JPS6129057A - Ion implantation device - Google Patents

Ion implantation device

Info

Publication number
JPS6129057A
JPS6129057A JP15058584A JP15058584A JPS6129057A JP S6129057 A JPS6129057 A JP S6129057A JP 15058584 A JP15058584 A JP 15058584A JP 15058584 A JP15058584 A JP 15058584A JP S6129057 A JPS6129057 A JP S6129057A
Authority
JP
Japan
Prior art keywords
filament
ionization chamber
elements
ion beam
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15058584A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Nakamura
強 中村
Yutaka Kawase
河瀬 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15058584A priority Critical patent/JPS6129057A/en
Publication of JPS6129057A publication Critical patent/JPS6129057A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details

Abstract

PURPOSE:To minimize replacement frequency of a filament by providing plural filament elements in the ionization chamber of a thermal cathode type ion source. CONSTITUTION:Insulator supports 9, 9', made of high temperature resisting material, of an ionization chamber 2 insulate a filament 1 from the ionization chamber 2 and when filament elements 11, 12 are provided as filament 1, these elements are insulated from each other and retained by these supports. Filament elements 11, 12 are mounted right and left respectively to the center face of the ionization chamber 2, and one 11 of the elements 11, 12 is first heated to generate ion beam. And when the life of the filament element 11 is expired, passage is changed over to power supply lines 15, 16 and ion beam is generated by using the filament element 12. Thus, replacement frequency of a filament can be minimized.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、半導体や金属体や絶縁体に正に帯電したイ
オンを高速で入射させ注入する集積回路製造プロセスで
の不純物導入工程力どに用いるイオン注入装置に関する
ものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention is applicable to the impurity introduction process in the integrated circuit manufacturing process, in which positively charged ions are implanted into semiconductors, metal bodies, and insulators at high speed. This relates to the ion implantation device used.

(従来技術とその問題点) 従来の熱陰極イオン源を備えたイオン注入装置では、イ
オン化室内に1本のタングステン線フィラメントを張り
渡し、このフィラメントに加熱電流を流して電子を放出
させその電子でイオン化室内のガスを電離(イオン化)
]7ていた。イオン注入装置では通常かなり大きなイオ
ンビーム電流ををり出せるようにする必要があり、電離
用の電子流の密度を上げるためフィラメントはガス雰囲
気中という悪条件のもとて高温に加熱される。そのため
フィラメントは、消耗が激しく数十時間程度の短い動作
時間で、断線等の使用不可能々状態に々る。そして頻繁
にイオン源付近の真空を破って新しいフィラメントと交
換し々ければカらなくなるが、この交換に、は1時間前
後かかるのが通常であり、集積回路生産ライン々どで生
産の流れを阻害する要因の一つとなっていた。
(Prior art and its problems) In an ion implanter equipped with a conventional hot cathode ion source, a single tungsten wire filament is stretched inside the ionization chamber, and a heating current is passed through the filament to emit electrons. Ionizes the gas in the ionization chamber (ionization)
] 7. Ion implanters usually need to be able to produce a fairly large ion beam current, and to increase the density of the ionizing electron stream, the filament is heated to a very high temperature in an adverse gas atmosphere. Therefore, the filament is subject to severe wear and tear and becomes unusable after a short operating time of about several tens of hours. The filament must be frequently broken in the vicinity of the ion source and replaced with a new filament, but this replacement usually takes about an hour, and the process of production on integrated circuit production lines is slow. This was one of the inhibiting factors.

(発明の目的) この発明は、フィラメントの交換頻度を減らすことので
きるイオン注入装置を提供するものである。
(Object of the Invention) The present invention provides an ion implantation device that can reduce the frequency of filament replacement.

(発明の構成) そのため本発明のイオン注入装置は複数本のフィラメン
ト素子をイオン化室に設けた熱陰極形イオン源を備える
ようにしている。
(Structure of the Invention) Therefore, the ion implantation apparatus of the present invention is equipped with a hot cathode type ion source in which a plurality of filament elements are provided in an ionization chamber.

実施例を参照しながら本発明の構成を詳細に説明する。The configuration of the present invention will be explained in detail with reference to examples.

第1図は集積回路製造プロ七スでシリコンウェハに不純
物を導入するのに用いる本発明の一実施例のイオン注入
装置のイオン源を示す要部断面図である。フィラメント
1を貫通させたイオン化室2にはガス源(図示せず)か
らのガス配管3′fr:経て所定のガスが送り込まれる
。フィラメントIFi直径2nのタングステン線(丸棒
)を用い、100〜200アンペアの直流電流を通電し
て加熱して電子を放出させる。フィラメント1に対し、
イオン化室2の電位を約100ボルト高くシ、マグネッ
ト対4,4′によりフィラメント1の線方向に磁界をか
けるとフィラメント1から放出された電子はらせん状運
動をくり返しhがら徐々に移動し最後はイオン化室2の
内壁に吸引される。電子はこの移動中にイオン化室内の
ガスに衝突して電離させ正のイオンを発生する。この正
のイオンは集まってイオン化室2の出口5(長方形状孔
)から引出電極系6,6′の方へ引き出される。引出電
極系6.6′はイオン化室2に対し負の高電位が印加を
れており、それぞれイオン化室2の出口5と類似の長方
形状孔がおいており、断面が長方形状のイオンビーム7
が形成され図の右方に通過して行く。
FIG. 1 is a cross-sectional view of a main part of an ion source of an ion implantation apparatus according to an embodiment of the present invention, which is used to introduce impurities into a silicon wafer in an integrated circuit manufacturing process. A predetermined gas is fed into the ionization chamber 2 through which the filament 1 passes through a gas pipe 3'fr: from a gas source (not shown). A tungsten wire (round bar) with a diameter of 2 nm is used as the filament IFi, and is heated by passing a direct current of 100 to 200 amperes to emit electrons. For filament 1,
When the potential of the ionization chamber 2 is increased by about 100 volts and a magnetic field is applied in the linear direction of the filament 1 using the magnet pair 4, 4', the electrons emitted from the filament 1 gradually move in a spiral motion, and finally It is attracted to the inner wall of the ionization chamber 2. During this movement, the electrons collide with the gas in the ionization chamber and are ionized to generate positive ions. These positive ions are collected and extracted from the outlet 5 (rectangular hole) of the ionization chamber 2 toward the extraction electrode system 6, 6'. A negative high potential is applied to the ionization chamber 2 in the extraction electrode system 6.6', and each has a rectangular hole similar to the outlet 5 of the ionization chamber 2, and an ion beam 7 with a rectangular cross section is provided.
is formed and passes to the right in the figure.

引出電極系6,6′のうち、電極6には他の電極6′よ
り数100ボルト負の電位を力え、図の右方で発生する
電子がイオン化室2側へ突入(逆流)しないようにしで
ある。絶縁支持体8が電極6と他の電極6′とを連結し
、この引出電極糸6,6′は全体と[7てイオン化室2
の出口5との相対位置関係を変えられるようにしてあり
、イオンビーム7の進行方向を調整することができる。
Of the extraction electrode system 6, 6', a potential several hundred volts more negative is applied to the electrode 6 than the other electrodes 6', so that the electrons generated on the right side of the figure do not rush into the ionization chamber 2 side (backflow). It's Nishide. An insulating support 8 connects the electrode 6 and another electrode 6', and the lead electrode threads 6, 6' are connected to the entire ionization chamber 2.
The relative positional relationship with the exit 5 of the ion beam 7 can be changed, and the traveling direction of the ion beam 7 can be adjusted.

耐高温性材料から々る絶縁支持9,9′はフィラメント
1をイオン化室2から絶縁しており、第1図のA−A’
から左方を見た第2図で示す如くフィラメント1として
フィラメント素子11.12の2本を設けるときは、こ
の2本金相絶縁して保持できるものにする。々お、第2
図では絶縁支持体9,9′の記入は省いである。フィラ
メント素子11.12はイオン化室2の出口5から覗け
るイオン化室2の中心面に対し図の左、右にそれぞれ片
寄らせてを付けである。2本のフィラメント素子11.
12は先ずその片方のフィラメント素子11だけを加熱
して電子を放出させイオンビームを発生させる。このフ
ィラメント素子11を加熱するには給電線13.14間
に通電する。
Insulating supports 9, 9' made of high temperature resistant material insulate the filament 1 from the ionization chamber 2 and are shown in FIG.
When two filament elements 11 and 12 are provided as the filament 1, as shown in FIG. 2 when viewed from the left side, the two filament elements 11 and 12 should be able to be held in a metal-insulated manner. Second, second
In the figure, the insulating supports 9, 9' are omitted. The filament elements 11 and 12 are offset to the left and right in the figure, respectively, with respect to the central plane of the ionization chamber 2 seen from the outlet 5 of the ionization chamber 2. Two filament elements 11.
12 first heats only one filament element 11 to emit electrons and generate an ion beam. To heat the filament element 11, electricity is passed between the power supply lines 13 and 14.

フィラメント素子11の寿命が尽きた場合は給電線15
.16に通電1路を切り換えてフィラメント素子12を
使用してイオンビームを発生させる。相導通させた給電
線13.15に相当する給電系10、互いに別個の給電
線14.16から力る給電系10′は第1図にも示しで
ある。第1図の引出電極系6,6′は使用するフィラメ
ント素子毎にイオンビーム7の進行方向を調整するよう
動かすことができる。
When the life of the filament element 11 is over, the power supply line 15
.. 16, the ion beam is generated using the filament element 12. A power supply system 10 corresponding to the phase-conducted power supply lines 13.15 and a power supply system 10' which feeds from mutually separate power supply lines 14.16 are also shown in FIG. The extraction electrode system 6, 6' shown in FIG. 1 can be moved to adjust the traveling direction of the ion beam 7 for each filament element used.

上記のイオン源から発したイオンビーム7け通常のイオ
ン注入装置におけると同様に分析用マグネットで曲げて
所定のイオンだけを通り抜けさせターゲットのシリコン
ウェハ・上へ入射させるがこれらは図示してない。
The 7 ion beams emitted from the above-mentioned ion source are bent by an analysis magnet in the same way as in a normal ion implanter, so that only predetermined ions pass through and are incident on the target silicon wafer, but these are not shown.

以上の実施例では、フィラメント1として2本のフィラ
メント素子11.12i用いたが、本発明の装置は3本
以上のフィラメント素子を設けて構成してもよい。例え
ば3本のフィラメント素子を設ける場合には第2図のフ
ィラメント素子11.12の他にイオン化室2の出口5
から覗けるイオン化室2の中心面上の位置でフィラメン
ト素子11.12よりも出口5から見てイオン化室2の
奥の方にもう1本のフィラメント素子を設け、その一方
の給電線は給電線13.15と短絡接続し、他の給電線
は給電線14や16と切り換えて通電できるように構成
することができる。
In the above embodiment, two filament elements 11 and 12i were used as the filament 1, but the apparatus of the present invention may be configured with three or more filament elements. For example, when three filament elements are provided, in addition to the filament elements 11 and 12 shown in FIG.
Another filament element is provided at a position on the central plane of the ionization chamber 2 that can be seen from the ionization chamber 2 at the back of the ionization chamber 2 when viewed from the outlet 5 than the filament elements 11 and 12, and one of the feeding lines is connected to the feeding line 13. .15, and the other power supply lines can be configured so that they can be switched to the power supply lines 14 and 16 and energized.

(発明の効果) この発明によるイオン注入装置は複数本のフィラメント
素子を1本ずつ順番に使用して行くことができるので、
1本のフィラメント素子の寿命が来てもイオン源の真空
を大気中に戻して新しいフィラメント素子と交換すると
いうような交換操作は不要とかり、他のフィラメント素
子を通電加熱するよう電気回路を切り換えるだけですむ
。このため、フィラメント交撲頻度を大@(フイラメン
ト素子2本を用いる場合は約2% 3本の場合は約11
以下同様)に減らし、イオン注入装置の稼動率を向上さ
せることができる。また複数本のフィラメント素子を同
時に通電加熱して、無理々く大電流のイオンビームを発
生させることもでき実用的効果の犬なるものである。
(Effects of the Invention) Since the ion implantation apparatus according to the present invention can sequentially use a plurality of filament elements one by one,
Even when one filament element reaches the end of its life, there is no need to return the vacuum of the ion source to the atmosphere and replace it with a new filament element; instead, the electric circuit can be switched to heat the other filament element. That's all you need. For this reason, the frequency of filament crossing is increased (approximately 2% when using two filament elements, approximately 11% when using three filament elements).
(the same applies hereafter), thereby improving the operating rate of the ion implanter. Furthermore, it is possible to forcefully generate an ion beam with a large current by heating a plurality of filament elements at the same time, which is highly effective in practical applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の要部断面図、第2図は第1
図のA−A’矢視図(要部正面図)である。 図において1・・・フィラメント(フィラメント素子1
1.12からなる)、2・・・イオン化室、3・・・ガ
ス配管、4,4′・・・マグネット対、5・・・出口、
6.6’・・・引出電極系、13,14,15.16・
・・給電線である。 穿1図 招2図
FIG. 1 is a cross-sectional view of essential parts of one embodiment of the present invention, and FIG.
It is an AA' arrow view (main part front view) of a figure. In the figure, 1... filament (filament element 1
1. Consisting of 12), 2... Ionization chamber, 3... Gas piping, 4, 4'... Magnet pair, 5... Outlet,
6.6'... Extraction electrode system, 13, 14, 15.16.
...It is a power supply line. 1 drawing, 2 drawings

Claims (1)

【特許請求の範囲】[Claims] 複数本のフィラメント素子をイオン化室に設けた熱陰極
形イオン源を有するイオン注入装置。
An ion implanter that has a hot cathode ion source with multiple filament elements installed in an ionization chamber.
JP15058584A 1984-07-20 1984-07-20 Ion implantation device Pending JPS6129057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15058584A JPS6129057A (en) 1984-07-20 1984-07-20 Ion implantation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15058584A JPS6129057A (en) 1984-07-20 1984-07-20 Ion implantation device

Publications (1)

Publication Number Publication Date
JPS6129057A true JPS6129057A (en) 1986-02-08

Family

ID=15500098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15058584A Pending JPS6129057A (en) 1984-07-20 1984-07-20 Ion implantation device

Country Status (1)

Country Link
JP (1) JPS6129057A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139753U (en) * 1987-03-06 1988-09-14
JPH01296548A (en) * 1988-05-25 1989-11-29 Nec Kyushu Ltd Ion implanter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139753U (en) * 1987-03-06 1988-09-14
JPH01296548A (en) * 1988-05-25 1989-11-29 Nec Kyushu Ltd Ion implanter

Similar Documents

Publication Publication Date Title
JP2648235B2 (en) Ion gun
JP2819420B2 (en) Ion source
US7176469B2 (en) Negative ion source with external RF antenna
JPH0418662B2 (en)
US6294862B1 (en) Multi-cusp ion source
US6184532B1 (en) Ion source
US4608513A (en) Dual filament ion source with improved beam characteristics
US3315125A (en) High-power ion and electron sources in cascade arrangement
US8183542B2 (en) Temperature controlled ion source
JP2004530268A (en) Ion source filament and method
US3514656A (en) Electron beam gun assembly for producing a ribbon shaped beam and magnet means for transversely deflecting the beam about its major axis
EP0439220B1 (en) Device for the ionization of metals having a high melting point, which may be used on ion implanters of the type using ion sources of Freeman or similar type
JPH04503889A (en) Metal ion source and metal ion generation method
JPS6129057A (en) Ion implantation device
Torii et al. A high‐current density and long lifetime ECR source for oxygen implanters
KR101983294B1 (en) An Electron Structure of a Large Current Duo Plasmatron Ion Source for BNCT Accelerator and an Apparatus Comprising the Same
JP2837023B2 (en) Ion implanter with improved ion source life
US4891525A (en) SKM ion source
US6259102B1 (en) Direct current gas-discharge ion-beam source with quadrupole magnetic separating system
JP2002540574A (en) Arcless electron gun
JP3075129B2 (en) Ion source
JPS5857880B2 (en) ion source device
JP2005251468A (en) Ion generator and ion implantation device
JPS6357104B2 (en)
JPH069040U (en) Ion source