JPS6128602B2 - - Google Patents

Info

Publication number
JPS6128602B2
JPS6128602B2 JP57162786A JP16278682A JPS6128602B2 JP S6128602 B2 JPS6128602 B2 JP S6128602B2 JP 57162786 A JP57162786 A JP 57162786A JP 16278682 A JP16278682 A JP 16278682A JP S6128602 B2 JPS6128602 B2 JP S6128602B2
Authority
JP
Japan
Prior art keywords
catalyst
steam reforming
heavy
heat
allofene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57162786A
Other languages
Japanese (ja)
Other versions
JPS5954602A (en
Inventor
Akikyo Motogami
Kaoru Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURUSHIMA GURUUPU KYODO GIJUTSU KENKYUSHO KK
NIPPON KAIHATSU KONSARUTANTO KK
Original Assignee
KURUSHIMA GURUUPU KYODO GIJUTSU KENKYUSHO KK
NIPPON KAIHATSU KONSARUTANTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURUSHIMA GURUUPU KYODO GIJUTSU KENKYUSHO KK, NIPPON KAIHATSU KONSARUTANTO KK filed Critical KURUSHIMA GURUUPU KYODO GIJUTSU KENKYUSHO KK
Priority to JP57162786A priority Critical patent/JPS5954602A/en
Publication of JPS5954602A publication Critical patent/JPS5954602A/en
Publication of JPS6128602B2 publication Critical patent/JPS6128602B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 本発明はアロフエン系触媒を用いて、重質炭化
水素を原料として、水素、メタン、エチレン、一
酸化炭素を主成分とした燃料ガスを製造する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing fuel gas containing hydrogen, methane, ethylene, and carbon monoxide as main components from heavy hydrocarbons using an allofene catalyst.

従来炭化水素類のガス化において、ニツケル系
触媒による部分酸化方法や水蒸気改質方法が公知
であるが、使用原料がナフサ留分等の比較的軽質
な炭化水素に限られており、又重質炭化水素を原
料とするとガス化率が低下し、炭素質生成物の析
出傾向が増大し、触媒活性が短時間で低下する等
の問題が存在するのである。
Conventionally, in the gasification of hydrocarbons, partial oxidation methods using nickel catalysts and steam reforming methods are known, but the raw materials used are limited to relatively light hydrocarbons such as naphtha fractions, and heavy When hydrocarbons are used as raw materials, there are problems such as the gasification rate decreases, the tendency for carbonaceous products to precipitate increases, and the catalyst activity decreases in a short period of time.

重質炭化水素を原料とするガス化おいて、無触
媒の部分酸化方法あるいは石炭またはコークス等
を熱媒体とする流動層を用いた熱分解方法や水蒸
気改質方法があるが、前者の方法は重質炭化水素
に水蒸気を添加して酸素、酸素リツチ空気または
空気により約1300℃以上の高温で部分燃焼させて
ガス化するものであり、酸化剤として高価な酸素
を使用すると高カロリーなガスが得られるが、ガ
ス化コストが高くなり、空気を使用するとガス化
コストは低くなるが、低カロリーガスとなる欠点
を有している。一方後者の方法は750〜900℃の温
度で重質炭化水素を分解、水蒸気改質を同時に行
なうものであるが、ナフタリンを含むタール状物
質が副生して、その処理に難点があり工業化をむ
ずかしくしている。
In the gasification of heavy hydrocarbons as raw materials, there are non-catalytic partial oxidation methods, thermal decomposition methods using fluidized beds using coal or coke as a heat medium, and steam reforming methods. Steam is added to heavy hydrocarbons and gasified by partial combustion in oxygen, oxygen-rich air, or air at a high temperature of approximately 1,300°C or higher. When expensive oxygen is used as an oxidant, high-calorie gas is produced. However, when air is used, the gasification cost is low, but it has the disadvantage of being a low-calorie gas. On the other hand, the latter method simultaneously decomposes heavy hydrocarbons at a temperature of 750 to 900°C and performs steam reforming, but tar-like substances including naphthalene are produced as by-products, and there are difficulties in processing them, making industrialization difficult. It's difficult.

本発明者らはアロフエン系触媒を用いて、重
油、残渣油等の重質油をタール状物質を副生する
ことなく接触分解して軽質油を得る研究を鋭意行
ない、さらにアロフエン系触媒が水蒸気改質作用
を有していることを発見し、加えてアロフエン系
触媒が970℃の高温領域までその触媒作用が安定
していることを見い出して、重質炭化水素をター
ル状生成物を副生することなしに、水素、メタ
ン、エチレン、一酸化炭素を主成分とする燃料ガ
ス化を行ない、アロフエン系触媒を再生循環させ
ることにより、副生する炭素質分解残渣の燃焼熱
を重質炭化水素のガス化反応の熱源とする重質炭
化水素の燃料ガス化の方法を提供するものであ
る。
The present inventors have conducted intensive research to obtain light oil by catalytically cracking heavy oils such as heavy oil and residual oil without producing tar-like substances as by-products using allofene-based catalysts. In addition, they discovered that allofene-based catalysts have a stable catalytic effect up to a high temperature range of 970°C, and discovered that they can convert heavy hydrocarbons into tar-like by-products. By gasifying fuels mainly consisting of hydrogen, methane, ethylene, and carbon monoxide, and recirculating the allofene catalyst, the combustion heat of the by-product carbonaceous decomposition residue is converted into heavy hydrocarbons. The present invention provides a method for fuel gasification of heavy hydrocarbons as a heat source for the gasification reaction.

本発明において最初の原料として用いられる重
質炭化水素は重油、原油、残渣油、オイルサンド
油、シエールオイル油、減圧軽油またはこれらに
準ずる高沸点炭化水素である。
The heavy hydrocarbons used as the first raw material in the present invention are heavy oil, crude oil, residual oil, oil sand oil, sierre oil, vacuum gas oil, or similar high-boiling hydrocarbons.

本発明で触媒として用いられるアロフエン系触
媒は膠質性土壤であり、鉱物学的にAlloPhaneで
あり、その組成の一般式はAl2O3・(1〜2)
SiO2・(2〜3)H2O+(0〜2)Al2O3(H2O)
で表わされ、非晶質含水ケイ酸アルミニウムと同
型アルミナゲルとの混合物あるいは複合物である
アロフエンを主成物として、シリカアルミナヒド
ロゲルをバインダーとして造粒、焼成して製造さ
れた粒状触媒である。
The allofene catalyst used as a catalyst in the present invention is a colloidal clay, mineralogically AlloPhane, and the general formula of its composition is Al 2 O 3 (1-2).
SiO2・(2~3) H2O +(0~ 2 ) Al2O3 ( H2O )
It is a granular catalyst produced by granulating and calcining a mixture or composite of amorphous hydrated aluminum silicate and isomorphic alumina gel, which is a mixture or composite of amorphous aluminum silicate and the same type of alumina gel, as a main component, and silica alumina hydrogel as a binder. .

本発明の特徴は重質油分解領域にて重質炭化水
素をアロフエン系触媒で接触分解して軟質化して
軽質炭化水素と炭素質分解残渣を生成し、次いで
水蒸気改質領域にて軽質炭化水素と水蒸気を高温
のアロフエン系触媒と接触させて水蒸気改質し
て、水素、メタン、エチレン、一酸化炭素を主成
分とする燃料ガスを製造し、かつ重質油分解領域
で生成した炭素質分解残渣はアロフエン系触媒の
表面に付着することによつて、アロフエン系触媒
は触媒作用が失活し、触媒再生領域にて炭素質分
解残渣は空気により燃焼されアロフエン系触媒は
再生されて、くりかえし使用され、アロフエン系
触媒は触媒再生領域−水蒸気改質領域−重質油分
解領域−触媒再生領域の順で循環使用され、この
際に触媒再生領域で発生する炭素質分解残渣の燃
焼熱の大半はアロフエン系触媒の顕熱として水蒸
気改質領域、重質油分解領域に運ばれて、各々の
吸熱反応の熱源として使用されるといういわゆる
熱バランス型プロセスとなることにある。
The feature of the present invention is that in the heavy oil cracking region, heavy hydrocarbons are catalytically cracked using an allofene catalyst to soften them to produce light hydrocarbons and carbonaceous cracked residue, and then in the steam reforming region, light hydrocarbons are produced. and steam are brought into contact with a high-temperature allofene-based catalyst for steam reforming to produce fuel gas whose main components are hydrogen, methane, ethylene, and carbon monoxide, and to decompose the carbonaceous material produced in the heavy oil cracking area. As the residue adheres to the surface of the allofene catalyst, the catalytic action of the allofene catalyst is deactivated, and in the catalyst regeneration area, the carbonaceous decomposition residue is combusted by air, and the allofene catalyst is regenerated and used repeatedly. The allofene catalyst is recycled in the order of catalyst regeneration zone - steam reforming zone - heavy oil cracking zone - catalyst regeneration zone, and most of the combustion heat of the carbonaceous decomposition residue generated in the catalyst regeneration zone is This is a so-called heat balance type process in which the sensible heat of the allofene catalyst is carried to the steam reforming region and the heavy oil cracking region and used as a heat source for each endothermic reaction.

本発明は重質油分解領域に水蒸気改質領域から
送られたアロフエン系触媒を550〜750℃の過熱水
蒸気によつて流動層を形成させ、重質炭化水素を
供給して、600〜700℃の温度、0〜5Kg/cm2Gの
圧力、15〜25の触媒比(触媒重量/重質油重量)
にて流動接触分解を行ない、重質炭化水素はアロ
フエン系触媒の接触作用、脱水素作用により軽質
化され、水素、メタン、およびオレフイン、アロ
マを含む気体状軽質炭化水素と炭素質分解残渣と
を生成する。気体状生成物は水蒸気と共に水蒸気
改質領域に供給され、又炭素質分解残渣はアロフ
エン系触媒表面に固形状で均一に付着して、アロ
フエン系触媒の活性を失活して廃触媒となり、重
質油分解領域の底部から排出して触媒ライザーに
て水蒸気または水蒸気の空気の混合物気体により
触媒再生領域に供給する。
In the present invention, the allofene catalyst sent from the steam reforming zone is sent to the heavy oil cracking zone to form a fluidized bed with superheated steam at 550 to 750℃, and heavy hydrocarbons are supplied to the heavy oil cracking zone. Temperature of 0~5Kg/ cm2G pressure, catalyst ratio of 15~25 (catalyst weight/heavy oil weight)
Fluid catalytic cracking is carried out at the catalytic reactor, and heavy hydrocarbons are lightened by the catalytic action and dehydrogenation action of an allofene catalyst, and hydrogen, methane, gaseous light hydrocarbons containing olefins and aromas, and carbonaceous cracking residues are produced. generate. The gaseous products are supplied to the steam reforming region together with steam, and the carbonaceous decomposition residue uniformly adheres to the surface of the allofene catalyst in solid form, deactivates the activity of the allofene catalyst, and becomes a waste catalyst. The oil is discharged from the bottom of the oil cracking zone and fed to the catalyst regeneration zone by steam or a steam-air mixture gas at the catalyst riser.

水蒸気改質領域で重質油分解領域から供給され
た気体状生成物と水蒸気は触媒再生領域から給送
される高温のアロフエン系触媒と流動接触して、
750〜850℃の温度、0〜5Kg/cm2Gの圧力で下記
(1)〜(2)により水蒸気改質される。
In the steam reforming zone, the gaseous products and steam supplied from the heavy oil cracking zone come into fluid contact with the high temperature allofene catalyst fed from the catalyst regeneration zone.
At a temperature of 750 to 850℃ and a pressure of 0 to 5Kg/cm 2 G, the following
Steam reforming is carried out by (1) and (2).

CnHm+nH2O→nCO+(n+m/2)H2 吸熱反応…… (1) CnHm+2nH2O→nCO2+(2n+m/2)H2 吸熱反応… …(2) 上記水蒸気改質反応は反応温度が高いほど有利
であるが、吸熱反応であり、反応熱源は触媒再生
領域からのアロフエン系触媒の顕熱でまかなわれ
るので、850℃を越える高温では触媒量が多くな
りすぎて好ましくなく、さらに熱利用率も低下す
る為経済的でない。従つて750〜850℃の温度を適
用することが好ましい。
CnHm+nH 2 O→nCO+(n+m/2) H 2 endothermic reaction... (1) CnHm+2nH 2 O→nCO 2 + (2n+m/2) H 2 endothermic reaction... (2) The above steam reforming reaction has a high reaction temperature However, it is an endothermic reaction, and the heat source for the reaction is provided by the sensible heat of the allofene catalyst from the catalyst regeneration zone, so at high temperatures exceeding 850°C, the amount of catalyst becomes too large, which is undesirable, and the heat utilization rate also decreases. It is not economical as it also decreases. Therefore, it is preferable to apply a temperature of 750 to 850°C.

さらに水蒸気改質領域では軽質炭化水素は重質
油分解領域よりも高温度である為、下記の熱分解
反応が同時に進行して、水素、メタン、エチレン
等の生成を行なうと共に重縮合反応をともなう
が、水蒸気改質反応により、重質炭化水素の生成
は防止される。
Furthermore, in the steam reforming region, light hydrocarbons are at a higher temperature than in the heavy oil cracking region, so the thermal decomposition reactions described below proceed simultaneously, producing hydrogen, methane, ethylene, etc., as well as polycondensation reactions. However, the steam reforming reaction prevents the production of heavy hydrocarbons.

CnHm→aH2+bCH4+cC2H4+Cn−b −2cHm−2a−4b−4c 吸熱反応……(3) 水蒸気改質領域に供給ぐれるアロフエン系触媒
は触媒再生領域で触媒表面に付着している炭素質
分解残渣を燃焼して再生されるが、不完全燃焼時
には未燃炭素が触媒表面に付着して供給される。
この炭素は水蒸気改質領域で水蒸気と下記の水性
ガス化反応を起して水素と一酸化炭素と二酸化炭
素とを生成し、触媒の付着炭素は少かれ、触媒の
再生が強化される。
CnHm→aH 2 +bCH 4 +cC 2 H 4 +Cn−b −2cHm−2a−4b−4c Endothermic reaction……(3) The allofene catalyst supplied to the steam reforming region is attached to the catalyst surface in the catalyst regeneration region. It is regenerated by burning the carbonaceous decomposition residue, but when incomplete combustion occurs, unburned carbon adheres to the catalyst surface and is supplied.
This carbon undergoes the water gasification reaction described below with steam in the steam reforming region to produce hydrogen, carbon monoxide, and carbon dioxide, which reduces the amount of carbon adhering to the catalyst and enhances the regeneration of the catalyst.

C+H2O→CO+H2 吸熱反応……(4) C+2H2O→CO2+2H2 吸熱反応……(5) 水蒸気改質領域での反応は反応式(1)〜(5)にみら
れるように、いずれも吸熱反応であり、高温にな
るほど反応が促進され、反応式の左から右への反
応であり、反応生成物は水素リツチの熱料ガスと
なる。従つて平衡論的には高温の方が有利である
が、実際の操業上の観点からすれば触媒の顕熱と
吸熱反応量のバランスから750〜850℃の温度が適
している。
C+H 2 O→CO+H 2 endothermic reaction...(4) C+2H 2 O→CO 2 +2H 2 endothermic reaction...(5) The reactions in the steam reforming region are as shown in reaction equations (1) to (5). Both are endothermic reactions, and the higher the temperature, the more accelerated the reaction is, and the reaction proceeds from left to right in the reaction equation, and the reaction product becomes a hydrogen-rich heating gas. Therefore, from an equilibrium standpoint, a high temperature is more advantageous, but from an actual operational point of view, a temperature of 750 to 850°C is suitable from the balance between the sensible heat of the catalyst and the amount of endothermic reaction.

重質油分解領域から触媒ライザーにて供給され
た廃触媒は、触媒再生領域にて空気によつて流動
層を形成され、触媒表面に均一に付着している炭
素質分解残渣は下記の燃焼反応式により燃焼さ
れ、触媒は再生される。
The waste catalyst supplied by the catalyst riser from the heavy oil cracking area is formed into a fluidized bed with air in the catalyst regeneration area, and the carbonaceous decomposition residue uniformly attached to the catalyst surface undergoes the following combustion reaction. The catalyst is regenerated.

C+O2→CO2 発熱反応……(6) C+1/2O2→CO 発熱反応……(7) CO+1/2O2→CO2発熱反応……(8) H2+1/2O2→H2O発熱反応……(9) 上記の反応はいずれも発熱反応であり、高温ほ
ど反応は左から右に促進されるが、970℃を越す
温度では、アロフエン系触媒はアロフエン中の
Al2O3(SiO2)nが熱的相転移を起しムライト化
して触媒作用を低下するので、970℃以下の温度
が好ましい。また水蒸気改質領域での反応熱は触
媒再生領域からの再生触媒の顕熱によつてまかな
われることから触媒再生領域での温度は水蒸気改
質領域の温度以上でなければならない。従つて、
触媒再生領域の操作は850〜950℃の温度が好まし
く、圧力は0〜5Kg/cm2Gが適している。
C+O 2 →CO 2 exothermic reaction...(6) C+1/2O 2 →CO exothermic reaction...(7) CO+1/2O 2 →CO 2 exothermic reaction...(8) H 2 +1/2O 2 →H 2 O exothermic reaction Reaction...(9) All of the above reactions are exothermic reactions, and the higher the temperature, the more the reaction accelerates from left to right. However, at temperatures exceeding 970℃, the allofene catalyst
Since Al 2 O 3 (SiO 2 )n undergoes a thermal phase transition and becomes mullite, reducing the catalytic action, a temperature of 970° C. or lower is preferable. Furthermore, since the reaction heat in the steam reforming zone is covered by the sensible heat of the regenerated catalyst from the catalyst regeneration zone, the temperature in the catalyst regeneration zone must be higher than the temperature in the steam reforming zone. Therefore,
The catalyst regeneration zone is preferably operated at a temperature of 850-950°C and a pressure of 0-5 Kg/cm 2 G.

触媒再生領域で再生されたアロフエン系触媒
は、触媒再生領域から水蒸気改質領域に供給され
て、水蒸気改質領域での反応熱を触媒顕熱の形で
触媒再生領域から運ぶ熱媒体として働らき、さら
に水蒸気改質領域での改質触媒作用を行ない、次
いで水蒸気改質領域から重質油分解領域に供給さ
れて、同様に重質油分解領域での重質炭化水素の
分解熱を触媒顕熱の形で供給すると同時に、重質
炭化水素の分解の触媒作用、脱水素作用として働
らき、炭素質分解残渣を触媒表面に付着して廃触
媒となり、触媒ライザーにより触媒再生領域に供
給され、炭素質分解残渣を燃焼して熱を発生し、
触媒は再生されて再利用される。このような触媒
の循環により、熱の移動を行なう熱バランス型プ
ロセスであることを特徴とし、重質炭化水素を原
料とする水素、メタン、エチレン、一酸化炭素を
主成分とした燃料ガスを製造する方法である。
The allofene catalyst regenerated in the catalyst regeneration zone is supplied from the catalyst regeneration zone to the steam reforming zone, and acts as a heat carrier that carries the reaction heat in the steam reforming zone from the catalyst regeneration zone in the form of catalyst sensible heat. , further performs a reforming catalytic action in the steam reforming region, and is then supplied from the steam reforming region to the heavy oil cracking region, and similarly catalytically converts the heat of decomposition of heavy hydrocarbons in the heavy oil cracking region. At the same time, it is supplied in the form of heat, and acts as a catalyst for the decomposition of heavy hydrocarbons and as a dehydrogenator, and attaches carbonaceous decomposition residue to the catalyst surface to become a waste catalyst, which is then supplied to the catalyst regeneration area by the catalyst riser. Burns carbonaceous decomposition residue to generate heat,
The catalyst is regenerated and reused. It is characterized by being a heat-balanced process that transfers heat through the circulation of catalysts, and produces fuel gas whose main components are hydrogen, methane, ethylene, and carbon monoxide from heavy hydrocarbons. This is the way to do it.

以上述べたことから理解されるように、本発明
は下記の如き特徴を有している。
As understood from the above description, the present invention has the following features.

(1) 重質炭化水素を脱水素を伴なう接触分解によ
る軽量化、及び軽質炭化水素を水蒸気改質によ
り、水素、一酸化炭素、二酸化炭素を発生させ
る2つの触媒作用を有したアロフエン系触媒を
使用した方法である。
(1) An allofene system with dual catalytic functions that generates hydrogen, carbon monoxide, and carbon dioxide by reducing the weight of heavy hydrocarbons through catalytic cracking accompanied by dehydrogenation, and by steam reforming light hydrocarbons. This method uses a catalyst.

(2) 製造した燃料ガスはタール状生成物を含まな
い水素、メタル、エチレン、一酸化炭素を主成
分とするガスで、特に都市ガスに適した燃料ガ
スである。
(2) The produced fuel gas is a gas whose main components are hydrogen, metal, ethylene, and carbon monoxide and does not contain tar-like products, and is particularly suitable for city gas.

(3) 重質油分解領域において、重質炭化水素の接
触分解により副生する炭素質分解残渣は触媒表
面に付着して触媒再生領域に送られ、空気によ
り燃焼されて、触媒表面から除去され、発生す
る燃焼熱は触媒の顕熱として、水蒸気改質領
域、さらに重質油分解領域に運ばれて、吸熱反
応の熱源として利用されるという、極めて省エ
ネルギーな熱バランス型プロセスである。
(3) In the heavy oil cracking area, carbonaceous decomposition residues produced by the catalytic cracking of heavy hydrocarbons adhere to the catalyst surface and are sent to the catalyst regeneration area, where they are combusted with air and removed from the catalyst surface. This is an extremely energy-saving, heat-balanced process in which the generated combustion heat is transported as sensible heat of the catalyst to the steam reforming region and then to the heavy oil cracking region, where it is used as a heat source for endothermic reactions.

(4) 重質油分解領域、水蒸気改質領域、触媒再生
領域ともに流動層が用いられており、触媒の循
環が容易に行なわれ、かつ副生する炭素質生成
物による閉塞トラブルを防止していることであ
る。
(4) Fluidized beds are used in the heavy oil cracking area, steam reforming area, and catalyst regeneration area, which facilitates catalyst circulation and prevents clogging problems caused by by-product carbonaceous products. It is that you are.

次に本発明の実施態様を示す図面に従つて、本
発明を詳細に説明する。
Next, the present invention will be described in detail with reference to drawings showing embodiments of the present invention.

図面において、1は重質油分解炉、2は水蒸気
改質炉、3は触媒再生炉、4は触媒ライザーであ
る。重質油分解炉1の底部に水蒸気供給管5と接
触している分散器6を設け、550〜750℃の過熱水
蒸気(ST)を供給する。触媒移送管15により
アロフエン系触媒は水蒸気改質炉2から重質油分
解炉1に供給され、過熱水蒸気(ST)により触
媒粒子は流動化されて、重質油分解領域R1が重
質油分解炉1内に形成される。重質油分解炉1の
底部で分散器6の上方に設けた重質炭化水素供給
管8から重質炭化水素(FO)が供給され、アロ
フエン系触媒の接触作用により接触分解を行な
う。接触分解は温度600〜700℃、圧力0〜5Kg/
cm2G、触媒比15〜25で行なわれ、分解温度が低い
と軽質炭化水素収率が高く、触媒比は小さくて良
い。分解温度が高いと分解が進み分解生成ガスは
より軽質化されるが軽質炭化水素収率は低く、触
媒比は大きくなる。圧力が高いほど重質分解炉1
の直径は小さくて良いが、高圧になると装置の製
作費が高く、各炉内の流体の供給動力が増加して
経済的でないので、0〜5Kg/cm2Gが好ましい。
接触分解により、水素、メタン、およびオレフイ
ン、アロマを含む気体状軽質炭化水素と炭素質分
解残渣とが生成し、気体状生成物は水蒸気と共に
サイクロン9、導管11、ヘツダー12、導管1
3を経て水蒸気改質炉2底部に設けた分散器14
から水蒸気改質炉2に供給される。気体状生成物
と水蒸気に同伴される触媒粒子はサイクロン9で
分離され、導管10で重質油分解領域R1にもど
される。
In the drawings, 1 is a heavy oil cracking furnace, 2 is a steam reforming furnace, 3 is a catalyst regeneration furnace, and 4 is a catalyst riser. A disperser 6 is provided at the bottom of the heavy oil cracking furnace 1 and is in contact with a steam supply pipe 5 to supply superheated steam (ST) of 550 to 750°C. The allofene catalyst is supplied from the steam reforming furnace 2 to the heavy oil cracking furnace 1 through the catalyst transfer pipe 15, and the catalyst particles are fluidized by superheated steam (ST), and the heavy oil cracking region R1 is used for heavy oil cracking. It is formed inside the furnace 1. Heavy hydrocarbons (FO) are supplied from a heavy hydrocarbon supply pipe 8 provided above the disperser 6 at the bottom of the heavy oil cracking furnace 1, and are catalytically cracked by the catalytic action of the allofene catalyst. Catalytic cracking is performed at a temperature of 600-700℃ and a pressure of 0-5Kg/
cm 2 G and a catalyst ratio of 15 to 25. The lower the decomposition temperature, the higher the yield of light hydrocarbons, and the smaller the catalyst ratio. When the decomposition temperature is high, the decomposition progresses and the decomposed gas becomes lighter, but the yield of light hydrocarbons is low and the catalyst ratio becomes large. The higher the pressure, the heavier the cracking furnace 1
The diameter may be small, but if the pressure is high, the production cost of the device will be high, and the power to supply the fluid in each furnace will increase, making it uneconomical, so a diameter of 0 to 5 Kg/cm 2 G is preferable.
Through catalytic cracking, hydrogen, methane, gaseous light hydrocarbons containing olefins, aromas, and carbonaceous decomposition residue are produced, and the gaseous products are transported together with water vapor to cyclone 9, conduit 11, header 12, and conduit 1.
Distributor 14 installed at the bottom of steam reforming furnace 2 through 3
is supplied to the steam reforming furnace 2 from The gaseous products and catalyst particles entrained in the water vapor are separated in a cyclone 9 and returned to the heavy oil cracking region R1 in a conduit 10.

炭素質分解残渣はアロフエン系触媒の表面に均
一に付着して触媒活性を失なわせて触媒は廃触媒
となり、重質油分解炉1の底部に設けた廃触媒排
出管7から触媒ライザー4に排出され、供給管2
7からの水蒸気または水蒸気と空気の混合気体
(SA)により触媒ライザー4でサイクロン28に
送られ、サイクロン28で固気分離されて導管2
9で触媒再生炉3に供給される。サイクロン28
で分離した水蒸気または水蒸気と空気の混合気体
(SA)は排ガス(OS)として導管30により排
出される。
The carbonaceous decomposition residue uniformly adheres to the surface of the allofene catalyst and causes the catalyst to lose its catalytic activity, turning the catalyst into a waste catalyst. Discharged, supply pipe 2
The water vapor or mixed gas (SA) of water vapor and air from 7 is sent to the cyclone 28 by the catalytic riser 4, separated into solid and gas by the cyclone 28, and then sent to the conduit 2.
At 9, the catalyst is supplied to the catalyst regeneration furnace 3. cyclone 28
The water vapor or the mixed gas (SA) of water vapor and air separated in is discharged through the conduit 30 as an exhaust gas (OS).

触媒再生炉3から触媒移送管20により水蒸気
改質炉2に供給されたアロフエン系触媒は重質油
分解炉1から分散器14により供給される水素、
メタンおよびオレフイン、アロマを含む気体状軽
質炭化水素と水蒸気により触媒粒子が流動化され
て水蒸気改質領域R2を形成する。
The allofene catalyst supplied from the catalyst regeneration furnace 3 to the steam reforming furnace 2 through the catalyst transfer pipe 20 contains hydrogen supplied from the heavy oil cracking furnace 1 through the disperser 14,
The catalyst particles are fluidized by steam and gaseous light hydrocarbons containing methane, olefin, and aroma to form a steam reforming region R2.

水蒸気改質領域R2にて軽質炭化水素と水蒸気
はアロフエン系触媒と接触して、750〜850℃の温
度、0〜5Kg/cm2Gの圧力で反応式(1)(2)の水蒸気
改質反応を高ない、水素、一酸化炭素、二酸化炭
素を生成する。之と同時に軽質炭化水素は反応式
(3)の熱分解反応により、水素、メタン、エチレン
等に分解されるが、副生する重縮合物炭化水素は
反応式(1)、(2)の水蒸気改質反応により、水素、一
酸化炭素、二酸化炭素となり、タール状物質を副
生することなく熱分解が行なわれる。さらに触媒
再生領域R3における炭素質分解残渣の燃焼が不
完全な場合は、未燃の炭素が再生触媒表面に付着
して水蒸気改質領域R2に供給される。この炭素
は水蒸気と反応式(4)、(5)の反応を起し、水素、一
酸化炭素、二酸化炭素を生成し、触媒に付着した
上記炭素は除かれ、その触媒は更に再生される。
水蒸気改質領域R2で生成された燃料ガス及び未
反応の水蒸気は導管16によりサイクロン17に
供給され、同伴する触媒粒子を分離し、分離した
触媒粒子は導管18により水蒸気改質領域R2に
もどされ、燃焼ガス及び未反応の水蒸気(PG)
は導管19により排出され、公知の精製方法に従
つて例えば脱硫、脱水、乾燥などでの燃料ガス精
製工程(図示せず)に導かれて精製される。
In the steam reforming region R2, light hydrocarbons and steam are brought into contact with an allofene catalyst to undergo steam reforming according to reaction formulas (1) and (2) at a temperature of 750 to 850°C and a pressure of 0 to 5 Kg/cm 2 G. The reaction produces hydrogen, carbon monoxide, and carbon dioxide. At the same time, light hydrocarbons have a reaction formula
Through the thermal decomposition reaction in (3), it is decomposed into hydrogen, methane, ethylene, etc., but by-product polycondensate hydrocarbons are converted into hydrogen, monoxide, etc. through the steam reforming reaction in reaction formulas (1) and (2). It becomes carbon and carbon dioxide, and thermal decomposition is carried out without producing tar-like substances as by-products. Further, if combustion of the carbonaceous decomposition residue in the catalyst regeneration region R3 is incomplete, unburned carbon adheres to the surface of the regenerated catalyst and is supplied to the steam reforming region R2. This carbon reacts with water vapor according to reaction formulas (4) and (5) to produce hydrogen, carbon monoxide, and carbon dioxide, and the carbon adhering to the catalyst is removed, and the catalyst is further regenerated.
The fuel gas and unreacted steam generated in the steam reforming region R2 are supplied to the cyclone 17 through a conduit 16 to separate the accompanying catalyst particles, and the separated catalyst particles are returned to the steam reforming region R2 through a conduit 18. , combustion gas and unreacted water vapor (PG)
is discharged via conduit 19 and is conducted to a fuel gas purification step (not shown), such as desulfurization, dehydration, drying, etc., for purification according to known purification methods.

重質油分解領域R1から触媒再生炉3に供給さ
れた廃触媒は、触媒再生炉3の底部に設けた分散
器22と、それに接続している導管21によつて
供給される空気(AR)によつて、触媒粒子が流
動化されて、触媒再生領域R3を形成する。触媒
表面に付着している炭素質分解残渣は空気と反応
して反応式(6)、(7)、(8)、(9)により燃焼される。付
着している炭素質分解残渣が燃焼することにより
除かれ、触媒は活性をとりもどして再生される。
触媒再生領域R3の操作は850〜950℃の温度、0
〜5Kg/cm2Gの圧力で行なわれる。燃焼排ガス
(OG)は触媒再生炉3の上部に設けた導管23に
よりサイクロン24に供給され、同伴する触媒粒
子を固気分離して導管26により排出される。サ
イクロン24で分離された触媒粒子は導管25に
より触媒再生領域R3にもどされる。
The waste catalyst supplied from the heavy oil cracking region R1 to the catalyst regeneration furnace 3 is supplied with air (AR) through a distributor 22 provided at the bottom of the catalyst regeneration furnace 3 and a conduit 21 connected thereto. As a result, the catalyst particles are fluidized to form a catalyst regeneration region R3. The carbonaceous decomposition residue adhering to the catalyst surface reacts with air and is burned according to reaction formulas (6), (7), (8), and (9). The attached carbonaceous decomposition residue is removed by combustion, and the catalyst is reactivated and regenerated.
The operation of catalyst regeneration region R3 is at a temperature of 850-950℃, 0
It is carried out at a pressure of ~5 Kg/cm 2 G. The combustion exhaust gas (OG) is supplied to the cyclone 24 through a conduit 23 provided at the upper part of the catalyst regeneration furnace 3, and the entrained catalyst particles are separated into solid and gas and discharged through a conduit 26. The catalyst particles separated by the cyclone 24 are returned to the catalyst regeneration region R3 through a conduit 25.

触媒再生領域R3で再生されたアロフエン系触
媒は触媒再生炉3の下部に接続する触媒移送管2
0で水蒸気改質炉2に供給され、触媒再生領域R
3−水蒸気改質領域R2−重質油分解領域R1−
触媒再生領域R3の触媒循環系を形成する。触媒
の移動に伴ない触媒の顕熱として熱移動を行な
い、水蒸気改質領域R2、重質油分解領域R1で
需要される反応熱を触媒再生領域R3で発生する
炭素質分解残渣の燃焼熱によつて供給するという
いわゆる省エネルギー型で、かつ熱バランス型プ
ロセスである。
The allofene catalyst regenerated in the catalyst regeneration region R3 is transferred to a catalyst transfer pipe 2 connected to the lower part of the catalyst regeneration furnace 3.
0 to the steam reforming furnace 2, and the catalyst regeneration area R
3-Steam reforming region R2-heavy oil cracking region R1-
A catalyst circulation system for the catalyst regeneration region R3 is formed. As the catalyst moves, heat is transferred as sensible heat of the catalyst, and the reaction heat required in the steam reforming region R2 and heavy oil cracking region R1 is converted into the combustion heat of carbonaceous decomposition residue generated in the catalyst regeneration region R3. It is a so-called energy-saving type and heat-balance type process in which the gas is supplied through the air.

原料として用いる重質炭化水素が減圧残渣油の
ような残留炭素の多い重質炭化水素の場合、炭素
質分解残渣収率が高くなり、触媒再生領域R3で
発生する燃焼熱が水蒸気改質領域R2、重質油分
解領域R1で必要とする反応熱にくらべて多くな
つて熱が余る時がある。この時は触媒再生領域R
3で空気量を調節して不完全燃焼による未燃炭素
を再生触媒に付着して、水蒸気改質領域R2に供
給して、反応式(4)、(5)による反応熱を多くするこ
とにより、発熱量と吸熱量とを熱バランスさせ、
触媒の循環量は多量であることが必要である。触
媒比は高くなる傾向にある。
When the heavy hydrocarbon used as a raw material is a heavy hydrocarbon with a large amount of residual carbon, such as vacuum residue oil, the yield of carbonaceous decomposition residue is high, and the combustion heat generated in the catalyst regeneration region R3 is transferred to the steam reforming region R2. , there are times when the reaction heat exceeds the reaction heat required in the heavy oil decomposition region R1 and there is a surplus of heat. At this time, the catalyst regeneration area R
By adjusting the amount of air in step 3, unburned carbon due to incomplete combustion is attached to the regenerated catalyst, and is supplied to the steam reforming region R2 to increase the reaction heat according to reaction formulas (4) and (5). , thermally balance the amount of heat generated and the amount of heat absorbed,
A large amount of catalyst is required to be circulated. The catalyst ratio tends to be high.

逆に残留炭素の少ない重質炭化水素が原料の場
合は、炭素質分解残渣収率が少くなり、触媒再生
領域R3で発生する燃焼熱が水蒸気改質領域R
2、重質油分解領域R1で必要とすの反応熱
(RC)にくらべて少なくなり、熱が不足する時が
あつて、この時は触媒再生炉3に導管32により
燃料(FO′)を供給して、燃料(FO′)の燃焼に
より不足熱を補なう。
On the other hand, when heavy hydrocarbons with little residual carbon are used as raw materials, the yield of carbonaceous decomposition residue will be low, and the combustion heat generated in the catalyst regeneration region R3 will be transferred to the steam reforming region R.
2. There are times when the heat of reaction (RC) required in the heavy oil cracking region R1 is less than that required, and there is a shortage of heat. The lack of heat is compensated by the combustion of fuel (FO').

アロフエン系触媒は重質油分解領域R1、水蒸
気改質領域R2、触媒再生領域R3における流動
や循環によつて摩耗や飛散があり、その不足を触
媒再生炉3に接続する触媒供給管31によつて新
触媒(CT)を供給して補充する。
The allofene catalyst is subject to abrasion and scattering due to flow and circulation in the heavy oil cracking region R1, steam reforming region R2, and catalyst regeneration region R3. Then, supply new catalyst (CT) and replenish.

次に実施例を示す。 Next, examples will be shown.

実施例 添付図面に示した装置を用いた重質炭化水素と
して中東系常圧残油を用いてアロフエン系触媒に
よる燃料ガスの製造を行つた。
Example Using the apparatus shown in the attached drawings, fuel gas was produced using an allofene catalyst using Middle Eastern atmospheric residual oil as a heavy hydrocarbon.

使用した装置の仕様、重質炭化水素の性状、ア
ロフエン系触媒の性状は下記のとおりである。
The specifications of the equipment used, the properties of the heavy hydrocarbon, and the properties of the allofene catalyst are as follows.

使用した装置の仕様 重質油分解炉 内径126mm、高さ800mm 水蒸気改質炉 内径126mm、高さ800mm 触媒再生炉 内径126mm、高さ800mm 重質炭化水素としての中東系常圧残油の性状 API 比重 60〓 16.26 流動点 ℃ +10 引火点 ℃ 178 動粘度 cSt、122〓 231.5 残 炭 wt% 8.9 硫 黄 wt% 3.2 灰 分 wt% 0.015 アロフエン系触媒の性状 組成分析(乾燥基準) 成 分 wt% SiO2 63.62 Al2O3 23.96 CaO 2.50 MgO 1.72 Na2O 1.40 K2O 0.68 SO3 0.35 Fe 3.19 比表面積 (m2/g) 115 細孔容積 (cm3/g) 0.22 かさ密度 (g/cm3) 0.779 みかけ密度 (g/cm3) 2.45 形 状 微小球形 平均粒径 87μ 運転条件 上記重質炭化水素を重質油分解炉へ0.18Kg/hr
で供給し、アロフエン系触媒は3.14Kg/hrで循環
させて、温度は重質油分解炉が600℃、水蒸気改
質炉が800℃、触媒再生炉が900℃で運転した。触
媒比は17.44であつた。
Specifications of the equipment used: Heavy oil cracking furnace: 126 mm inner diameter, 800 mm height Steam reforming furnace: 126 mm inner diameter, 800 mm height Catalyst regeneration furnace: 126 mm inner diameter, 800 mm height Properties of Middle Eastern atmospheric residual oil as heavy hydrocarbons API Specific gravity 60〓 16.26 Pour point ℃ +10 Flash point ℃ 178 Kinematic viscosity cSt, 122〓 231.5 Residual coal wt% 8.9 Sulfur wt% 3.2 Ash content wt% 0.015 Properties of allofene catalyst Composition analysis (dry basis) Component wt% SiO 2 63.62 Al 2 O 3 23.96 CaO 2.50 MgO 1.72 Na 2 O 1.40 K 2 O 0.68 SO 3 0.35 Fe 3.19 Specific surface area (m 2 /g) 115 Pore volume (cm 3 /g) 0.22 Bulk density (g/cm 3 ) 0.779 Apparent Density (g/cm 3 ) 2.45 Shape Microspheric Average particle size 87μ Operating conditions The above heavy hydrocarbons are fed into the heavy oil cracking furnace at 0.18Kg/hr
The allofene catalyst was circulated at 3.14 Kg/hr, and the heavy oil cracking furnace was operated at 600°C, the steam reforming furnace at 800°C, and the catalyst regeneration furnace at 900°C. The catalyst ratio was 17.44.

上記運転条件に基き、重質炭化水素から燃料ガ
スを製造した。その結果は次の通りである。
Fuel gas was produced from heavy hydrocarbons under the above operating conditions. The results are as follows.

水蒸気改質炉からの燃料ガス性状 ガス組成 成 分 Vol% CH4 20.63 C2H4 13.01 C2H6 0.84 C3H6 0.63 C3H8 / C4H8 0.38 C4H10 0.41 C5H10 / C5H12 0.05 C6留分 0.28 H2 46.89 CO 13.87 CO2 1.73 H2S 1.28 平均分子量 14.24 ガス比重(空気=1) 0.49 ガス発熱量 Kcal/Nm3 6630 ガスの発生量は216N/hrで、重質炭化水素に
対する燃料ガスの発生量は1.2Nm2/Kgであつた。
重質油分解炉での炭素質分解残渣の生成は、重炭
化水素に対して、40.64wt%であつた。
Properties of fuel gas from steam reforming furnace Gas composition Component Vol% CH 4 20.63 C 2 H 4 13.01 C 2 H 6 0.84 C 3 H 6 0.63 C 3 H 8 / C 4 H 8 0.38 C 4 H 10 0.41 C 5 H 10 / C 5 H 12 0.05 C 6 fraction 0.28 H 2 46.89 CO 13.87 CO 2 1.73 H 2 S 1.28 Average molecular weight 14.24 Gas specific gravity (air = 1) 0.49 Gas calorific value Kcal/Nm 3 6630 The amount of gas generated is 216N /hr, the amount of fuel gas generated for heavy hydrocarbons was 1.2Nm 2 /Kg.
The production of carbonaceous cracked residue in the heavy oil cracking furnace was 40.64 wt% based on heavy hydrocarbons.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を示すフローシートで
ある。 1……重質油分解炉、2……水蒸気改質炉、3
……触媒再生炉、4……触媒ライザー、6,1
4,22……分散器、9,17,24,28……
サイクロン、R1……重質油分解領域、R2……
水蒸気改質領域、R3……触媒再生領域。
The drawings are flow sheets illustrating embodiments of the invention. 1...Heavy oil cracking furnace, 2...Steam reforming furnace, 3
... Catalyst regeneration furnace, 4 ... Catalyst riser, 6,1
4, 22... Distributor, 9, 17, 24, 28...
Cyclone, R1...Heavy oil decomposition area, R2...
Steam reforming region, R3...Catalyst regeneration region.

Claims (1)

【特許請求の範囲】 1 アロフエン系触媒の流動粒子の存在下で温度
600〜700℃、圧力0〜5Kg/cm2G、触媒比(触媒
重量/重質炭化水素重量)15〜25の条件で、上記
触媒に重質炭化水素を接触分解して軽質炭化水素
を得るとともに、その際に生成した炭素質分解残
渣を該触媒粒子の表面に付着させる重質油分解工
程と、該触媒粒子の表面に付着させた該炭素質分
解残渣を温度850〜950℃、圧力0〜5Kg/cm2Gの
条件で燃焼して該触媒を再生する触媒再生工程
と、再生した触媒の存在下で、温度750〜850℃、
圧力0〜5Kg/cm2Gの条件で上記軽質炭化水素を
水蒸気改質、熱分解し、水素、メタン、エチレ
ン、一酸化炭素を主成分とする燃料ガスを得る水
蒸気改質工程とからなることを特徴とする重質炭
化水素から燃料ガスを製造する方法。 2 アロフエン系触媒を触媒再生工程から水蒸気
改質工程へ、水蒸気改質工程から重質油分解工程
に循環させることにより、触媒再生工程で発生す
熱を触媒の顕熱として、水蒸気改質工程、重質油
分解工程の反応熱の熱源として使用することを特
徴とする特許請求の範囲第1項記載の重質炭化水
素から燃料ガスを製造する方法。
[Claims] 1. Temperature in the presence of fluidized particles of allofene catalyst
Light hydrocarbons are obtained by catalytically cracking heavy hydrocarbons using the above catalyst under conditions of 600 to 700°C, pressure of 0 to 5 Kg/cm 2 G, and catalyst ratio (catalyst weight/heavy hydrocarbon weight) of 15 to 25. At the same time, there is a heavy oil decomposition step in which the carbonaceous decomposition residue produced at that time is attached to the surface of the catalyst particles, and the carbonaceous decomposition residue attached to the surface of the catalyst particles is heated at a temperature of 850 to 950°C and a pressure of 0. A catalyst regeneration step in which the catalyst is regenerated by combustion under conditions of ~5 Kg/cm 2 G, and a temperature of 750 to 850°C in the presence of the regenerated catalyst.
It consists of a steam reforming process in which the above-mentioned light hydrocarbons are steam reformed and thermally decomposed under pressure conditions of 0 to 5 Kg/cm 2 G to obtain a fuel gas whose main components are hydrogen, methane, ethylene, and carbon monoxide. A method for producing fuel gas from heavy hydrocarbons, characterized by: 2 By circulating the allofene catalyst from the catalyst regeneration process to the steam reforming process and from the steam reforming process to the heavy oil cracking process, the heat generated in the catalyst regeneration process is used as sensible heat of the catalyst, and the heat generated in the catalyst regeneration process is used as the sensible heat of the catalyst. 2. The method for producing fuel gas from heavy hydrocarbons according to claim 1, wherein the method is used as a heat source for reaction heat in a heavy oil cracking process.
JP57162786A 1982-09-17 1982-09-17 Preparation of fuel gas from heavy hydrocarbon Granted JPS5954602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57162786A JPS5954602A (en) 1982-09-17 1982-09-17 Preparation of fuel gas from heavy hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57162786A JPS5954602A (en) 1982-09-17 1982-09-17 Preparation of fuel gas from heavy hydrocarbon

Publications (2)

Publication Number Publication Date
JPS5954602A JPS5954602A (en) 1984-03-29
JPS6128602B2 true JPS6128602B2 (en) 1986-07-01

Family

ID=15761177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57162786A Granted JPS5954602A (en) 1982-09-17 1982-09-17 Preparation of fuel gas from heavy hydrocarbon

Country Status (1)

Country Link
JP (1) JPS5954602A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830197B2 (en) * 2000-09-13 2011-12-07 トヨタ自動車株式会社 Fuel reformer
JP4744271B2 (en) * 2005-11-08 2011-08-10 中部電力株式会社 Method and apparatus for treating fluid organic compound
JP2009298618A (en) * 2008-06-11 2009-12-24 Ihi Corp Apparatus and method for reforming organic compound
US7919070B2 (en) * 2008-12-02 2011-04-05 Range Fuels, Inc. Multi-zone reforming methods and apparatus for conversion of devolatilized biomass to syngas
JP6333899B2 (en) * 2015-11-09 2018-05-30 インディアン オイル コーポレーション リミテッド Method for producing high-quality synthesis gas via regeneration of coked upgrade agent
JP6519020B2 (en) * 2015-12-25 2019-05-29 日本製鉄株式会社 Hydrogen production apparatus and hydrogen production method

Also Published As

Publication number Publication date
JPS5954602A (en) 1984-03-29

Similar Documents

Publication Publication Date Title
US4298453A (en) Coal conversion
EP3566770B1 (en) A process for catalytic gasification of carbonaceous feedstock
US8518334B2 (en) Coking apparatus and process for oil-containing solids
US3998609A (en) Synthesis gas generation
US3915844A (en) Method for treatment of heavy oils
GB640907A (en) An improved method of producing normally gaseous fuels from carbon-containing materials
US2912315A (en) Fluidized solids town gas manufacturing process
AU593286B2 (en) Process and apparatus for producing a hydrogen-containing gas
JPS5837353B2 (en) Decomposition of heavy oil to make it lighter and hydrogen production method
PL166128B1 (en) Method of processing a material containing carbon into a finely grained carbon and methyl alcohol
US2783133A (en) Hydrogen production
US4668378A (en) Process for thermal cracking of heavy oil
JPS6128602B2 (en)
JPH0244355B2 (en)
AU654612B2 (en) Process for producing a hydrogen-containing gas
JPS6261079B2 (en)
JPS59111815A (en) Thermal decomposition of thermoplastics
US4744883A (en) Production of synthesis gas and related products via the cracking of heavy oil feeds
EP3165588A1 (en) Process for production of syngas through regeneration of coked cracking agent
CA1218325A (en) Combination process for upgrading reduced crude
JPS60248794A (en) Thermal decomposition of heavy oil
CA2097219A1 (en) Process for the dehydrogenation of hydrocarbons using a carbonaceous catalyst
US2985512A (en) Manufacture of hydrogen
JPS6337042B2 (en)
US2727813A (en) Production of combustible gas from hydrocarbonaceous solids, particularly bituminous coals