JPS61290312A - Sectional shape measuring apparatus - Google Patents

Sectional shape measuring apparatus

Info

Publication number
JPS61290312A
JPS61290312A JP13175985A JP13175985A JPS61290312A JP S61290312 A JPS61290312 A JP S61290312A JP 13175985 A JP13175985 A JP 13175985A JP 13175985 A JP13175985 A JP 13175985A JP S61290312 A JPS61290312 A JP S61290312A
Authority
JP
Japan
Prior art keywords
waveform
pattern
edge
sectional shape
inclination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13175985A
Other languages
Japanese (ja)
Inventor
Toshiaki Ichinose
敏彰 一ノ瀬
Takanori Ninomiya
隆典 二宮
Yasuo Nakagawa
中川 泰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13175985A priority Critical patent/JPS61290312A/en
Publication of JPS61290312A publication Critical patent/JPS61290312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To measure the range and the sectional shape of a pattern at a high speed and a high accuracy, by extracting a parameter of a pattern shape from the signal waveform of a scan electron microscope (SEM) to select the optimum template waveform. CONSTITUTION:A mechanism 2 for varying the inclination of a sample base is used to determine two SEM signal waveforms different in the irradiation angle of electron beam and first, rough edge positions of the waveforms are detected with detector sections 8 and 9. Besed on the edge positions, a parameter computing section 10 composed of a computer determines a rough height of a pattern edge and the angle of inclination of a slope. Then, based on the height and the angle of inclination, acceleration voltage, beam diameter, pattern material and the like, a template computing section 11 determines the optimum template waveform near the edge to be stored into memories 12 and 13 as the model waveform. The waveform detected is compared with the model waveform by matching sections 14 and 15 to detect a highly accurate edge position and a shape computing section 16 determines the range and sectional shape of a pattern at a high speed and at a high accuracy.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体素子等に描かれる微細パターンの断面
形状を、走査電子顕微鏡(以下SEMと略す)を用いて
非破壊で計測する断面形状測定装置に関するものである
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to cross-sectional shape measurement in which the cross-sectional shape of a fine pattern drawn on a semiconductor element, etc. is measured non-destructively using a scanning electron microscope (hereinafter abbreviated as SEM). It is related to the device.

〔発明の背景〕[Background of the invention]

従来は、半導体ウニへのパターン幅を2次元的に測定す
ることによって製造プロセス状態の管理を行なっていた
。しかし、パターンの微細化に伴ない単に平面的な寸法
管理だけでなく立体的な形状管理が要求されている。一
方、このような微細なパターンの観察にはSEMの2次
電子像が使われている。
Conventionally, the state of the manufacturing process has been managed by two-dimensionally measuring the width of a pattern on a semiconductor. However, as patterns become finer, not only two-dimensional dimensional control but also three-dimensional shape control is required. On the other hand, SEM secondary electron images are used to observe such fine patterns.

従来よりSEMを用いてパターンの断面形状を測定する
方法としては、電子ビームの照射角度を変えて得たそれ
ぞれの2次元のパターン像あるいは1次元に走査したと
きのSEM検出信号波形をCRTの画面上に表示し、上
記パターン像あるいは波形と重ね合わせて電気的に表示
したカーソル位置を、人間が目視によりてポテンショメ
ータ等を用いてパターンエツジ位置に合わせ、ポテンシ
ョメータの指示値より対応するパターンエツジ位置をそ
れぞれのパターン像から求め、それぞれのパターン像間
のエツジ位置ずれ量よりパターンエツジ高さを測定して
いた。
Conventionally, the method of measuring the cross-sectional shape of a pattern using an SEM is to capture each two-dimensional pattern image obtained by changing the irradiation angle of the electron beam or the SEM detection signal waveform when scanning one-dimensionally on a CRT screen. A human visually aligns the cursor position, which is displayed above and electrically displayed over the pattern image or waveform, with the pattern edge position using a potentiometer, etc., and determines the corresponding pattern edge position from the indicated value of the potentiometer. The pattern edge height was determined from each pattern image, and the pattern edge height was measured from the amount of edge position deviation between the respective pattern images.

しかし、このような方法では、人間が目視でカーソルを
合わせるので個人差にもとず(誤差が生じゃすいという
欠点があった。そのため、エツジ位置の検出法として、
特開昭59−190610号公報に示すように、テンプ
レート波形を用いてパターンエツジ位置を求めていた。
However, this method has the disadvantage that humans manually align the cursor visually, which is not based on individual differences (errors are likely to occur).Therefore, as a method for detecting edge positions,
As shown in Japanese Unexamined Patent Publication No. 59-190610, pattern edge positions have been determined using template waveforms.

しかし、SEM信号波形はパターン形状に依存しており
、考えられるすべての形状に対してテンプレートを用意
し、これらすべてのテンプレートを波形にあてはめて最
適なものを選ぶ必要があったため、処理時間がきわめて
長くなってしまうという問題があった。
However, the SEM signal waveform depends on the pattern shape, and it was necessary to prepare templates for all possible shapes and select the optimal one by applying all these templates to the waveform, which resulted in extremely long processing times. The problem was that it was too long.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、SEM信号波形よりパターン形状のパ
ラメータを抽出し、最適なテンプレート波形を選択する
ことによって、高速で高精度なパターン幅やパターンの
断面形状を計測する装置を提供することにある。
An object of the present invention is to provide a device that measures the pattern width and cross-sectional shape of a pattern at high speed and with high precision by extracting pattern shape parameters from an SEM signal waveform and selecting an optimal template waveform. .

〔発明の概要〕[Summary of the invention]

本発明は、電子線の照射角度の異なる2つのSEM信号
波形より、まず大まかなエツジ位置を検出し、このエツ
ジ位置をもとに7(ターンエツジの大まかな高さと斜面
の傾斜角を求め、次にこの高さと傾斜角をもとにエツジ
近傍の最適なテンプレート波形を求めて、より高精度な
エツジ位置検出ケし、パターン幅やパターンの断面形状
を高速で高精度に求めるものである。
The present invention first detects the rough edge position from two SEM signal waveforms with different electron beam irradiation angles, and then calculates the rough height of the turn edge and the inclination angle of the slope based on this edge position. Then, based on this height and inclination angle, an optimal template waveform near the edge is determined, the edge position is detected with higher precision, and the pattern width and cross-sectional shape of the pattern are determined at high speed and with high precision.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を以下に示す。第1図は、本実施例の
全体構成図である。1はSEMであり、試料台の傾きを
変える機構2を有することにより試料に対する電子ビー
ムの照射角度を変えることができる。試料台は固定で、
電気的にビームの照射角度を変えてもよい。試料より発
生した電子は検出器3で検出され4に表示される。また
検出信号はAD変換器等で構成されたSEM信号入力部
5で入力する。AD変換のタイミングは1より得られる
偏向信号をもとに得る。AD変換された信号は、試料台
の傾き角θ−〇とθ■θ。に応じてそれぞれ6,7のメ
モリに格納される。次に波形の大まかなエツジ位置を8
,9で検出する。エツジ位置の検出には、波形の極大位
置または極小位置を検出し、その位置をエツジ位置とす
る。エツジ位置の検出は、適当なしきい値と波形の交点
をエツジ位置としてもよい。エツジ位置が検出されたな
らば、計算機等で構成される10によりパターンエツジ
の高さおよびエツジ部分の傾斜角を求める。高さtおよ
び傾斜角αは、第2図に示すり、t。
An example of the present invention is shown below. FIG. 1 is an overall configuration diagram of this embodiment. Reference numeral 1 denotes an SEM, which has a mechanism 2 for changing the inclination of the sample stage, so that the irradiation angle of the electron beam on the sample can be changed. The sample stage is fixed,
The irradiation angle of the beam may be changed electrically. Electrons generated from the sample are detected by a detector 3 and displayed at 4. Further, the detection signal is inputted through the SEM signal input section 5, which is composed of an AD converter and the like. The timing of AD conversion is obtained based on the deflection signal obtained from step 1. The AD-converted signals are the tilt angles θ-〇 and θ■θ of the sample stage. They are stored in 6 and 7 memories, respectively. Next, set the rough edge position of the waveform to 8
, 9. To detect the edge position, the maximum or minimum position of the waveform is detected and that position is defined as the edge position. The edge position may be detected by using the intersection of a suitable threshold value and a waveform as the edge position. Once the edge position has been detected, the height of the pattern edge and the inclination angle of the edge portion are determined using a computer 10. The height t and the angle of inclination α are shown in FIG.

θ。を使って次式により求める。θ. Calculate using the following formula.

に α−tan’(−)     ・・・(2)を 実際のり、tの寸法は、画素数を求め、す/プルクロッ
クの長さに相当する数値を乗することによって得る。
α-tan'(-)...(2) is actually multiplied by α-tan'(-)...(2), and the dimension of t is obtained by finding the number of pixels and multiplying it by a value corresponding to the length of the pull clock.

次に、高さLと傾斜角α、加速電圧、ビーム径、パター
ンの材質などをもとに、試料台の傾きθ−0とθ。のエ
ツジ部分のモデル波形を計算機等で構成される11で求
める。このモデルとしては、たとえば特開昭59−19
0/llO号公報に示すものがある。パターンの形状の
種類が限定されているならば、11をメモリ等で構成し
ておき、あらかじめモデル波形を求めて格納しておいて
もよい。
Next, the inclinations θ-0 and θ of the sample stage are determined based on the height L, inclination angle α, accelerating voltage, beam diameter, material of the pattern, etc. A model waveform of the edge portion of is obtained by a computer 11 comprising a computer or the like. As this model, for example, JP-A-59-19
There is one shown in Publication No. 0/11O. If the types of pattern shapes are limited, 11 may be configured with a memory or the like, and model waveforms may be obtained and stored in advance.

求めたモデル波形はそれぞれテンプレート用メモリ12
.13に格納され、14.15のマツチング部で検出波
形とのマツチングをとり、もつともテンプレート波形と
検出波形が一致した位置をエツジ位置とする。エツジ位
置が得られたならば、16の形状演算部でエツジ高さや
パターン幅等を計算し、19に結果を表示する。
The obtained model waveforms are stored in the template memory 12.
.. 13, and is matched with the detected waveform in the matching section 14.15, and the position where the template waveform and the detected waveform match is defined as an edge position. Once the edge position is obtained, the shape calculation section 16 calculates the edge height, pattern width, etc., and the result is displayed at 19.

次に、エツジ検出部8(または9)の具体構成例を第3
図に示す。これは、波形の極大位置または極小位置を検
出するものである。メモリ6から順次読み出されたデー
タはシフトレジスタ301に送られる。′502はエツ
ジ検出オペレータの係数を格納するメモリである。30
1と302のそれぞれの要素は303で乗算され、30
4で加え合わせられる。304の出力は、2値化回路3
06で適当なしきい値13以上となる値を1とする2値
化をされ、507の極大位置検出回路により306の出
力の1の始まる位置X、と終了する位置X、の間で30
4の出力が最大となる位置を検出する。一方、2値化回
路310で適当なしきい値T、以下となる値を1とする
2値化をし、311の極小位置検出回路により310の
出力の1の始まる位置X、と終了する位置人の間で30
4の出力が最小となる位置を極小する。エツジ検出オペ
レータの例としては、たとえばmm5として A(11−A(21−A(41−ATS+−−1A(3
1−4 などとする。ここでは、エツジ検出部をハードウェアで
構成したが、計算機のソフトウェアで構成してもよい。
Next, a specific configuration example of the edge detection section 8 (or 9) will be explained in the third section.
As shown in the figure. This is to detect the maximum or minimum position of the waveform. Data sequentially read from memory 6 is sent to shift register 301. '502 is a memory that stores coefficients of edge detection operators. 30
Each element of 1 and 302 is multiplied by 303, giving 30
4 can be added together. The output of 304 is the binarization circuit 3
06, the value that is equal to or higher than the appropriate threshold value 13 is binarized as 1, and the maximum position detection circuit 507 calculates 30 between the starting position X and the ending position X of the output 1 of 306.
Detect the position where the output of No. 4 is maximum. On the other hand, a binarization circuit 310 performs binarization by setting values below an appropriate threshold T to 1, and a minimum position detection circuit 311 determines the starting position X of the output 1 and the ending position X of the output 310. between 30
Minimize the position where the output of 4 is the minimum. As an example of an edge detection operator, for example, mm5 is A(11-A(21-A(41-ATS+--1A(3)
1-4 etc. Here, the edge detection section is configured with hardware, but it may also be configured with computer software.

第4回圧、マツチング部14(または15)の具体鷹成
例を示す。メモリ6から順次読み出されたデータはシフ
トレジスタ401に送られる。401とモデル波形12
の各要素の差の大きさを402で求め、403で加え合
わせる。
A specific example of the fourth pressure and the matching portion 14 (or 15) will be shown. Data sequentially read from memory 6 is sent to shift register 401. 401 and model waveform 12
The magnitude of the difference between each element is determined in step 402, and added up in step 403.

そして、404の最小値検出回路により403の最小位
置を検出する。
Then, a minimum value detection circuit 404 detects the minimum position 403.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、1回の測定によりパターンエツジ検出
用の最適なテンプレートを求められるため、高速に精密
なエツジ位置検出ができる。
According to the present invention, an optimal template for detecting pattern edges can be determined by one measurement, so that edge positions can be detected precisely at high speed.

これにより、高精度な寸法測長および断面形状計測が可
能になる。
This makes it possible to measure dimensions and cross-sectional shapes with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の全体構成図、第2図はパターンエツジ
高さの検出原理図、第3図はエツジ検出部の具体構成図
、第4図はマツチング部の具体構成図である。 1・・・走査電子顕微鏡、2・・・試料台、3・・・検
出器、4・・・CRT、5・・・信号入力部、6,7・
・・メモリ、8.9−・・エツジ検出部、10・・・パ
ラメータ演算部、11・・・テンプレート演算部、12
゜15・・・テンプレート用メモリ、14.15・・・
マツチング部、16・・・形状演算部、17・・・出力
装置、 501・・・シフトレジスタ、302・・・エツジ検出
オペレータ用メモリ、303・・・乗算回路、304・
・・加算回路、305,309・・・しきい値、306
.310・・・2値化回路、307.31?・・・エツ
ジ位置検出回路、401・・・シフトレジスタ、402
・・・差検出回路、403・・・加算回路、404・・
・最小位置検出回路。
FIG. 1 is a general block diagram of the present invention, FIG. 2 is a diagram of the principle of detection of pattern edge height, FIG. 3 is a specific block diagram of the edge detecting section, and FIG. 4 is a specific block diagram of the matching section. DESCRIPTION OF SYMBOLS 1... Scanning electron microscope, 2... Sample stage, 3... Detector, 4... CRT, 5... Signal input section, 6, 7...
...Memory, 8.9--Edge detection unit, 10...Parameter calculation unit, 11...Template calculation unit, 12
゜15... Template memory, 14.15...
Matching unit, 16... Shape calculation unit, 17... Output device, 501... Shift register, 302... Memory for edge detection operator, 303... Multiplication circuit, 304...
... Addition circuit, 305, 309 ... Threshold value, 306
.. 310...Binarization circuit, 307.31? ... Edge position detection circuit, 401 ... Shift register, 402
...Difference detection circuit, 403... Addition circuit, 404...
・Minimum position detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、試料と電子線のなす角度を変える手段と、試料に照
射する電子ビームを走査した時に発生する電子を検出す
る手段と、前記検出信号をデジタル化してこれを記憶す
る手段と、変換した信号を記憶する手段と、信号波形か
らパターン形状の特徴量を抽出する手段と、その特徴量
とあらかじめ与えたパラメータにより理想波形を求める
手段と、前記信号波形と理想波形の一致度を検出する手
段を有する断面形状測定装置。
1. means for changing the angle between the sample and the electron beam; means for detecting electrons generated when the electron beam irradiated on the sample is scanned; means for digitizing and storing the detection signal; and a converted signal. a means for storing a pattern shape, a means for extracting a characteristic amount of a pattern shape from a signal waveform, a means for determining an ideal waveform from the characteristic amount and a predetermined parameter, and a means for detecting a degree of coincidence between the signal waveform and the ideal waveform. A cross-sectional shape measuring device.
JP13175985A 1985-06-19 1985-06-19 Sectional shape measuring apparatus Pending JPS61290312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13175985A JPS61290312A (en) 1985-06-19 1985-06-19 Sectional shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13175985A JPS61290312A (en) 1985-06-19 1985-06-19 Sectional shape measuring apparatus

Publications (1)

Publication Number Publication Date
JPS61290312A true JPS61290312A (en) 1986-12-20

Family

ID=15065511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13175985A Pending JPS61290312A (en) 1985-06-19 1985-06-19 Sectional shape measuring apparatus

Country Status (1)

Country Link
JP (1) JPS61290312A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622116A (en) * 1985-06-28 1987-01-08 Nec Corp Measurement of shape
EP1065567A3 (en) * 1999-06-29 2001-05-16 Applied Materials, Inc. Integrated critical dimension control
US6625497B2 (en) 2000-11-20 2003-09-23 Applied Materials Inc. Semiconductor processing module with integrated feedback/feed forward metrology
US6858361B2 (en) 2002-03-01 2005-02-22 David S. L. Mui Methodology for repeatable post etch CD in a production tool
JP2005156436A (en) * 2003-11-27 2005-06-16 Hitachi Ltd Semiconductor pattern measuring method and process control method
US6911399B2 (en) 2003-09-19 2005-06-28 Applied Materials, Inc. Method of controlling critical dimension microloading of photoresist trimming process by selective sidewall polymer deposition
US6924088B2 (en) 2002-06-20 2005-08-02 Applied Materials, Inc. Method and system for realtime CD microloading control
US6960416B2 (en) 2002-03-01 2005-11-01 Applied Materials, Inc. Method and apparatus for controlling etch processes during fabrication of semiconductor devices
US7265382B2 (en) 2002-11-12 2007-09-04 Applied Materials, Inc. Method and apparatus employing integrated metrology for improved dielectric etch efficiency
US7601272B2 (en) 2005-01-08 2009-10-13 Applied Materials, Inc. Method and apparatus for integrating metrology with etch processing
US7846848B2 (en) 2005-01-08 2010-12-07 Applied Materials, Inc. Cluster tool with integrated metrology chamber for transparent substrates
KR20200036936A (en) * 2017-10-24 2020-04-07 주식회사 히타치하이테크 Charged particle beam device, section shape estimation program

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622116A (en) * 1985-06-28 1987-01-08 Nec Corp Measurement of shape
KR100702741B1 (en) * 1999-06-29 2007-04-03 어플라이드 머티어리얼스, 인코포레이티드 Integrated critical dimension control for semiconductor device manufacturing
EP1065567A3 (en) * 1999-06-29 2001-05-16 Applied Materials, Inc. Integrated critical dimension control
US6388253B1 (en) 1999-06-29 2002-05-14 Applied Materials, Inc. Integrated critical dimension control for semiconductor device manufacturing
US6486492B1 (en) 1999-06-29 2002-11-26 Applied Materials, Inc. Integrated critical dimension control for semiconductor device manufacturing
US6625497B2 (en) 2000-11-20 2003-09-23 Applied Materials Inc. Semiconductor processing module with integrated feedback/feed forward metrology
US7498106B2 (en) 2002-03-01 2009-03-03 Applied Materials, Inc. Method and apparatus for controlling etch processes during fabrication of semiconductor devices
US6960416B2 (en) 2002-03-01 2005-11-01 Applied Materials, Inc. Method and apparatus for controlling etch processes during fabrication of semiconductor devices
US6858361B2 (en) 2002-03-01 2005-02-22 David S. L. Mui Methodology for repeatable post etch CD in a production tool
US6924088B2 (en) 2002-06-20 2005-08-02 Applied Materials, Inc. Method and system for realtime CD microloading control
US7265382B2 (en) 2002-11-12 2007-09-04 Applied Materials, Inc. Method and apparatus employing integrated metrology for improved dielectric etch efficiency
US6911399B2 (en) 2003-09-19 2005-06-28 Applied Materials, Inc. Method of controlling critical dimension microloading of photoresist trimming process by selective sidewall polymer deposition
JP2005156436A (en) * 2003-11-27 2005-06-16 Hitachi Ltd Semiconductor pattern measuring method and process control method
US7601272B2 (en) 2005-01-08 2009-10-13 Applied Materials, Inc. Method and apparatus for integrating metrology with etch processing
US7846848B2 (en) 2005-01-08 2010-12-07 Applied Materials, Inc. Cluster tool with integrated metrology chamber for transparent substrates
KR20200036936A (en) * 2017-10-24 2020-04-07 주식회사 히타치하이테크 Charged particle beam device, section shape estimation program
US11133147B2 (en) 2017-10-24 2021-09-28 Hitachi High-Tech Corporation Charged particle ray device and cross-sectional shape estimation program

Similar Documents

Publication Publication Date Title
EP0177566B1 (en) Method for precision sem measurements
JPS61290312A (en) Sectional shape measuring apparatus
JPH01311551A (en) Pattern shape measuring device
US4670652A (en) Charged particle beam microprobe apparatus
US20080073526A1 (en) Charged particle beam apparatus
JP2823450B2 (en) Circuit pattern dimension measurement method
JP2002243428A (en) Method and device for pattern inspection
JPH0727548A (en) Hole pattern shape evaluating device
KR940003791B1 (en) Width measuring device
JPH0416707A (en) Pattern recognizing method by electron beam
JPH0430489Y2 (en)
JP2569543B2 (en) Hardness tester
JP2617795B2 (en) Gloss measuring method and equipment for painted surfaces
JPH0554605B2 (en)
JPH03289507A (en) Method and apparatus for measuring size of pattern
JPH03235007A (en) Speckle length measuring instrument
JPH0778407B2 (en) Width measuring device
JPH04269614A (en) Pattern-position detecting method and executing apparatus thereof
JP3013255B2 (en) Shape measurement method
JPH0445046B2 (en)
JPH01112649A (en) Measuring device using electron beam
JP2619063B2 (en) Image measurement device
JPH0674742A (en) Electron beam dimension measuring apparatus
JPS61225605A (en) Optical automatic line width measuring device and method
JPH0599623A (en) Displacement measuring apparatus