JPS61288510A - Ultrasonic wave solid-state delay line - Google Patents

Ultrasonic wave solid-state delay line

Info

Publication number
JPS61288510A
JPS61288510A JP13037885A JP13037885A JPS61288510A JP S61288510 A JPS61288510 A JP S61288510A JP 13037885 A JP13037885 A JP 13037885A JP 13037885 A JP13037885 A JP 13037885A JP S61288510 A JPS61288510 A JP S61288510A
Authority
JP
Japan
Prior art keywords
wave
longitudinal
longitudinal wave
conversion
input transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13037885A
Other languages
Japanese (ja)
Inventor
Takeo Yokoyama
横山 武男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP13037885A priority Critical patent/JPS61288510A/en
Publication of JPS61288510A publication Critical patent/JPS61288510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To attain miniaturization by forming a polygonal multiplex reflection face to an ultrasonic wave solid-state delay medium and providing plural converting points applying longitudinal/lateral wave conversion to a longitudinal wave irradiated from an input transducer and applying lateral/longitudinal wave conversion to a lateral wave obtained so as to make the path for the longitudinal wave shorter than that of the lateral wave. CONSTITUTION:The polygonal multiplex reflection faces 2-7 are formed to the ultrasonic wave solid-state delay medium 1, an input transducer 10 irradiating a longitudinal wave 8 and an output transducer 11 receiving the longitudinal wave reflected in other reflecting faces 3, 4, 6 7 are arranged in parallel onto two different reflecting faces 2, 5, and plural converting points 12-17 applying longitudinal/lateral wave conversion to the radiated longitudinal wave from the input transducer so as to be made orthogonal to the input transducer and the output transducer and applying lateral/longitudinal conversion to the obtained lateral wave 9 are provided to the other reflecting faces. Thus, the path of the longitudinal wave 8 is shorter than the path (path length) of the lateral wave 9, and the device is miniaturized.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、超音波固体遅延線に関し、特に、小型化でき
る超音波固体遅延線に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an ultrasonic solid state delay line, and more particularly to an ultrasonic solid state delay line that can be miniaturized.

[発明の技術的背景] 従来から、かなりの数の超音波固体遅延線が知られてい
る(例えば、特公昭47−27574号、特公昭4B−
22818号公報、U S P 3,581,247 
)。これらの超音波固体遅延線では第4図〜第6図のよ
うに多角形の多重反射面を形成し、反射面30あるいは
反射面30.31に入力トランスジューサ32と出力ト
ランスジューサ33とを配置し、一般的には横波を用い
て、超音波固体遅延媒体を90°、45’の形状に組み
合わせている。この横波を用いた場合、超音波固体遅延
媒体の多重反射形状を比較的簡単に設計できるが、超音
波固体遅延線が大型となる。
[Technical Background of the Invention] A considerable number of ultrasonic solid-state delay lines have been known so far (for example, Japanese Patent Publication No. 47-27574, Japanese Patent Publication No. 4B-
Publication No. 22818, U.S.P. 3,581,247
). In these ultrasonic solid state delay lines, a polygonal multiple reflection surface is formed as shown in FIGS. 4 to 6, and an input transducer 32 and an output transducer 33 are arranged on the reflection surface 30 or 30, 31, Typically, transverse waves are used to combine ultrasonic solid state retardation media into a 90°, 45' configuration. When this transverse wave is used, the multiple reflection shape of the ultrasonic solid delay medium can be designed relatively easily, but the ultrasonic solid delay line becomes large.

このため第7図のように超音波固体遅延媒体1.′LO
の反射面41に配置された入力トランスジューサ42か
らその面に90@で放射された縦波43を遅延媒体1中
を伝播させ、反射面44の変換点45において縦波(縦
波の反射角α)から横波46(横波の反射角β)に変換
し、この横波を反射面47の全反射点4日において横波
−横波反射され、。
For this reason, as shown in FIG. 7, the ultrasonic solid delay medium 1. 'LO
The longitudinal wave 43 radiated from the input transducer 42 placed on the reflective surface 41 of ) is converted into a transverse wave 46 (transverse wave reflection angle β), and this transverse wave is reflected from transverse wave to transverse wave at the total reflection point 4 of the reflecting surface 47.

その横波を反射面49の変換点50において上記変換と
は逆の横波−縦波変換して反射面51に配置された出力
トランスジューサ52にその面に900で入射すること
が考えられる。第8図は変換点を多くした例である。
It is conceivable that the transverse wave is converted into a transverse wave-longitudinal wave at a conversion point 50 of the reflecting surface 49, which is the opposite of the above conversion, and is incident on the output transducer 52 disposed on the reflecting surface 51 at 900. FIG. 8 is an example in which the number of conversion points is increased.

ところが縦波を用いた場合、超音波固体遅延媒体の多重
反射形状は入射角、反射角が異なり、容易ではない。
However, when longitudinal waves are used, the multiple reflection shapes of the ultrasonic solid delay medium have different incident angles and reflection angles, which is not easy.

〔背景技術の問題点] しかしながら、第7図〜第8図の超音波固体遅延線は、
横波のパス(経路長)に比べて縦波のパスが長くなり、
形状が大きくなるという難点がある。
[Problems with the background art] However, the ultrasonic solid-state delay line shown in FIGS.
The path of longitudinal waves becomes longer than the path (path length) of transverse waves,
The problem is that the shape becomes large.

[発明の目的] 本発明は上記従来の難点に鑑みなされたもので、小型化
できる超音波固体遅延線を提供せんとするものである。
[Object of the Invention] The present invention has been made in view of the above-mentioned conventional difficulties, and it is an object of the present invention to provide an ultrasonic solid-state delay line that can be miniaturized.

[発明の概要] このような目的を達成するために本発明の超音波固体遅
延線によれば、超音波固体遅延媒体に多角形の多重反射
面を形成し、前記反射面の一部には、縦波を放射する入
力トランスジューサと前記縦波が池の反射面において反
射された縦波を入射する出力トランスジューサとを配置
し、前記他の反射面には、前記入力トランスジューサか
ら放射された縦波を縦波−横波変換および得られた横波
を横波−縦波変換する複数個の変換点を具備するもので
ある。
[Summary of the Invention] In order to achieve such an object, according to the ultrasonic solid-state delay line of the present invention, a polygonal multiple reflection surface is formed in the ultrasonic solid-state delay medium, and a part of the reflection surface has a , an input transducer that emits a longitudinal wave and an output transducer that receives the longitudinal wave reflected from the reflecting surface of the pond are arranged, and the longitudinal wave emitted from the input transducer is arranged on the other reflecting surface. It is equipped with a plurality of conversion points for longitudinal wave-to-transverse wave conversion and transverse wave-to-longitudinal wave conversion for the obtained transverse wave.

[発明の実施例] 以下、本発明の好ましい実施例を図面により説明する。[Embodiments of the invention] Preferred embodiments of the present invention will be described below with reference to the drawings.

本発明の超音波固体遅延線は、第1図に示すように、ガ
ラスのような超音波固体遅延媒体lには、6角形の多重
反射面2〜7が形成され、反射面の一部の、異なる2面
2.5には、縦波8(点線で示す)を放射する入力トラ
ンスジューサ10と縦波8が他の反射面3.4.6.7
において反射された縦波を入射する出力トランスジュー
サ11とがそれぞれ平行して配置されている。この反射
面4および反射面6(2回)には、縦波8が入力トラン
スジューサ10および出力トランスジューサ11と直交
するように、入力トランスジューサ10から放射された
縦波8を縦波−横波(9で実線で示す)変換する3個の
変換点12.14.16並びに反射面3(2回)および
反射面7には、得られた横波9を横波−縦波変換する3
個の変換点13.15.17を具備する。なお、図示の
例では多重反射面2〜7は6角形に形成されているが、
遅延線の遅延量に応して池の多角形とすることができ、
この場合、変換点も6個以外の複数個が具備される。
In the ultrasonic solid-state delay line of the present invention, as shown in FIG. , two different surfaces 2.5 include an input transducer 10 that emits a longitudinal wave 8 (shown in dotted line) and another reflecting surface 3.4.6.7.
Output transducers 11 into which the longitudinal waves reflected at are incident are arranged in parallel with each other. The reflective surface 4 and the reflective surface 6 (twice) pass the longitudinal wave 8 emitted from the input transducer 10 so that the longitudinal wave 8 is orthogonal to the input transducer 10 and the output transducer 11. The three conversion points 12, 14 and 16 (shown by solid lines), the reflecting surface 3 (twice) and the reflecting surface 7 are used to convert the obtained transverse wave 9 into a transverse wave-longitudinal wave.
conversion points 13, 15, and 17. In addition, in the illustrated example, the multiple reflection surfaces 2 to 7 are formed in a hexagonal shape.
Depending on the delay amount of the delay line, it can be made into a pond polygon,
In this case, a plurality of conversion points other than six are also provided.

このように構成された超音波固体遅延線において、超音
波固体遅延媒体1の反射面2に配置された入力トランス
ジューサlOからその面に909で放射された縦波8は
遅延媒体1中を伝播してゆく。
In the ultrasonic solid-state delay line configured in this way, the longitudinal wave 8 radiated at 909 from the input transducer IO placed on the reflecting surface 2 of the ultrasonic solid-state delay medium 1 to that surface propagates through the delay medium 1. I'm going to go.

この縦波は反射面6の変換点12において縦波−横波変
換されて横波9として他の反射面5へ曲げられて進行す
る。
This longitudinal wave is converted into a longitudinal wave and a transverse wave at a conversion point 12 of the reflecting surface 6, and is bent as a transverse wave 9 and propagates to another reflecting surface 5.

この様子を第3図により説明するに、固体媒体iと流体
媒体■との境界面6に縦波8がαの角度て入射すると、
反射波は縦波8aの池に横波9も現われる。縦波の反射
角αは入射角αに等しいが、横波の反射角βはこれと異
なる。
To explain this situation with reference to FIG. 3, when a longitudinal wave 8 is incident on the interface 6 between the solid medium i and the fluid medium 2 at an angle α,
As for reflected waves, transverse waves 9 also appear in the pond of longitudinal waves 8a. The reflection angle α of longitudinal waves is equal to the incidence angle α, but the reflection angle β of transverse waves is different.

これらの反射における反射角相互の関係は、Sinα/
Sinβ=Cp l /Cs 1となる。
The relationship between the reflection angles in these reflections is Sinα/
Sinβ=Cp l /Cs 1.

なお、Cplは媒体■中の縦波の伝播速度であり、Cs
lは媒体I中の横波の伝播速度である。入射縦波8と反
射縦波8&の振幅の割合は媒体■のポアソン比をパラメ
ータとして入射角αに依存し、反射縦波8aの振幅が0
(零)になる入射角がある。
Note that Cpl is the propagation velocity of longitudinal waves in the medium 2, and Cs
l is the propagation velocity of the transverse wave in medium I. The ratio of the amplitudes of the incident longitudinal wave 8 and the reflected longitudinal wave 8 & depends on the angle of incidence α using the Poisson's ratio of the medium (2) as a parameter, and the amplitude of the reflected longitudinal wave 8 a is 0.
There is an angle of incidence that becomes (zero).

この反射縦波8&の振幅がOになる入射角においては、
入射縦波8は完全に横波9への変換が起きる。例えば、
媒体■がポアソン比約0.14の石英ガラス、流体媒体
■が空気の場合、入射角αが約45°で反射縦波8aの
振幅がOになり、入射縦波8は完全に横波9への変換が
起きる。この横波9の反射角βは約30°となる。第1
図の縦波の反射角α、横波の反射角βは第3図のそれに
対応している。
At the incident angle where the amplitude of this reflected longitudinal wave 8& becomes O,
The incident longitudinal wave 8 is completely converted into a transverse wave 9. for example,
When the medium ■ is quartz glass with a Poisson's ratio of approximately 0.14, and the fluid medium ■ is air, the amplitude of the reflected longitudinal wave 8a becomes O when the incident angle α is approximately 45°, and the incident longitudinal wave 8 completely transforms into a transverse wave 9. conversion occurs. The reflection angle β of this transverse wave 9 is about 30°. 1st
The reflection angle α of the longitudinal wave and the reflection angle β of the transverse wave in the figure correspond to those in FIG.

この横波は反射面3の変換点13において上記変換とは
逆の横波−縦波変換を受け、他の反射面4の変換点14
において縦波−横波変換され、反射面7の変換点15に
おいて横波−縦波変換され、再び反射面6の変換点16
において縦波−横波変換され、再び反射面3の変換点1
7において横波−縦波変換された縦波は超音波固体遅延
媒体lの反射面5に配置された出力トランスジューサ1
1にその面に90°て入射する。このように縦波8は総
て入力トランスジューサ10および出力トランスジュー
サ11と直交するように反射面3.4.6.7において
6個の変換点13と17.14.12と16.15が設
けられている。
This transverse wave undergoes transverse wave-longitudinal wave conversion, which is the opposite of the above conversion, at a conversion point 13 on the reflecting surface 3, and then at a conversion point 14 on the other reflecting surface 4.
A longitudinal wave-to-transverse wave conversion is performed at a conversion point 15 on the reflecting surface 7, and a transverse wave-to-longitudinal wave conversion is performed at a conversion point 15 on the reflecting surface 6.
The longitudinal wave is converted into a transverse wave at , and the conversion point 1 of the reflecting surface 3 is
The longitudinal wave converted from transverse wave to longitudinal wave at 7 is output to an output transducer 1 placed on the reflecting surface 5 of the ultrasonic solid delay medium l.
1, the light is incident on that surface at 90°. In this way, six conversion points 13, 17, 14, 12, and 16.15 are provided on the reflecting surface 3.4.6.7 so that the longitudinal wave 8 is all perpendicular to the input transducer 10 and the output transducer 11. ing.

この超音波固体遅延線によれば、超音波固体遅延媒体1
・に多角形の多重反射面2〜7を形成し、前記反射面の
異なる2面2.5には、縦波8を放射する入力トランス
ジューサIOと前記縦波が他の反射面3.4.6.7に
おいて反射された縦波を入射する出力トランスジューサ
11とをそれぞれ平行して配置し、前記他の反射面には
、前記縦波が前記入力トランスジューサおよび出力トラ
ンスジューサと直交するように前記入力トランスジュー
サから放射された縦波を縦波−横波変換および得られた
横波9を横波−縦波変換する複数個の変換点12〜17
を具備せしめたので、横波9のパス(経路長)に比べて
縦波8のパスが短くなり、形状が小さくなり、小型化で
きる。さらに、縦波8のパスが短くなるので、遅延時間
量を大きくとることができ、かつ横波を使って温度係数
がOとしである一般の遅延線用ガラスを本発明による超
音波固体遅延線に使用しても温度特性が良好である。
According to this ultrasonic solid delay line, the ultrasonic solid delay medium 1
Polygonal multiple reflection surfaces 2 to 7 are formed in . In step 6.7, the output transducers 11 into which the reflected longitudinal waves are incident are arranged in parallel, and the input transducers 11 and the output transducers 11 on which the reflected longitudinal waves are incident are arranged in parallel to each other, and the input transducers 11 and a plurality of conversion points 12 to 17 for longitudinal wave-to-transverse wave conversion of the longitudinal waves radiated from the radiated beams and transverse wave-to-longitudinal wave conversion for the obtained transverse waves 9;
, the path of the longitudinal wave 8 becomes shorter than the path (path length) of the transverse wave 9, and the shape becomes smaller, allowing for miniaturization. Furthermore, since the path of the longitudinal wave 8 is shortened, a large amount of delay time can be obtained, and by using transverse waves, a general delay line glass having a temperature coefficient of O can be used as an ultrasonic solid state delay line according to the present invention. Even when used, the temperature characteristics are good.

次に、本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.

第2図において、ガラスのような超音波固体遅延媒体1
には、6角形の多重反射面2〜7が形成され、反射面の
1面2には、縦波8(点線で示す)を放射する入力トラ
ンスジューサ10と縦波8が他の反射面3.4.6にお
いて反射された縦波を入射する出力トランスジューサ1
1とが直線状に配置されている。
In FIG. 2, an ultrasonic solid retardation medium 1 such as glass
Hexagonal multi-reflection surfaces 2 to 7 are formed on one of the reflection surfaces 2, and an input transducer 10 that emits a longitudinal wave 8 (indicated by a dotted line) is formed on one surface 2 of the reflection surface, and an input transducer 10 emits a longitudinal wave 8 (indicated by a dotted line). 4. Output transducer 1 receiving reflected longitudinal waves at 6
1 are arranged in a straight line.

縦波8が入力トランスジューサ10および出力トランス
ジューサ11と直交するように、この反射面6および反
射面3には、入力トランスジューサ10から放射された
縦波8を縦波−横波(9で実線で示す)変換する2個の
変換点12.15並びに反射面4および反射面6には、
得られた横波9を横波−縦波変換する2個の変換点14
.16を具備する。この縦波の反射角α、横波の反射角
βは第1図のそれに対応している。
In order that the longitudinal wave 8 is orthogonal to the input transducer 10 and the output transducer 11, the longitudinal wave 8 radiated from the input transducer 10 is transferred to the reflecting surface 6 and the reflecting surface 3 by a longitudinal wave-transverse wave (indicated by a solid line 9). The two conversion points 12.15 and the reflective surface 4 and the reflective surface 6 are
Two conversion points 14 for transverse wave-longitudinal wave conversion of the obtained transverse wave 9
.. 16. The reflection angle α of the longitudinal wave and the reflection angle β of the transverse wave correspond to those shown in FIG.

また、反射面2において前記横波が横波−横波反射され
る全反射点13を具備し、その入射角γと反射角γは等
しい。なお1、図示の例では多重反射面2〜7は6角形
に形成されているが、遅延線の遅延量に応じて他の多角
形とすることができ、この場合、変換点および反射点の
合計も5個以外の複数個が具備される。
Further, the reflective surface 2 includes a total reflection point 13 where the transverse wave is reflected transversely, and the incident angle γ and the reflection angle γ thereof are equal. 1. In the illustrated example, the multiple reflection surfaces 2 to 7 are formed in a hexagonal shape, but they can be formed into other polygonal shapes depending on the amount of delay of the delay line. In total, a plurality of pieces other than five are provided.

このように構成された超音波固体遅延線において、超音
波固体遅延媒体lの反射面2に配置された入力トランス
ジューサ10からその面に90°で放射された縦波8は
遅延媒体1中を伝播し、反射面6の変換点12において
縦波−横波変換されて横波9として反射面2へ曲げられ
て進行する。この横波は反射面2の全反射点13におい
て横波−横波反射され、その横波は反射面4の変換点1
4において上記変換とは逆の横波−縦波変換を受け、他
の反射面3の変換点13において縦波−横波変換され、
再び反射面6の変換点16において横波−縦波変換され
た縦波は同じく超音波固体遅延媒体1の反射面2に配置
された出力トランスジューサ11にその面に90″で入
射する。このように縦波8は総て入力トランスジューサ
10および出力トランスジューサ11と直交するように
反射面3.4.6において4個の変換点15.14.1
2.16と反射面2において1個の反射点13とが設け
られている。
In the ultrasonic solid-state delay line configured in this manner, the longitudinal wave 8 radiated at 90° from the input transducer 10 placed on the reflecting surface 2 of the ultrasonic solid-state delay medium 1 to that surface propagates through the delay medium 1. Then, at a conversion point 12 on the reflecting surface 6, the wave is converted into a longitudinal wave and a transverse wave, and is bent as a transverse wave 9 and propagates toward the reflecting surface 2. This transverse wave is transversely reflected at the total reflection point 13 of the reflecting surface 2, and the transverse wave is reflected at the conversion point 1 of the reflecting surface 4.
4, undergoes transverse wave-longitudinal wave conversion which is opposite to the above conversion, and undergoes longitudinal wave-transverse wave conversion at the conversion point 13 of the other reflecting surface 3,
The longitudinal wave, which has undergone transverse wave-longitudinal wave conversion again at the conversion point 16 of the reflecting surface 6, is incident on the output transducer 11, which is also placed on the reflecting surface 2 of the ultrasonic solid-state delay medium 1, at an angle of 90'' to that surface. The longitudinal waves 8 are arranged at four conversion points 15.14.1 at the reflecting surface 3.4.6 so that they are all orthogonal to the input transducer 10 and the output transducer 11.
2.16 and one reflection point 13 on the reflection surface 2 are provided.

なお、仮想線20て示すように超音波固体遅延媒体を延
長し、それに更に多角形の多重反射面を形成することに
より遅延時間量を増大することができる。
Note that the amount of delay time can be increased by extending the ultrasonic solid delay medium and further forming polygonal multiple reflection surfaces thereon as shown by the imaginary line 20.

この実施例においても横波のパス(経路長)に比べて縦
波のパスが短くなり、形状が小さくなり、小型化できる
。さらに、縦波のパスが短くなるので、遅延時間量を大
きくとることができ、かつ横波を使って温度係数がOと
しである一般の遅延線用ガラスを本発明による超音波固
体遅延線に使用しても温度特性が良好である。
Also in this embodiment, the longitudinal wave path is shorter than the transverse wave path (path length), and the shape is smaller, allowing for miniaturization. Furthermore, since the path of longitudinal waves is shortened, a large amount of delay time can be obtained, and by using transverse waves, a general delay line glass having a temperature coefficient of O can be used in the ultrasonic solid state delay line according to the present invention. However, the temperature characteristics are good.

[発明の効果] 以上の実施例からも明らかなように本発明によれば、超
音波固体遅延媒体に多角形の多重反射面を形成し、前記
反射面の一部には、縦波を放射する入力トランスジュー
サと前記縦波が他の反射面において反射された縦波を入
射する出力トランスジューサとを配置し、前記他の反射
面には、前記入力トランスジューサから放射された縦波
を縦波−横波変換および得られた横波を積波−縦波変換
する複数個の変換点を具備したので、横波のパス(経路
長)に比べて縦波のパスが短くなり、形状が小さくなり
、小型化できる。さらに、縦波のパスが短くなるので、
遅延時間量を大きくとることができ、かつ横波を使って
温度係数が0としである一般の遅延線用ガラスを本発明
による超音波固体遅延線に使用しても温度特性が良好で
ある。
[Effects of the Invention] As is clear from the above embodiments, according to the present invention, a polygonal multiple reflection surface is formed in the ultrasonic solid delay medium, and a part of the reflection surface is used to radiate longitudinal waves. an input transducer that receives a longitudinal wave that is reflected on another reflecting surface; Since it is equipped with multiple conversion points for converting the resulting transverse wave into a product-longitudinal wave, the longitudinal wave path is shorter than the transverse wave path (path length), resulting in a smaller shape and miniaturization. . Furthermore, since the path of the longitudinal wave becomes shorter,
Even if a general delay line glass, which allows a large amount of delay time and has a temperature coefficient of 0 using transverse waves, is used in the ultrasonic solid state delay line according to the present invention, the temperature characteristics are good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による超音波固体遅良として
考えられる遅延線の平面図である。 l・・・超音波固体遅延媒体 2〜7・・・多重反射面 8・・・縦波 9・・・横波 10・・・入力トランスジューサ 11・・・出力トランスジューサ 12〜17・・・変換点 13・・・全反射点 代理人 弁理士   守 谷 −雄 第1囮 第3図
FIG. 1 is a plan view of a delay line that can be considered as an ultrasonic solid state delay device according to an embodiment of the present invention. l...Ultrasonic solid delay medium 2-7...Multiple reflecting surface 8...Longitudinal wave 9...Transverse wave 10...Input transducer 11...Output transducer 12-17...Conversion point 13 ...Total reflection point agent Patent attorney Moritani -Yo 1st decoy 3rd figure

Claims (1)

【特許請求の範囲】 1、超音波固体遅延媒体に多角形の多重反射面を形成し
、前記反射面の一部には、縦波を放射する入力トランス
ジューサと前記縦波が他の反射面において反射された縦
波を入射する出力トランスジューサとを配置し、前記他
の反射面には、前記入力トランスジューサから放射され
た縦波を縦波−横波変換および得られた横波を横波−縦
波変換する複数個の変換点を具備することを特徴とする
超音波固体遅延線。 2、前記入力トランスジューサおよび出力トランスジュ
ーサは前記反射面の異なる2面にそれぞれ平行して配置
され、前記縦波が前記入力トランスジューサおよび出力
トランスジューサと直交するように前記反射面において
前記複数個の変換点を具備する特許請求の範囲第1項記
載の超音波固体遅延線。 3、前記入力トランスジューサおよび出力トランスジュ
ーサは前記反射面の1面に直線状に配置され、前記縦波
が前記入力トランスジューサおよび出力トランスジュー
サと直交するように前記反射面において前記複数個の変
換点を具備すると共に、前記反射面において前記横波が
横波−横波反射される全反射点を具備する特許請求の範
囲第1項記載の超音波固体遅延線。
[Claims] 1. A polygonal multiple reflection surface is formed in the ultrasonic solid delay medium, and one part of the reflection surface has an input transducer that emits a longitudinal wave, and the longitudinal wave has an input transducer that emits a longitudinal wave on another reflection surface. and an output transducer that receives the reflected longitudinal wave, and the other reflecting surface performs longitudinal wave-transverse wave conversion of the longitudinal wave emitted from the input transducer and transverse wave-longitudinal wave conversion of the obtained transverse wave. An ultrasonic solid-state delay line characterized by having a plurality of conversion points. 2. The input transducer and the output transducer are arranged parallel to each other on two different sides of the reflective surface, and the plurality of conversion points are arranged on the reflective surface so that the longitudinal wave is orthogonal to the input transducer and the output transducer. An ultrasonic solid state delay line as claimed in claim 1. 3. The input transducer and the output transducer are arranged linearly on one surface of the reflective surface, and the plurality of conversion points are provided on the reflective surface such that the longitudinal wave is orthogonal to the input transducer and the output transducer. The ultrasonic solid-state delay line according to claim 1, further comprising a total reflection point at which the transverse wave is reflected from transverse wave to transverse wave on the reflecting surface.
JP13037885A 1985-06-14 1985-06-14 Ultrasonic wave solid-state delay line Pending JPS61288510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13037885A JPS61288510A (en) 1985-06-14 1985-06-14 Ultrasonic wave solid-state delay line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13037885A JPS61288510A (en) 1985-06-14 1985-06-14 Ultrasonic wave solid-state delay line

Publications (1)

Publication Number Publication Date
JPS61288510A true JPS61288510A (en) 1986-12-18

Family

ID=15032909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13037885A Pending JPS61288510A (en) 1985-06-14 1985-06-14 Ultrasonic wave solid-state delay line

Country Status (1)

Country Link
JP (1) JPS61288510A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148940B2 (en) * 1971-10-13 1976-12-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148940B2 (en) * 1971-10-13 1976-12-23

Similar Documents

Publication Publication Date Title
TW427061B (en) Surface acoustic wave device
JPS61288510A (en) Ultrasonic wave solid-state delay line
JPH04103211A (en) Ultrasonic wave solid-state delay line
JP2001285012A (en) Surface acoustic wave filter
US4623853A (en) Surface acoustic wave dispersive delay lines having a laser irridated focus area for eliminating undesired saw concentrations
US4551826A (en) Multiple beam lens transducer with collimator for sonar systems
EP0213288B1 (en) Solid ultrasonic delay line
JP2512708B2 (en) Ultrasonic solid delay line
JPS61288512A (en) Ultrasonic wave solid-state delay line
JPS6218520A (en) Ultrasonic optical modulator
JPS58138919U (en) Ultrasonic internal light modulator
JPS6322693Y2 (en)
JPH0338927U (en)
JP3181949B2 (en) Ultrasonic vibrator and method of manufacturing ultrasonic vibrator
JPS5936019Y2 (en) ultrasonic solid state retarder
JPS58194416A (en) Ultrasonic solid state delay element
JPH0279486U (en)
JPS6372300A (en) Ultrasonic wave transmission and reception device
US4510470A (en) Electro-acoustic delay line operating in transmission
JPS6350885B2 (en)
JPH0344269B2 (en)
JPS63128900A (en) Ultrasonic probe
JPS62185404A (en) Electric signal transmission element
JPS60112206U (en) Planar optical coupler
JPS5928402Y2 (en) Wave plate using light-focusing transparent material