984-07-19 Cooling device for fuel cell

Country Status (1)

Country Link
JP (1) JPS6129077A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100156A (en) * 2004-09-30 2006-04-13 Sanyo Electric Co Ltd Power supply device
JP2007042637A (en) * 2005-07-29 2007-02-15 Samsung Sdi Co Ltd Battery module
JP2007234367A (en) * 2006-02-28 2007-09-13 Sanyo Electric Co Ltd Power supply device for vehicle
JP2010073479A (en) * 2008-09-18 2010-04-02 Nissan Motor Co Ltd Fuel cell
EP2403049A2 (en) * 2009-02-27 2012-01-04 LG Chem, Ltd. Medium- to large-size battery pack case having improved uniformity of distribution of coolant flow

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130380A (en) * 1981-02-04 1982-08-12 Hitachi Ltd Fuel cell
JPS58201266A (en) * 1982-05-20 1983-11-24 Sanyo Electric Co Ltd Air cooling type fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130380A (en) * 1981-02-04 1982-08-12 Hitachi Ltd Fuel cell
JPS58201266A (en) * 1982-05-20 1983-11-24 Sanyo Electric Co Ltd Air cooling type fuel cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100156A (en) * 2004-09-30 2006-04-13 Sanyo Electric Co Ltd Power supply device
JP4565950B2 (en) * 2004-09-30 2010-10-20 三洋電機株式会社 Power supply
JP2007042637A (en) * 2005-07-29 2007-02-15 Samsung Sdi Co Ltd Battery module
JP4659699B2 (en) * 2005-07-29 2011-03-30 三星エスディアイ株式会社 Battery module
US8003245B2 (en) 2005-07-29 2011-08-23 Samsung Sdi Co., Ltd. Battery module having improved cooling efficiency
JP2007234367A (en) * 2006-02-28 2007-09-13 Sanyo Electric Co Ltd Power supply device for vehicle
JP2010073479A (en) * 2008-09-18 2010-04-02 Nissan Motor Co Ltd Fuel cell
EP2403049A2 (en) * 2009-02-27 2012-01-04 LG Chem, Ltd. Medium- to large-size battery pack case having improved uniformity of distribution of coolant flow
CN102334227A (en) * 2009-02-27 2012-01-25 株式会社Lg化学 Medium- to large-size battery pack case having improved uniformity of distribution of coolant flow
JP2012519353A (en) * 2009-02-27 2012-08-23 エルジー・ケム・リミテッド Medium to large battery pack cases with improved uniformity of refrigerant flow distribution
EP2403049A4 (en) * 2009-02-27 2014-03-05 Lg Chemical Ltd Medium- to large-size battery pack case having improved uniformity of distribution of coolant flow
US8951655B2 (en) 2009-02-27 2015-02-10 Lg Chem, Ltd. Middle or large-sized battery pack case providing improved distribution uniformity in coolant flux

Similar Documents

Publication Publication Date Title
US4292379A (en) Variable area fuel cell process channels
US11476472B2 (en) Separator plate for an electrochemical system
US20050277013A1 (en) Solid polymer type fuel cell, metal separator for fuel cell, and kit for fuel cell
WO2003083979A3 (en) Fuel cell flow field plate
GB1151373A (en) Improvements in and relating to Electrochemical Cell Arrangements
US10840522B2 (en) Fuel cell
JPS6129077A (en) Cooling device for fuel cell
US3436272A (en) Stacked fuel cells
JPS6156769U (en)
JPS58201266A (en) Air cooling type fuel cell
JP3627834B2 (en) Stack stack structure of fuel cells
JPS62264564A (en) Stacked fuel cell
JP6739970B2 (en) Fuel cell stack
JPH07320768A (en) Gas distributing method for cell stack of fuel cell, and cell stack of fuel cell
JPH037886Y2 (en)
US20140106244A1 (en) Plate-style water vapor transfer unit with integral headers
JPS58178964A (en) Air-cooled fuel cell
US20210384532A1 (en) Humidifier and motor vehicle
JPS60101873A (en) Gas-cooled type fuel cell
JPH0831434A (en) Solid electrolyte fuel cell
JPS62211869A (en) Cooling gas supply deice for fuel cell
JPH0660901A (en) Gas feeding structure for fuel cell
JPH0650646B2 (en) Molten carbonate fuel cell stack
JPH01151163A (en) Fuel cell
JPS6086773A (en) Air-cooled fuel cell