JPS6128761A - Ignition device of single-cylinder internal-combustion engine - Google Patents

Ignition device of single-cylinder internal-combustion engine

Info

Publication number
JPS6128761A
JPS6128761A JP14916784A JP14916784A JPS6128761A JP S6128761 A JPS6128761 A JP S6128761A JP 14916784 A JP14916784 A JP 14916784A JP 14916784 A JP14916784 A JP 14916784A JP S6128761 A JPS6128761 A JP S6128761A
Authority
JP
Japan
Prior art keywords
circuit
engine
output
speed
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14916784A
Other languages
Japanese (ja)
Inventor
Hiroshi Tanaka
弘志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP14916784A priority Critical patent/JPS6128761A/en
Publication of JPS6128761A publication Critical patent/JPS6128761A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/005Control of spark intensity, intensifying, lengthening, suppression by weakening or suppression of sparks to limit the engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

PURPOSE:To suppress a quick change of output torque and prevent over-rotations by igniting at least at every two-pulse signal generation when the engine speed is between the first predetermined speed and the second predetermined speed. CONSTITUTION:A pulser coil generates pulse signals in synchronization with the engine rotation. The number of output signals (1) of an OR circuit 22 is equal to the number of trigger pulses (h) when the engine speed is the first predetermined speed N1 or less, and an ignition plug 2 is ignited at every pulse signal generation. When the engine speed is greater than the first predetermined speed N1 and less than the second predetermined speed N2, the number of output signals (1) of the OR circuit 22 is equal to the number of output signals (j) of a frequency divider 16, and the ignition plug 2 is ignited at least at every two-pulse signal generation. When the engine speed exceeds the second predetermined speed, ignition is stopped. Accordingly, a quick change of output torque is suppressed, and over-rotations can be prevented smoothly.

Description

【発明の詳細な説明】 本発明は単気筒内燃エンジン点火装置に関し、特に過回
転防止機能を備えた単気筒内燃エンジン点火装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single cylinder internal combustion engine ignition system, and more particularly to a single cylinder internal combustion engine ignition system having an overspeed prevention function.

過回転防止機能を備えた内燃エンジン点火装置としては
、エンジン回転数が所定回転数以上になると点火を停止
してエンジン回転数を制御する方式の点火装置が既に知
られている。しかしながら、単気筒内燃エンジンではク
ランクシャフトが2回転する間の点火数が1回又は2回
の如く少なく、過回転防止のための点火停止によって急
激な出力低下を生じるので自動2輪車等の車両に搭載し
た場合にドライバビリティの著しい悪化を招くという問
題点があった。
As an internal combustion engine ignition device having an overspeed prevention function, an ignition device of a type that controls the engine speed by stopping ignition when the engine speed exceeds a predetermined speed is already known. However, in a single-cylinder internal combustion engine, the number of ignitions during two rotations of the crankshaft is small, such as once or twice, and when the ignition is stopped to prevent overspeeding, a sudden drop in output occurs, so it is used in vehicles such as motorcycles. There was a problem in that when installed in a vehicle, drivability deteriorated significantly.

そこで1本発明の目的は単気筒内燃エンジンの急激な出
力トルク変動を抑制しつつ円滑な過回転防止作用をなし
得る点火装置を提供することにある0 本発明の単気筒内燃エンジン点火装置はエンジンの回転
に同期してパルス信号を発生し、エンジン回転数が第1
所定回転数以下のときパルス信号発生毎に点火し、エン
ジン回転数が第1所定回転数以上でかつ第1所定回転数
よシ大なる第2所定回転数以下のとき少なくとも2回の
パルス信号発生毎に点火し、エンジン回転数が第2所定
回転数以上のとき点火を停止することを特徴としている
0以下、本発明の実施例を図面を参照しつつ詳細に説明
する。
Accordingly, an object of the present invention is to provide an ignition device that can suppress sudden fluctuations in output torque of a single-cylinder internal combustion engine while smoothly preventing overspeed. A pulse signal is generated in synchronization with the rotation of the engine, and when the engine rotation speed is the first
Ignition occurs every time a pulse signal is generated when the engine speed is below a predetermined speed, and the pulse signal is generated at least twice when the engine speed is above a first predetermined speed and below a second predetermined speed that is greater than the first predetermined speed. Embodiments of the present invention will be described in detail with reference to the drawings.

第1図は自動二輪車に搭載された単気筒エンジンに適用
した本発明による点火装置の配置を示している。本図に
おいて、エンジン1の気筒には点火プラグ2が装着され
てお凱その点火プラグ2はハイテンションコード3を介
してイグニッションコイル4に接続されている。5はパ
ルスジェネレータであシ、後述のパルサーコイルヲ有し
クランクシャフトの回転に応じてパルス信号を発生して
電気回路ユニット6に供給する。!た。バッテリ7の出
力端子はメインスイッチ8.キルスイッチ9を介してイ
グニッションコイル4に接続されている。
FIG. 1 shows the arrangement of an ignition device according to the present invention applied to a single-cylinder engine mounted on a motorcycle. In this figure, a spark plug 2 is attached to a cylinder of an engine 1, and the spark plug 2 is connected to an ignition coil 4 via a high tension cord 3. Reference numeral 5 denotes a pulse generator, which has a pulser coil to be described later, and generates a pulse signal according to the rotation of the crankshaft and supplies it to the electric circuit unit 6. ! Ta. The output terminal of the battery 7 is connected to the main switch 8. It is connected to the ignition coil 4 via a kill switch 9.

第2図は電気回路ユニット・6内に形成された回。FIG. 2 shows circuits formed in the electric circuit unit 6.

路を示している。本図において、パルスジェネレータ5
のパルサーコイル11はクランクシャフト等のエンジン
作動に応じて回転する回転体と同期して回転する回転磁
石(図示せず)の近傍に所定の回転角度位置に配設され
、該回転磁石の回転に同期したパルス信号を発生する。
It shows the path. In this figure, the pulse generator 5
The pulsar coil 11 is disposed at a predetermined rotational angle position near a rotating magnet (not shown) that rotates in synchronization with a rotating body such as a crankshaft that rotates in response to engine operation, and Generates synchronized pulse signals.

パルサーコイル11から得られるパルス信号は波形成形
回路12によって矩形波パルスに変換される。波形成形
回路12にはトリガ回路13及び充放電回路14が接続
されている。トリガ回路13は矩形波パルスに応じてト
リガパルスを発生しかつAND回路15の一方の入力端
及び分周回路16に供給する。分周回路16はトリガパ
ルスの発生周波数を所定分AND回路17の一方の入力
端に供給する。一方、充放電口jli514はコンデン
サを有し該コンデンサを矩形波パルスに応じて充放電せ
しめることによフェンジン回転数に対応する出力電圧を
発生する。
A pulse signal obtained from the pulser coil 11 is converted into a rectangular wave pulse by a waveform shaping circuit 12. A trigger circuit 13 and a charging/discharging circuit 14 are connected to the waveform shaping circuit 12 . Trigger circuit 13 generates a trigger pulse in response to the rectangular wave pulse and supplies it to one input terminal of AND circuit 15 and frequency divider circuit 16 . The frequency dividing circuit 16 supplies a predetermined portion of the trigger pulse generation frequency to one input terminal of the AND circuit 17 . On the other hand, the charge/discharge port jli 514 has a capacitor and generates an output voltage corresponding to the engine rotation speed by charging and discharging the capacitor in accordance with the rectangular wave pulse.

充放電回路14の出力端には比較器18.19が接続さ
れている。比較器18は充放電回路14の出力電圧が第
1所定回転数Nよ(例えば、 10000 r、p、m
)K5tH5f、6Fl’iゝ11“avo、=to〜
L/ < /l/ (7)     。
Comparators 18 and 19 are connected to the output terminal of the charging and discharging circuit 14. The comparator 18 determines whether the output voltage of the charge/discharge circuit 14 is equal to the first predetermined rotation speed N (for example, 10000 r, p, m
) K5tH5f, 6Fl'iゝ11"avo, =to~
L/ < /l/ (7).

出力を得る。比較器19は充放電回路14の出力電圧が
第1所定回転数N□よ多大なる第2所定回転数N2(例
えば、 12000 r、 pom )に対応する所定
電圧v2以下のときのみ高レベルの出力を得る。
get the output. The comparator 19 outputs a high level only when the output voltage of the charging/discharging circuit 14 is equal to or lower than a predetermined voltage v2 corresponding to a second predetermined rotation speed N2 (for example, 12000 r, pom) which is greater than the first predetermined rotation speed N□. get.

波形成形回路12及び比較器18の各出力レベルの論理
和がOR回路2oによって採られてAND回路15の他
方の入力端に供給される。また波形成形回路12及び比
較器19の各出力レベルの論理和かOR回路21によっ
て採られてAND回路17の他方の入力端に供給されΣ
。更にAND回路15.17の各出力レベルの論理和が
OR回路22によって採られてパワートランジスタ23
のペースに供給される。トランジスタ23はOR回路2
2の出力レベルに応じてオン又はオフとなシ、トランジ
スタ23のオン・オフにょシイグニノションコイル4の
1次コイルに電流が断続的に流れて2次コイルに高電圧
が発生し点火プラグ2に火花を生ぜしめるのである。
The logical sum of the respective output levels of the waveform shaping circuit 12 and the comparator 18 is taken by the OR circuit 2o and supplied to the other input terminal of the AND circuit 15. Also, the logical sum of the output levels of the waveform shaping circuit 12 and the comparator 19 is taken by the OR circuit 21 and is supplied to the other input terminal of the AND circuit 17.
. Further, the OR circuit 22 takes the logical sum of the output levels of the AND circuits 15 and 17, and outputs the power transistor 23.
supplied at the pace of. Transistor 23 is OR circuit 2
The transistor 23 turns on or off depending on the output level of the ignition coil 4. Current flows intermittently to the primary coil of the ignition coil 4, and a high voltage is generated in the secondary coil, causing the spark plug to turn on or off. It creates a spark in 2.

かかる本発明による点火装置においては、パルサーコイ
ル11から得られるパルス信号(α)は第3図(α)に
示すように正及び負パルスの対が連続して形成された信
号である。このパルス信号<a)は波形成形回路12に
よって第3図(,6)に示すように正パルスの前縁位置
において立ち上がシ、かつ負パルスの前縁位置にて立ち
下がる矩形波パルス(A)に変換される。第3図の如く
時間と共にエンジン回転数が上昇している場合、矩形波
パルス(A)の発生間隔が短くなる。矩形波パルスCb
)の発生と同時に充放電回路14のコンデンサが充電さ
れて所定電圧v、(V8〉■、〉■エンが充放電回路1
4の出力電圧(C)とな凱その後、そのコンデンサを所
定電流で放電せしめることによシ出カ電圧CC)は徐々
に低下する。矩形波パルスCh)の消滅時に出力電圧(
c)の低下は停止し1次の矩形波パルスの発生までその
出力電圧レベルが保持される。よって、充放電回路14
の出力波形は第3図CC)の如く三角波となシ。
In the ignition device according to the present invention, the pulse signal (α) obtained from the pulser coil 11 is a signal in which a pair of positive and negative pulses are successively formed as shown in FIG. 3 (α). This pulse signal < a) is generated by the waveform shaping circuit 12 into a rectangular wave pulse ( A). When the engine speed increases with time as shown in FIG. 3, the interval between the occurrences of the rectangular wave pulses (A) becomes shorter. Square wave pulse Cb
) is generated, the capacitor of the charging/discharging circuit 14 is charged, and the predetermined voltage v, (V8〉■,〉■) is applied to the charging/discharging circuit 1.
Thereafter, by discharging the capacitor with a predetermined current, the output voltage CC) gradually decreases. When the square wave pulse Ch) disappears, the output voltage (
The drop in c) is stopped and the output voltage level is maintained until the generation of the first-order rectangular wave pulse. Therefore, the charging/discharging circuit 14
The output waveform is a triangular wave as shown in Figure 3 (CC).

その保持期間の出力電圧(c)はエンジン回転数に応じ
たレベルとなる。比較器18の出力レベル(d)は第3
図(d)に示すように充放電回路14の出力電圧(C)
が第1所定電圧v0以下のとき高レベルに、第1所定電
圧■、よ多大のとき低レベルになる。矩形波パルス(d
)と比較器18の出力信号Cd)との論理和をOR回路
20によって採ると第3図(−)に示すように充放電回
路14の保持期間の出力電圧(C)が第1所定電圧v□
以下となる範囲、すなわちエンジン回転数が第1所定回
転数N工以下となる範囲では高レベル状態が継続し、保
持期間の出力電圧(C)が第1所定電圧v0よシ太とな
る範囲、すなわちエンジン回転数が第1所定回転数N□
よ多大となる範囲では矩形波パルスのレベル変化に等し
くなる。また比較器19の出力レベルσフは第3図(イ
)に示すように充放電回路14の出力電圧(C)が第2
所定電圧■、以下のとき高レベルに、第2所定電圧■2
よ多大のとき低レベルになる。矩形波パルス(d)と比
較器19の出力信号(d)との論理和をOFL回路21
によって採ると第3図(g)に示すように充放電回路1
4の保持期間の出力電圧CC)が第2所定電圧■2以下
となる範囲、すなわちエンジン回転数が第2所定回転数
N2以下となる範囲では矩形波パルスのレベル変化に等
しくなる。
The output voltage (c) during the holding period has a level corresponding to the engine speed. The output level (d) of the comparator 18 is the third
As shown in figure (d), the output voltage (C) of the charging/discharging circuit 14
When the voltage is less than the first predetermined voltage v0, it becomes a high level, and when the first predetermined voltage (2) is higher than the first predetermined voltage, it becomes a low level. Square wave pulse (d
) and the output signal Cd) of the comparator 18 using the OR circuit 20, the output voltage (C) during the holding period of the charging/discharging circuit 14 becomes the first predetermined voltage v, as shown in FIG. □
In the following range, that is, in the range where the engine speed is equal to or less than the first predetermined rotation speed N, the high level state continues, and the output voltage (C) during the holding period is greater than the first predetermined voltage v0, That is, the engine rotation speed is the first predetermined rotation speed N□
In a larger range, it becomes equal to the level change of a rectangular wave pulse. Furthermore, the output level σ of the comparator 19 is as shown in FIG.
Predetermined voltage ■, high level when below, second predetermined voltage ■2
When the amount is large, the level becomes low. The OFL circuit 21 calculates the logical sum of the rectangular wave pulse (d) and the output signal (d) of the comparator 19.
As shown in Figure 3(g), the charging/discharging circuit 1
In the range where the output voltage CC) during the holding period of 4 is below the second predetermined voltage (2), that is, within the range where the engine speed is below the second predetermined speed N2, it becomes equal to the level change of the rectangular wave pulse.

一方、トリガ回路13から出力されるトリガノくルス(
勾は点火タイミングを表わし第3図(A)に示すよ2に
矩形波パルス(A)よフ若干遅れ発生しかつエンジン回
転数が上昇し高くとも第1所定回転数N工以上では矩形
波パルス(b)の非存在時に発生する。
On the other hand, the trigger pulse output from the trigger circuit 13 (
The slope represents the ignition timing, and as shown in Fig. 3 (A), the square wave pulse (A) occurs slightly later than the rectangular wave pulse (A), and as the engine speed rises and exceeds the first predetermined speed N at most, the rectangular wave pulse occurs. Occurs in the absence of (b).

このトリガパルス(ん)とOEI、回路20の出力信号
(りとの論理積を採るAND回路15の出力信号(乙)
は第3図<i)に示すようにOR回路20の出力レベル
が高レベルを継続する期間、すなわちエンジン回転数か
第1所定回転数N0以下の範囲においてトリガパルスC
h)と等しくなシそれ以外の範囲では低レベルとなる。
The output signal (B) of the AND circuit 15 which takes the logical product of this trigger pulse (N), OEI, and the output signal of the circuit 20 (B)
As shown in FIG. 3 <i), the trigger pulse C is generated during a period in which the output level of the OR circuit 20 continues to be at a high level, that is, in a range where the engine rotational speed is equal to or lower than the first predetermined rotational speed N0.
In other ranges, the level is low.

またトリガパルスCh)は分周回路16によって分周さ
れる。ここで、分周回路16の分局比を17′2とする
と分周回路16の出力信号(j)は第3図Cj)に示す
ようにトリガパルスCh)を1つ置きにした信号として
得られる。分局口w516の出力信号(j)とOR回路
21の出力信号(g)との論理積を採るAND回路17
の出力信号Ck)は第3図(&)に示すようにOR回路
21の出力レベルが高レベルを継続する期間、すなわち
エンジン回転数が第2所定回転数N、以下の範囲におい
て分周回路16の出力信号0)に等しくなシそれ以外の
範囲では低レベルとなる。AND回路15.17の各出
力信号<iン、 (k)の論理和がOR回路22によっ
て採られるので、OR回路22の出力信号(e)は第3
図V)に示すようにエンジン回転数が第1所定回転数N
□以下ではトリガパルス(A)に等しく、第1所定回転
数Nlよシ太でかつ第2所定回転数N2以下では分周回
路16の出力信号(j)に等しく、第2所定回転数NI
iよ多大では低レベル状態となる。よって、トランジス
タ23はOR,回路22の出力信号に応じてオン・オフ
してイグニッションコイル4に断続的に電流を供給する
ことによシ点火プ2グ2に火花を生せしめるので、2サ
イクルエンジンの場合、エンジン回転数が第1所定回転
数N0以下のときクランクシャフトが1回転する毎に1
回点火する通常点火が行なわれる。またエンジン回転数
が第1所定回転数Nlよシ太でかつ第2所定回転数N、
以下のときクランクシャフトが2回転する毎に1回点火
する間引き点火が行なわれ、エンジン回転数が第2所定
回転数よシ犬のとき点火が停止される。
Further, the frequency of the trigger pulse Ch) is divided by a frequency dividing circuit 16. Here, if the division ratio of the frequency divider circuit 16 is 17'2, the output signal (j) of the frequency divider circuit 16 is obtained as a signal with every other trigger pulse Ch) as shown in Figure 3 Cj). . AND circuit 17 that takes the logical product of the output signal (j) of the branch port w516 and the output signal (g) of the OR circuit 21
As shown in FIG. 3 (&), the output signal Ck) of the frequency dividing circuit 16 is output during a period in which the output level of the OR circuit 21 continues to be at a high level, that is, in a range where the engine rotational speed is equal to or less than the second predetermined rotational speed N. The output signal 0) is equal to the output signal 0), and the level is low in other ranges. Since the OR circuit 22 takes the logical sum of each output signal <in, (k) of the AND circuits 15 and 17, the output signal (e) of the OR circuit 22 is
As shown in Figure V), the engine rotation speed is the first predetermined rotation speed N.
□ Below, it is equal to the trigger pulse (A), and when it is greater than the first predetermined rotation speed Nl and below the second predetermined rotation speed N2, it is equal to the output signal (j) of the frequency dividing circuit 16, and the second predetermined rotation speed NI
If it is larger than i, it will be in a low level state. Therefore, the transistor 23 turns on and off according to the output signal of the OR circuit 22 and intermittently supplies current to the ignition coil 4, thereby producing a spark in the spark plug 2. In the case of
Normal ignition is performed with multiple ignitions. Further, the engine rotation speed is greater than the first predetermined rotation speed Nl and the second predetermined rotation speed N,
In the following cases, skipped ignition is performed in which ignition occurs once every two rotations of the crankshaft, and ignition is stopped when the engine speed is equal to or higher than a second predetermined speed.

次に、トリガ回路13の構成及び動作を第4図及び第5
図に従って説明する。
Next, the configuration and operation of the trigger circuit 13 are shown in FIGS. 4 and 5.
This will be explained according to the diagram.

第4図に示した回路において、入力端子INKは波形成
形回路12から上記矩形波パルス(A)に等しい矩形波
パルス(8)が供給される0この矩形波パルス囚はトラ
ンジスタQ、、Q、をオン・オフせしめる。トランジス
タQ0がオンとなるとトランジスタQ8もオンとなシ抵
抗R0を経てキャパシタC0が充電され、トランジスタ
Q工、Q、がオフとなるとキャパシタC0が抵抗R1,
R,、を経て放電される。従って、第5図■に示す如き
信号波形が比較器31の一方の端子に供給される。比較
器31の他方の端子には抵抗R8,R,、からなる分圧
器によって基準電圧vR□が供給されておシ、比較器3
1は第5図(qに示される如き矩形波信号(Qを発生す
る。一方、トランジスタQ2のオフの際キャパシタC3
が抵抗R5゜R6を経て充電されトランジスタQ2のオ
ンの際は抵抗R6及びトランジスタQ、を経て放電され
る故、トランジスタQ、のコレクタ電圧は第5図0に示
す如く変化して矩形波信号0となり、矩形波信号0は比
較器32の一方の端子に供給される。比較器32の他方
の端子には抵抗)L9.R,8からなる分圧器によって
基準電圧vR2が供給されておシ、比較器32は第5図
@に示す如き矩形波信号を出力する。矩形波信号(Q 
、[F]はフリップフロップ330セツト端子S及びリ
セット端子Rに各々供給され、フリップフロップ33は
、矩形波信号(Q 、 CD)の立ち下少エツジにてセ
ット及びリセットされる。従って、フリップフロップ3
3のQ端子には第5図叩に示す如き矩形波信号[F]が
第3図Ch)に示したトリガパルス<A)として得られ
るのである。
In the circuit shown in FIG. 4, the input terminal INK is supplied with a rectangular wave pulse (8) equal to the above rectangular wave pulse (A) from the waveform shaping circuit 12. This rectangular wave pulse is connected to transistors Q, , Q, turn on and off. When the transistor Q0 is turned on, the transistor Q8 is also turned on, and the capacitor C0 is charged through the resistor R0. When the transistor Q0 is turned off, the capacitor C0 is charged through the resistor R1.
It is discharged via R, . Therefore, a signal waveform as shown in FIG. 5 is supplied to one terminal of the comparator 31. A reference voltage vR□ is supplied to the other terminal of the comparator 31 by a voltage divider consisting of resistors R8, R, .
1 generates a rectangular wave signal (Q) as shown in FIG.
is charged through the resistor R5゜R6 and discharged through the resistor R6 and the transistor Q when the transistor Q2 is turned on. Therefore, the collector voltage of the transistor Q changes as shown in FIG. Therefore, the square wave signal 0 is supplied to one terminal of the comparator 32. The other terminal of the comparator 32 is connected to a resistor L9. A reference voltage vR2 is supplied by the voltage divider R, 8, and the comparator 32 outputs a rectangular wave signal as shown in FIG. Square wave signal (Q
, [F] are respectively supplied to the set terminal S and reset terminal R of the flip-flop 330, and the flip-flop 33 is set and reset at the falling edge of the rectangular wave signal (Q, CD). Therefore, flip-flop 3
At the Q terminal of 3, a rectangular wave signal [F] as shown in Fig. 5 is obtained as a trigger pulse <A) shown in Fig. 3 Ch).

第6図は2サイクルエンジンを用いてトリガ回路13の
出力信号の周波数を1/2分周する場合の分周回路16
の具体的構成を示している0本図に示した回路において
はJ、に−フリップフロップ35及びAND回路36が
用いられている。入力端子INに供給される第7図C(
L)に示すトリガ・ぐルス(a)の立ち下がシに応じて
フリップフロップ35はセットされてその出力端Qが高
レベルになシ、次のトリガパルス(α)の立ち下がシに
応じてフリップフロップ35はリセットされて出力端Q
は低しべ?しとなる。この動作を繰シ返すことにょシ第
7図Cb)に示すようなデユーティ比が50%の矩形波
信号Cb)が得られ、この矩形波信号(b)とトリガパ
ルス(α)との論理積をAND回路36によって採ると
第7図(C)に示すようにトリガパルス(α)を1つ置
きにした1/2分周出力CC)が出力端子OUTから得
られるのである。なお、フリップフロップ35の端子J
、に、CLRは高レベル■にされている。
FIG. 6 shows a frequency dividing circuit 16 when dividing the frequency of the output signal of the trigger circuit 13 by 1/2 using a two-cycle engine.
In the circuit shown in this figure, which shows the specific structure of J, a flip-flop 35 and an AND circuit 36 are used. 7C (
In response to the falling edge of the trigger pulse (a) shown in L), the flip-flop 35 is set so that its output terminal Q becomes a high level, and the falling edge of the next trigger pulse (α) becomes si. Accordingly, the flip-flop 35 is reset and the output terminal Q
Is it a low stamen? It becomes cold. By repeating this operation, a rectangular wave signal Cb) with a duty ratio of 50% as shown in FIG. When this is taken by the AND circuit 36, a 1/2 frequency divided output CC) with every other trigger pulse (α) is obtained from the output terminal OUT, as shown in FIG. 7(C). Note that the terminal J of the flip-flop 35
, the CLR is set to a high level ■.

第8図は4サイクルエンジンを用いてトリガ回路13の
出力信号の周波数を1/4分周する場合の分周回路16
の具体的構成を示している○本図に示した分周回路は2
つのJK−フリップフロップ37.38とAND回路3
9とからなる。入力端子INに供給される第9図(α)
に示すトリガパルス(α)に応じてフリップフロップ3
7の出力端Qから第9図Cb)に示すように矩形波パル
ス(句が得られ、その矩形波パルス(句は更にフリップ
フロップ38に供給されフリップ70ツブ38の出力端
Qからは第9図(C)に示すようにトリガパルス(α)
の発生周波数を1/4分周した矩形波パルス(C)が得
られる〇この矩形波パルス(C)とトリガパルス(α)
との論理積をAND回路39によって採ると第9図(d
)に示すようにトリガパルス(α)を2パルス置きに2
パルスカツトした出力(d)が出力端子OUTから得ら
れるのである。
FIG. 8 shows the frequency dividing circuit 16 when dividing the frequency of the output signal of the trigger circuit 13 by 1/4 using a 4-cycle engine.
○The frequency dividing circuit shown in this figure is 2
3 JK flip-flops and 3 AND circuits
It consists of 9. Figure 9 (α) supplied to input terminal IN
Flip-flop 3 is activated in response to the trigger pulse (α) shown in
From the output Q of the flip-flop 70, a square wave pulse is obtained as shown in FIG. Trigger pulse (α) as shown in figure (C)
A square wave pulse (C) is obtained by dividing the generation frequency by 1/4.〇This square wave pulse (C) and the trigger pulse (α)
When the AND circuit 39 calculates the logical product with
), the trigger pulse (α) is set every two pulses.
The pulse-cut output (d) is obtained from the output terminal OUT.

第10図は本発明の他の実施例を示している。FIG. 10 shows another embodiment of the invention.

本図においては、充放電回路14の出力端には第3図(
b)に示した矩形波パルスの立ち下がシに応じて充放電
回路14の出力電圧を保持する保持回路40が接続され
、保持回路40の出力電圧が比較器18.19に供給さ
れる。また比較器18の出力端はAND回路15の他方
の入力端に、比較器19の出力端はA、 N D回路1
7の他方の入力端に接続されている。本発明による点火
装置のその他の構成はAND回路20.21が設けら詐
ていない他は第2図と同様である。よって、比較器18
の出力レベルはエンジン回転数が第1所定回転数N1以
下のとき高レベルに、第1所定回転数N1より大のとき
低レベルになる。また比較器19の出力レベルはエンジ
ン回転数が第2所定回転数N2以下のとき高レベルに、
第2所定回転数によシ太のとき低レベルになる。故に、
第2図に示した本発明による点火装置と同様の結果が得
られるのである。
In this figure, the output terminal of the charging/discharging circuit 14 is shown in FIG.
A holding circuit 40 that holds the output voltage of the charging/discharging circuit 14 according to the falling edge of the rectangular wave pulse shown in b) is connected, and the output voltage of the holding circuit 40 is supplied to the comparators 18 and 19. Further, the output terminal of the comparator 18 is connected to the other input terminal of the AND circuit 15, and the output terminal of the comparator 19 is connected to the A, N D circuit 1.
is connected to the other input terminal of 7. The rest of the structure of the ignition device according to the invention is the same as that in FIG. 2, except that AND circuits 20 and 21 are not provided. Therefore, comparator 18
The output level becomes a high level when the engine speed is below the first predetermined speed N1, and becomes a low level when the engine speed is higher than the first predetermined speed N1. Further, the output level of the comparator 19 is set to a high level when the engine speed is below the second predetermined speed N2;
When the second predetermined rotation speed is reached, the level becomes low. Therefore,
Similar results are obtained with the ignition system according to the invention shown in FIG.

このように、本発明の単気筒内燃エンジン点火装置によ
れば、エンジン回転数が第1所定回転数以下のとき通常
点火をなし、エンジン回転数が第1所定回転数よυ大で
かつ第2所定回転数以下のとき間引き点火をなし、そし
てエンジン回転数が第2所定回転数によ9大のとき点火
を停止するので、エンジン出力の急激な低下を生ずるこ
となく過回転を防止し得るのであシ、車載用の場合にド
ライバビリティの悪化を防止することができるのである
As described above, according to the single-cylinder internal combustion engine ignition device of the present invention, normal ignition is performed when the engine speed is less than or equal to the first predetermined speed, and when the engine speed is υ greater than the first predetermined speed and the second Since the ignition is skipped when the engine speed is below a predetermined speed, and the ignition is stopped when the engine speed is 9 times higher than the second predetermined speed, overspeed can be prevented without causing a sudden drop in engine output. In addition, it is possible to prevent deterioration of drivability when used in vehicles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による点火装置の自動二輪車における配
置を示す斜視図、第2図は本発明の実施例を示すブロッ
ク図、第3図は第2図の装置の動作を示す波形図、第4
図は第2図の装置中のトリガ回路の具体的構成を示す回
路図、第5図は第4図の回路の動作を示す波形図、第6
図及び第8図は第2図の装置中の分周回路の具体的構成
を示す回路図、第7図は第6図の回路の動作を示す波形
図、第9図は第8図の回路の動作を示す波形図。 第10図は本発明の他の実施例を示すブロック図である
。 主要部分の符号の説明
FIG. 1 is a perspective view showing the arrangement of an ignition device according to the present invention in a motorcycle, FIG. 2 is a block diagram showing an embodiment of the invention, FIG. 3 is a waveform diagram showing the operation of the device shown in FIG. 4
The figure is a circuit diagram showing the specific configuration of the trigger circuit in the device shown in Figure 2, Figure 5 is a waveform diagram showing the operation of the circuit in Figure 4, and Figure 6 is a waveform diagram showing the operation of the circuit in Figure 4.
8 and 8 are circuit diagrams showing the specific configuration of the frequency dividing circuit in the device shown in FIG. 2, FIG. 7 is a waveform diagram showing the operation of the circuit shown in FIG. 6, and FIG. 9 is the circuit shown in FIG. 8. FIG. 3 is a waveform diagram showing the operation of FIG. FIG. 10 is a block diagram showing another embodiment of the present invention. Explanation of symbols of main parts

Claims (1)

【特許請求の範囲】[Claims] エンジンの回転に同期してパルス信号を発生し、エンジ
ン回転数が第1所定回転数以下のとき前記パルス信号発
生毎に点火し、エンジン回転数が前記第1所定回転数よ
り大でかつ該第1所定回転数より大なる第2所定回転数
以下のとき少なくとも2回の前記パルス信号発生毎に点
火し、エンジン回転数が前記第2所定回転数より大なる
とき点火を停止することを特徴とする単気筒内燃エンジ
ン点火装置。
A pulse signal is generated in synchronization with the rotation of the engine, and when the engine rotation speed is below a first predetermined rotation speed, ignition is performed each time the pulse signal is generated, and when the engine rotation speed is higher than the first predetermined rotation speed and the first The engine is characterized in that the engine is ignited every time the pulse signal is generated at least twice when the engine speed is less than or equal to a second predetermined rotation speed that is greater than the first predetermined rotation speed, and the ignition is stopped when the engine rotation speed is greater than the second predetermined rotation speed. single-cylinder internal combustion engine ignition system.
JP14916784A 1984-07-18 1984-07-18 Ignition device of single-cylinder internal-combustion engine Pending JPS6128761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14916784A JPS6128761A (en) 1984-07-18 1984-07-18 Ignition device of single-cylinder internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14916784A JPS6128761A (en) 1984-07-18 1984-07-18 Ignition device of single-cylinder internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6128761A true JPS6128761A (en) 1986-02-08

Family

ID=15469256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14916784A Pending JPS6128761A (en) 1984-07-18 1984-07-18 Ignition device of single-cylinder internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6128761A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191872A (en) * 1989-01-20 1990-07-27 Suzuki Motor Co Ltd Car speed control device
JP2011026978A (en) * 2009-07-22 2011-02-10 Keihin Corp Control device of internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122142A (en) * 1981-01-21 1982-07-29 Nippon Denso Co Ltd Control method for internal combustion engine having supercharger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122142A (en) * 1981-01-21 1982-07-29 Nippon Denso Co Ltd Control method for internal combustion engine having supercharger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191872A (en) * 1989-01-20 1990-07-27 Suzuki Motor Co Ltd Car speed control device
JP2011026978A (en) * 2009-07-22 2011-02-10 Keihin Corp Control device of internal combustion engine

Similar Documents

Publication Publication Date Title
US3952715A (en) Variable and constant timing for breakerless ignition
JP2584184B2 (en) Capacitor discharge engine ignition system with automatic speed limit function
US4672941A (en) Ignition system
JPS6128761A (en) Ignition device of single-cylinder internal-combustion engine
US4977883A (en) Ignition control apparatus for an internal combustion engine
JP2001355555A (en) Capacity discharging engine ignition system with automatic advance/lag ignition timing control function
US4204508A (en) Ignition system for internal combustion engine
JPS60119372A (en) Electronic lead angle type igniter
JPS6138354B2 (en)
JPH01160174U (en)
JPS6138353B2 (en)
JPS5854269B2 (en) Internal combustion engine intermittent ignition method
JPS6323585Y2 (en)
JPS6355365A (en) Ignition device for internal combustion engine
RU1824502C (en) Noncontact digital ignition system for internal combustion engines
JPS5852385Y2 (en) Engine non-contact ignition device
JP2596130B2 (en) Ignition device for internal combustion engine
JPH0617738A (en) Ignition device for internal combustion engine
JPS62103466A (en) Ignition timing timing control device for internal combustion engine
JPS631009Y2 (en)
JPS6124698Y2 (en)
JPS58135363A (en) Ignition timing controlling apparatus for internal-combustion engine
JPS6220705Y2 (en)
JP3000822B2 (en) Ignition device for internal combustion engine
RU2001302C1 (en) Ignition system for internal combustion engine