JPS6128551A - Resin composition for vibration damping - Google Patents

Resin composition for vibration damping

Info

Publication number
JPS6128551A
JPS6128551A JP11970284A JP11970284A JPS6128551A JP S6128551 A JPS6128551 A JP S6128551A JP 11970284 A JP11970284 A JP 11970284A JP 11970284 A JP11970284 A JP 11970284A JP S6128551 A JPS6128551 A JP S6128551A
Authority
JP
Japan
Prior art keywords
resin
composition
vibration damping
temperature
tan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11970284A
Other languages
Japanese (ja)
Inventor
Masahide Ochiumi
落海 雅英
Akira Itsubo
井坪 明
Yukichi Watanabe
渡邉 裕吉
Norihiro Sekizuka
関塚 典弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
JFE Engineering Corp
Original Assignee
Mitsubishi Petrochemical Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP11970284A priority Critical patent/JPS6128551A/en
Priority to AU43268/85A priority patent/AU563256B2/en
Priority to CA000483506A priority patent/CA1256787A/en
Priority to KR1019850004072A priority patent/KR900000972B1/en
Priority to DE19853587555 priority patent/DE3587555T2/en
Priority to EP19850107194 priority patent/EP0164728B1/en
Publication of JPS6128551A publication Critical patent/JPS6128551A/en
Priority to US06/867,416 priority patent/US4740427A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:The titled composition which has excellent vibration damping properties and is useful as a damping layer of a composite metal plate for vibration damping comprising a non-crystalline thermoplastic resin and a crystalline thermoplastic resin which are not compatible with each other. CONSTITUTION:The titled composition comprising 10-95wt% non-crystalline thermoplastic resin (A) and 90-5wt% crystalline thermoplastic resin (B) which are not compatible with each other. Resin A has a relatively lower glass transition point of -50-150 deg.C and a maximum tandelta of 0.5 or higher in the frequency range of 0.1-20,000Hz. Resin B has a melting point higher than the glass transition point of resin A and modulus of rigidity of 1X10<8>dyne/cm<2> or higher at the temperature and frequency at which resin A has a maximum tandelta. The use of this composition as a damping layer in a composite metal plate for vibration damping will give good damping performance up to a higher temperature than using resin A alone.

Description

【発明の詳細な説明】 〔廃明の目的4〕 本発明は振動減衰性にすぐれた樹脂組成物に関し、特に
割振用複合金属板の制振層として有用な制振用樹脂組成
物に関するものである。
[Detailed Description of the Invention] [Objective 4] The present invention relates to a resin composition with excellent vibration damping properties, and particularly to a vibration damping resin composition useful as a damping layer of a composite metal plate for vibration damping. be.

〔発明の背景〕[Background of the invention]

近年、交通機関の発達や工場と住居との近接に伴ない、
各種の機械、装置より発生する騒音、振動が保健上ある
いは地域社会の環境保全上から問題となっており、その
対策が急務となっている。
In recent years, with the development of transportation and the proximity of factories and residences,
Noise and vibration generated by various machines and devices have become a problem from the viewpoint of health and environmental conservation of local communities, and countermeasures are urgently needed.

特に自動車のエンジン音を遮断するオイルパンやエンジ
ンカバー、家電機器や金属加工機械等の騒音低減が強く
望まれている。
In particular, there is a strong desire to reduce noise from oil pans and engine covers that block automobile engine noise, home appliances, metal processing machines, etc.

この様な対策の1つとして制振用複合金属板の使用があ
り、これは複合金属板の中間層の粘弾性物質の剪断変形
による内部摩擦によって振動を減衰させるものであって
、上記騒音発生源を囲む形で使用される。従って制振用
複合金属板は、板状で用いられる他、曲げ加工、紋り加
工等により所望の形状に成形される。
One such countermeasure is the use of a vibration-damping composite metal plate, which damps vibrations by internal friction caused by shear deformation of the viscoelastic material in the intermediate layer of the composite metal plate. Used to surround the source. Therefore, the composite metal plate for vibration damping is used not only in the form of a plate but also formed into a desired shape by bending, embossing, and the like.

制振用複合金属板の中間層に用いられる物質としては、
酢酸ビニル樹脂、塩化ビニル樹脂等の各種重合体や、酢
酸ビニル・エチレン共重合体、アクリロニトリル・スチ
レン共重合体等の熱可塑性樹脂およびそれらと可塑剤と
の組成物、またはウレタン系樹脂やエポキシ系樹脂等の
熱硬化性樹脂が用いられてきた。また2種類以上の樹脂
をブレンドした樹脂組成物も提案されており、例えば特
公昭54−1654号明細書にはエチレン・アクリル酸
共重合体あるいはエチレン・アクリル酸・アクリル酸エ
ステル共重合体の様な酸性共重合体にポリ酢酸ビニルの
様な粘弾性重合体を配合した樹脂組成物が開示されてい
る。
The materials used in the intermediate layer of composite metal plates for vibration damping include:
Various polymers such as vinyl acetate resin and vinyl chloride resin, thermoplastic resins such as vinyl acetate-ethylene copolymer, acrylonitrile-styrene copolymer, and compositions of these and plasticizers, urethane resins and epoxy resins Thermosetting resins such as resins have been used. Resin compositions that are a blend of two or more resins have also been proposed; for example, in Japanese Patent Publication No. 54-1654, ethylene/acrylic acid copolymer or ethylene/acrylic acid/acrylic acid ester copolymer is proposed. A resin composition in which a viscoelastic polymer such as polyvinyl acetate is blended with an acidic copolymer has been disclosed.

〔従来技術の問題点〕 従来、制振性鋼板に制振性を与える中間層として用いら
れてきた粘弾性物質は、それ自体損失正接tanδの最
大値を示す温度は、その物質のガラス転移点よりも高い
温度のところにあり、その温度において用いた粘弾性物
質の剛性率の急激な低下がおこり、制振性鋼板としての
制振性ηは必ずしも充分に発揮されておらず、特に高温
になると急激に制振性が低下するという問題があった。
[Problems with the prior art] Conventionally, the viscoelastic material used as an intermediate layer that imparts damping properties to damping steel sheets has a temperature at which the maximum value of the loss tangent tan δ is the glass transition point of the material. The rigidity of the viscoelastic material used at that temperature rapidly decreases, and the vibration damping properties η of the damping steel plate are not always fully demonstrated, especially at high temperatures. In this case, there was a problem in that the damping performance suddenly deteriorated.

また、前記したような二種以上の樹脂をブレンドして用
いる場合も、その樹脂間に相溶性があるため、組成物の
ガラス転移点はむしろ低下し、制振性を高温側へ拡大す
ることは必ずしも成功していない。
Furthermore, even when two or more resins are used as a blend as described above, the glass transition point of the composition is rather lowered due to the compatibility between the resins, and the damping properties are expanded to the higher temperature side. has not always been successful.

〔発明の概要〕[Summary of the invention]

杢発明者等は、を案制振性中間層として、従来用いられ
てきた粘弾性物質に対し、非相溶な結晶性の熱可塑性樹
脂を加えた組成物を用いると、組成物としてのtanδ
は低下するにも拘らず、制振性複合鋼板としての制振性
が高温側でより有効に発揮され、粘弾性物質のtanδ
最大値を示す温度で剛性率を高く保つことが有効である
ことを見出した。
The inventors of the present invention proposed that when using a composition in which an incompatible crystalline thermoplastic resin was added to a conventionally used viscoelastic material as a vibration-damping intermediate layer, the tan δ of the composition would be reduced.
Although the vibration damping properties of the vibration damping composite steel plate are lowered, the vibration damping properties of the damping composite steel plate are more effectively exhibited at high temperatures, and the tan δ of the viscoelastic material is
It has been found that it is effective to keep the rigidity high at the temperature where it exhibits its maximum value.

即ち本発明は、互いに相溶しない下記の非晶性熱可塑性
樹脂(1)および結晶性熱可塑性樹脂(1))のそれぞ
れ少なくとも1種よりなり、該樹脂(a)の10〜95
重量%および該樹脂(b)の90〜5重量%からなるこ
とを特徴とする制振用樹脂組成物である。
That is, the present invention consists of at least one kind of each of the following amorphous thermoplastic resin (1) and crystalline thermoplastic resin (1)) which are not compatible with each other, and 10 to 95 of the resin (a).
% by weight and 90 to 5% by weight of the resin (b).

(1)非晶性熱可塑性樹脂(a):相対的に低いガラス
転移点を有し、かつ、−50〜150℃の温度で、周波
数0.1〜2.0000 Hzの範囲内にo、5以上の
tanδ最大値を有する非晶性重合体(fL)結晶性熱
可塑性樹脂(b):前記非晶性熱可塑性樹脂(a)のガ
ラス転移点より高い融点を有し、がっ、該非晶性熱可塑
性樹脂<、)がtanδの最大値を示す温度および周波
数においてI X I 08dyne/c++を一以上
の剛性率を有する結晶性重合体〔発明の効果〕 本発明の制振用樹脂組成物は、それを金属板、特に鋼板
と積層して用いた場合、得られる制振用複合鋼板は、本
発明で用いられる非晶性熱可塑性樹脂(a)〔以下単に
樹脂(a)という〕を単独で中間層に用いた場合に比し
、より高温まで良好な制振性能が発揮される。また、樹
脂(、)単独の方がtanδが高いのにも拘らず、その
tanδ最大値を示す温度で剛性率G′の急激な低下を
生じて、複合鋼板として充分な制振性lが得られないの
に対し、本発明の組成物は、樹脂(a)に帰因するta
nδ最大値を示す温度で剛性率G′の低下が少ないので
、組成物としてのtanδは若干低下しても、複合鋼板
の制振性lに有効に働き、場合によっては樹脂(a)を
単独で用いた複合鋼板より高い制振性ηが得られる。
(1) Amorphous thermoplastic resin (a): has a relatively low glass transition point, and has a temperature of -50 to 150°C and a frequency of 0.1 to 2.0000 Hz. Amorphous polymer (fL) having a maximum value of tan δ of 5 or more; crystalline thermoplastic resin (b): having a melting point higher than the glass transition point of the amorphous thermoplastic resin (a); A crystalline polymer having a rigidity of IXI08dyne/c++ of 1 or more at the temperature and frequency at which the crystalline thermoplastic resin exhibits the maximum value of tan δ [Effects of the Invention] Resin composition for vibration damping of the present invention When the product is used by laminating it with a metal plate, especially a steel plate, the resulting vibration-damping composite steel plate is amorphous thermoplastic resin (a) used in the present invention [hereinafter simply referred to as resin (a)]. Compared to the case where the material is used alone in the intermediate layer, good vibration damping performance is exhibited even at higher temperatures. In addition, even though the resin (,) alone has a higher tan δ, the rigidity G′ suddenly decreases at the temperature where the tan δ reaches its maximum value, and sufficient vibration damping property l is not obtained as a composite steel plate. In contrast, the composition of the present invention has a ta attributable to resin (a).
Since the decrease in the rigidity G' is small at the temperature where the nδ maximum value is exhibited, even if the tanδ as a composition decreases slightly, it will work effectively on the vibration damping property l of the composite steel sheet, and in some cases, resin (a) may be used alone. A higher vibration damping property η can be obtained than the composite steel plate used in .

更に、本発明で用いられる樹脂(b)は結晶性のものが
用いられるのでその融点の高いものを選択することがで
き、樹脂(a)としてtanδ最大値が高温にあるもの
を用いて、より高温域で制振性を発揮する制振用樹脂組
成物を得ることができるX本発明の樹脂組成物は複合鋼
板に用いて制振性を発揮する温度において剛性率が高い
ので、構造材として強度上有利であると共に、この様な
組成物は常温における剛性率も高いので、本発明の組成
物を用いた複合鋼板の曲げ加工、紋り加工等の成形性も
良好である。
Furthermore, since the resin (b) used in the present invention is crystalline, it is possible to select a resin with a high melting point. It is possible to obtain a vibration damping resin composition that exhibits vibration damping properties in a high temperature range. In addition to being advantageous in terms of strength, such a composition also has a high rigidity at room temperature, so that the composite steel plate using the composition of the present invention has good formability in bending, curving, etc.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明の制振性樹脂組成物を用いた割振用複合金属板は
、騒音発生源の環境温度0〜150℃および騒音の周波
数20〜20000 Hzにおいて、ηが0.05以上
、好ましくは0.1以上を示すことが要求される。その
ためには、本発明に用いられる樹脂(a)は、温度−5
0〜150℃、周波数0.1〜20000 Hzにおい
て少なくとも。、5、好ましくは1.0以上のtanδ
最大値を持つ必要がある。
The composite metal plate for vibration allocation using the damping resin composition of the present invention has an η of 0.05 or more, preferably 0.05 at an environmental temperature of a noise source of 0 to 150°C and a noise frequency of 20 to 20,000 Hz. It is required to indicate 1 or more. For this purpose, the resin (a) used in the present invention must be at a temperature of -5
At least at a temperature of 0-150°C and a frequency of 0.1-20000 Hz. , 5, preferably tan δ of 1.0 or more
Must have the maximum value.

このような非晶性樹脂としては、振動減衰効果の高い重
合体または共重合体として特公昭53−42069号明
細書等に記載されている各種の重合体が使用でき、例え
ばポリ酢酸ビニル等のビニルエステル系重合体、ポリビ
ニルブチラール、ポ。
As such amorphous resin, various polymers described in Japanese Patent Publication No. 53-42069 etc. as polymers or copolymers with high vibration damping effect can be used, such as polyvinyl acetate, etc. Vinyl ester polymer, polyvinyl butyral, polymer.

リスチレン等のスチレン系重合体、ポリイソブチレン等
の熱可塑性ゴム、ポリ塩化ビニル等のハロゲン化ビニル
系重合体、ポリメチルメタクリレート等のアクリル系重
合体が挙げられる。中でもビニルエステル系、スチレン
系、アクリル系の重合体または共重合体が好ましく用い
られる。
Examples include styrene polymers such as listyrene, thermoplastic rubbers such as polyisobutylene, halogenated vinyl polymers such as polyvinyl chloride, and acrylic polymers such as polymethyl methacrylate. Among them, vinyl ester, styrene, and acrylic polymers or copolymers are preferably used.

本発明の樹脂(a)としてはこれらの非晶性樹脂を2種
以上組合わせてもよく、必要なtanδを与えるもので
あれば、これらの組合わせた樹脂間で相溶性の有無は問
わない。
The resin (a) of the present invention may be a combination of two or more of these amorphous resins, and it does not matter whether or not these combined resins are compatible as long as they provide the necessary tan δ. .

本発明の制振用樹脂組成物中の樹脂(a)の配合量は1
0〜95重量%、好ましくは20〜90重量%であり、
特に好ましくは30〜80重量%である。本発明の樹脂
組成物を中間層に用いた制振用複合金属板のηは振動減
衰効果の点から0.05以上、好ましくは0.1以上が
必要であり、樹脂(a)の配合量が少なすぎる場合、樹
脂(a)に帰因する組成物のtanδが低くなり、その
結果、これを用いた複合金属板のηも低くなって充分な
制振性能が得られないおそれがあり、また加工性も悪く
なる。
The amount of resin (a) in the vibration damping resin composition of the present invention is 1
0 to 95% by weight, preferably 20 to 90% by weight,
Particularly preferably 30 to 80% by weight. In the composite metal plate for vibration damping using the resin composition of the present invention in the intermediate layer, η needs to be 0.05 or more, preferably 0.1 or more from the viewpoint of vibration damping effect, and the blending amount of resin (a) If it is too small, the tan δ of the composition attributable to the resin (a) will be low, and as a result, the η of the composite metal plate using this will also be low, and there is a risk that sufficient vibration damping performance will not be obtained. Moreover, the workability is also deteriorated.

本発明において前記樹脂(a)と共に配合される結晶性
熱可塑性樹脂(b)〔以下単に樹脂(b)という〕は、
樹脂(、)と非相溶であり、がっ、樹脂(a)がtan
δ最大値を示す温度および周波数における樹脂(b)の
剛性率G′がl X 108dyne / cJ以上、
好ましくは5X I Odyne / cJ以上であり
、特に好ましくは6X I Odyne / cr1以
上であるものが用いられる。
In the present invention, the crystalline thermoplastic resin (b) [hereinafter simply referred to as resin (b)] that is blended together with the resin (a) is:
It is incompatible with the resin (,), and the resin (a) is tan.
The rigidity G' of the resin (b) at the temperature and frequency showing the maximum value of δ is l x 108 dyne / cJ or more,
It is preferably 5X I Odyne/cJ or more, particularly preferably 6X I Odyne/cr1 or more.

本発明において非相溶とは、樹脂(a)および樹脂(b
)が、組成物の状態で動的粘弾性を測定した場合、それ
ぞれ単独にtanδ最大値を示すことを意味する。樹脂
(a)と樹脂(b)が相溶する場合には、組成物は単一
の温度でtanδ最大値を示し、その温度で゛組成物の
剛性率が著しく低下し、それを用いた複合金属板のηは
低くなるので好ましくない。
In the present invention, incompatibility refers to resin (a) and resin (b).
) means that when dynamic viscoelasticity is measured in the state of the composition, each independently exhibits the maximum value of tan δ. When resin (a) and resin (b) are compatible, the composition exhibits the maximum value of tan δ at a single temperature, and at that temperature, the rigidity of the composition decreases significantly, and composites using it This is not preferable because the η of the metal plate becomes low.

本発明の組成物において非晶性の樹脂(a)がtanδ
最大値を示す温度で、組成物の剛性率を高く保つために
は、結晶性の樹脂(b)が、その湿度で高い剛性率を有
していることが必要で、このためには樹脂(b)が樹脂
(a)と非相溶で、かつ、その融点が樹脂(a)のガラ
ス転移点より高いことが必要である。
In the composition of the present invention, the amorphous resin (a) has a tan δ
In order to keep the rigidity of the composition high at the temperature where it reaches its maximum value, it is necessary for the crystalline resin (b) to have a high rigidity at that humidity. It is necessary that b) is incompatible with resin (a) and that its melting point is higher than the glass transition point of resin (a).

複合金属板にした場合のηの最大値は、中間層に用いら
れた樹脂のtanδ最大値を示す温度よりも高い温度で
現われるから、樹脂(b)の融点が樹脂(a)のガラス
転移点に近接していると、樹脂(a)に帰因する組成物
のtanδにより複合金属板のηが発現される温度で、
組成物中の樹脂(b)が軟化もしくは溶融して組成物の
剛性が著しく低下し、制振用複合金属板の制振性ηが充
分発揮されないおそれがある。従って、樹脂(b)の融
点は樹脂Ca>のガラス転移点よりも、好ましくは30
℃以上、特に好ましくは50”C以上高いことが必要で
ある。
The maximum value of η in the case of a composite metal plate appears at a temperature higher than the temperature showing the maximum value of tan δ of the resin used for the intermediate layer, so the melting point of resin (b) is the glass transition point of resin (a). , the temperature at which η of the composite metal plate is expressed by tan δ of the composition attributed to resin (a),
The resin (b) in the composition may soften or melt, resulting in a significant decrease in the rigidity of the composition, and there is a risk that the vibration damping properties η of the vibration damping composite metal plate may not be fully exhibited. Therefore, the melting point of the resin (b) is preferably 30% higher than the glass transition point of the resin Ca>.
The temperature needs to be higher than 50"C, particularly preferably 50"C or higher.

本′発明で配合される樹脂(b)は俵数種の樹脂の併用
でもよい。その配合量は前記樹脂(a)の配合量に応じ
て90〜5重量%、好ましくは80〜10重量%、特に
好ましくは70〜20重量%である。
The resin (b) blended in the present invention may be a combination of several types of resins. The blending amount thereof is 90 to 5% by weight, preferably 80 to 10% by weight, particularly preferably 70 to 20% by weight, depending on the blending amount of the resin (a).

樹脂(b)の配合量が少ない場合には組成物の剛性が不
足して制振用複合金属板のηが低下する他、加工性も低
下する。また、樹脂(b)の配合量が多い場合は、樹脂
(a)に帰因するtanδ最大値が低下し、制振用金属
板のηが低下する。
When the amount of the resin (b) is small, the rigidity of the composition is insufficient, resulting in a decrease in η of the vibration-damping composite metal plate, as well as a decrease in workability. Moreover, when the blending amount of resin (b) is large, the maximum value of tan δ attributable to resin (a) decreases, and η of the vibration damping metal plate decreases.

本発明で用いられる樹脂(b)としては、例えばポリエ
チレン、ポリプロピレン等の結晶性α−オレフィン系樹
脂、ポリアミド、ポリエステル等の結晶性縮重合系樹脂
等が挙げられる。中でも結晶性α−オレフィン糸樹脂が
好ましく、特に高融点である口とからポリプロピレン以
上の高級α−オレフィン重合体が好ましい。
Examples of the resin (b) used in the present invention include crystalline α-olefin resins such as polyethylene and polypropylene, and crystalline polycondensation resins such as polyamide and polyester. Among these, crystalline α-olefin thread resins are preferred, and higher α-olefin polymers of polypropylene or higher are particularly preferred because of their high melting points.

本発明の制振用樹脂組成物として特に好ましい組合わせ
は、樹脂(a)としてビニルエステル系、スチレン系ま
たはアクリル系の重合体もしくは共重合体を用い、樹脂
(’b)として結晶性のエチレン系またはプロピレン系
樹脂を用いた場合である。
A particularly preferable combination for the vibration damping resin composition of the present invention is to use a vinyl ester, styrene, or acrylic polymer or copolymer as the resin (a), and use crystalline ethylene as the resin ('b). This is the case when a propylene-based or propylene-based resin is used.

本発明の組成物は、非晶性の樹脂(a)と結晶性の樹脂
(b)とを溶融混練または溶液ブレンドする方法で作る
ことができるが、樹脂(a)と樹脂(b)とをプロエチ
レン−酢酸゛ビニルブロック共重合体、ポリプロピレン
−酢酸ビニルグラフト共重合体がある。
The composition of the present invention can be made by melt-kneading or solution blending an amorphous resin (a) and a crystalline resin (b). There are proethylene-vinyl acetate block copolymers and polypropylene-vinyl acetate graft copolymers.

制振用複合金属板の曲げ加工、紋り加工等の点がらは、
共重合体を用いる方が好ましい。共重合体形と単純混練
等の手法とを複合して用いることもできる。
The points of bending, embossing, etc. of composite metal plates for vibration damping are as follows:
It is preferable to use copolymers. It is also possible to use a combination of a copolymer form and a method such as simple kneading.

本発明に用いられる樹脂(a)または樹脂(b)は金属
板との接着性を改良するために、カルボキシル基、エポ
キシ基、水酸基等で変性することが好ましく、組成物を
架橋して用いることもできる。
The resin (a) or resin (b) used in the present invention is preferably modified with a carboxyl group, epoxy group, hydroxyl group, etc. in order to improve adhesion to a metal plate, and the composition may be used after crosslinking. You can also do it.

また、本発明の組成物には、本発明の目的を損わない範
囲で、各種の添加剤、可塑剤、フィラー等を配合するこ
とができる。可塑剤は組成物のjanδ最大値温度を低
温側に移行させ、制振用複合金属板の制振温度範囲を調
節する効果を有すると共に、組成物に粘着性を与えて金
属板との密着性を改良し、組成物を柔軟にして脆さを改
良する点で有用である。また、フィラーは組成物のta
nδ最大値を示す温度における剛性率を高く保つ効果を
有し、その点でηの改善効果を有する。
Furthermore, various additives, plasticizers, fillers, etc. can be added to the composition of the present invention within a range that does not impair the purpose of the present invention. The plasticizer has the effect of shifting the jan δ maximum temperature of the composition to a lower temperature side and adjusting the vibration damping temperature range of the vibration damping composite metal plate, and also imparts tackiness to the composition and improves its adhesion to the metal plate. It is useful in improving the composition, making it flexible and reducing its brittleness. In addition, the filler is the ta of the composition.
It has the effect of keeping the rigidity high at the temperature showing the maximum value of nδ, and has the effect of improving η in that respect.

本発明の組成物は、樹脂(a)がtanδ最大値を示す
温度において、組成物としての剛性率は8 X I O
’dyne/cnf以上であることが好ましく、特にl
×108clyn e / cJ以上であることが好ま
しい。
The composition of the present invention has a rigidity modulus of 8 X I O at the temperature at which the resin (a) exhibits the maximum value of tan δ.
'dyne/cnf or higher is preferable, especially l
It is preferable that it is 108cline/cJ or more.

本発明の組成物を用いて制振用複合金属板を製造するに
は各種の公知の手法が採用し得る。例えば、組成物を溶
液にして金属板の間に塗布し、乾燥した後、熱圧着する
方法、組成物をフィルム状に成形した後、金属板の間に
挾んでプレスまたはホットロールで積層する方法、ある
いは組成物を金属板の間に溶融状態でフィルム状に押出
して積層する方法等がある。また、金属板との積層−に
際して、フィルム状の組成物をコロナ処理、火炎処理等
の表面処理を行って、接着剤を用いて金属板と貼合わせ
てもよく、金属板の表面を予め化成処理等の各種表面処
理を施すこともできる。本発明の組成物は、溶融状態で
フィルム状に成形可能であるので、従来の制振用材料に
比して、制振用複合金属板の製造工程の簡略化が可能で
ある。
Various known methods can be employed to produce a vibration damping composite metal plate using the composition of the present invention. For example, a method is employed in which the composition is applied as a solution between metal plates, dried and then heat-compressed; a method in which the composition is formed into a film and then sandwiched between metal plates and laminated using a press or hot roll; There is a method of extruding and laminating a film in a molten state between metal plates. In addition, when laminating with a metal plate, the film-like composition may be subjected to surface treatment such as corona treatment or flame treatment, and then bonded to the metal plate using an adhesive. It is also possible to perform various surface treatments such as treatment. Since the composition of the present invention can be molded into a film in a molten state, it is possible to simplify the manufacturing process of a composite metal plate for vibration damping compared to conventional vibration damping materials.

〔実施例〕〔Example〕

以下実施例によって本発明を説明するが、重合体または
その組成物の損失正接t、anδおよび剛性率(貯蔵弾
性率)G′は、検体の動的粘弾性測定より得られ、その
数値は測定法により異なる。本発明でいうtanδおよ
びG′は、強制ねじり振動法により10 Hzにて測定
した。tanδの温度依存性を調べ、その最大値をta
nδmaxとした。また制振用複合鋼板は制振用組成物
を7.イルムに成形した後、厚さ0.8mmの2枚の鋼
板に挾んで圧縮成形法により積層したもので、制振層の
厚゛さは実施例1では0.1〜J2mm、実施例2では
0.5mmである。
The present invention will be explained below with reference to Examples. The loss tangent t, an δ and the stiffness modulus (storage modulus) G' of the polymer or its composition are obtained from dynamic viscoelasticity measurement of the specimen, and the values are Depends on the law. Tan δ and G' as used in the present invention were measured at 10 Hz by a forced torsional vibration method. Examine the temperature dependence of tan δ and calculate its maximum value as ta
It was set as nδmax. In addition, the vibration damping composite steel plate contains a vibration damping composition of 7. After forming into a film, the damping layer was sandwiched between two steel plates with a thickness of 0.8 mm and laminated by compression molding, and the thickness of the damping layer was 0.1 to 2 mm in Example 1, and It is 0.5 mm.

この制振用複合鋼板のηは、機械インピーダンスによる
共堤応答法を用い、10.00 Hzで測定した損失係
数(η)である。なお、本発明に用いる結晶性樹脂の融
点はDSO(示差走査熱創旧で測定した融解終了温度で
ある。
η of this vibration-damping composite steel plate is a loss coefficient (η) measured at 10.00 Hz using the co-dam response method using mechanical impedance. The melting point of the crystalline resin used in the present invention is the melting end temperature measured by DSO (differential scanning thermal imaging).

実施例1 ガラス転移点が約28℃のポリ酢酸ビニル(和光純薬工
業製、重合度1400〜16oO1以下P V Ac 
と略称する)と融点が167℃のポリプロピレン(三菱
油化製、三菱ノーブレンMH8、以下単にPPと略称す
る)を種々の配合割合で混練し、得られた組成物を厚さ
0.8mmの鋼板2枚の間に挾んで制振用複合鋼板とし
た。中間層の組成物の厚さは0.1〜OJmmであった
Example 1 Polyvinyl acetate with a glass transition point of about 28°C (manufactured by Wako Pure Chemical Industries, Ltd., polymerization degree of 1400 to 16oO1 or less P V Ac
) and polypropylene (manufactured by Mitsubishi Yuka, Mitsubishi Noblen MH8, hereinafter simply referred to as PP) with a melting point of 167°C are kneaded at various blending ratios, and the resulting composition is mixed into a steel plate with a thickness of 0.8 mm. It was sandwiched between two sheets to form a vibration damping composite steel plate. The thickness of the intermediate layer composition was 0.1 to OJmm.

得られた各種の複合鋼板の制振性能の最大値ηmaxお
よびその温度、組成物のtanδが最大値を示す温度T
tanδmaxにおける組成物の剛性率G′ならびに複
合鋼板の1ooOHz、80℃における制振性能ηを第
1表に示す。各種配合比の制振鋼板のいくつかにつき、
その制振性lの温度変化は第1図に示すとおりである。
Maximum value ηmax of vibration damping performance of the obtained various composite steel plates, its temperature, and temperature T at which tan δ of the composition exhibits the maximum value
Table 1 shows the rigidity G' of the composition at tan δmax and the damping performance η of the composite steel plate at 1ooOHz and 80°C. For some vibration damping steel plates with various compounding ratios,
The temperature change in the damping property l is as shown in FIG.

第2図はP V Ac 単独、PP単独およびPVAc
:PP二tso:+o(重量)の組成物についての周波
数10HzにおけるG′およびtanδの温度変化を示
す。P V Ac のtanδ最大値およびその温度は
それぞれ2.6および54℃であり、PPの54℃にお
けるG′はJ5 X I 09dyne / cd!で
あった。
Figure 2 shows P V Ac alone, PP alone and PVAc.
Figure 2 shows the temperature change of G' and tan δ at a frequency of 10 Hz for the composition of :PP2tso:+o (by weight). The tan δ maximum value of P V Ac and its temperature are 2.6 and 54°C, respectively, and the G′ of PP at 54°C is J5 X I 09dyne / cd! Met.

一方PVAc60重量%の組成物は、そのtanδ最大
値はJ5に低下しているが、それを用いた制振鋼板のη
は第1図に示されているようにPVAc単独のものより
高温域ですぐれた制振性を示している。
On the other hand, for the composition containing 60% by weight of PVAc, the maximum value of tan δ is reduced to J5, but the η of the damping steel plate using it is
As shown in Fig. 1, it exhibits better vibration damping properties in the high temperature range than PVAc alone.

第1表 実施例2 実施例1で用いたPVAc45重量部に融点109℃の
低密度ポリエチレン(三菱油化源、ユカロンzO−30
.以下L 、D P Eと略称する)55重量部を配合
して混練した組成物を、厚さ0.8mmの鋼板2枚の間
に0.5mm厚さの中間層として積層し、複合鋼板とし
た。得られた複合鋼板の10001(zにおける制振性
ηの温度変化を第3図に示す。75℃において0.15
のηmaxを示した。この組成物のtanδ最大値を示
す温度におけるG′は6.8×108dyne / c
++tであった。
Table 1 Example 2 45 parts by weight of PVAc used in Example 1 was mixed with low-density polyethylene (Mitsubishi Yuka Gen, Yucalon zO-30) having a melting point of 109°C.
.. A composition prepared by blending and kneading 55 parts by weight (hereinafter abbreviated as L, DPE) was laminated as a 0.5mm thick intermediate layer between two 0.8mm thick steel plates to form a composite steel plate. did. Figure 3 shows the temperature change in damping property η at 10001 (z) of the obtained composite steel plate.
ηmax was shown. G' at the temperature showing the maximum tan δ value of this composition is 6.8 x 108 dyne/c
It was ++t.

なおP’V Ac がtanδの最大値を示す54℃に
おけるLDPKの剛性率G′は3,9 Xl08dyn
e / ciであった。
The rigidity G' of LDPK at 54°C, where P'V Ac has the maximum value of tan δ, is 3.9 Xl08dyn.
It was e/ci.

比較例1 実施例1のPVAc50重量部に、融点75℃のエチレ
ン・酢酸ビニル共重合体(三菱油化源、ユカロンーエバ
X−’i’oo、以下単にEVAと略称する)を50重
量部配合した組成物を用いて、実施例2と同様の0.5
.mm厚さの中間層の複合鋼板とした。得られた複合鋼
板の1000Hzにおける制振性ηの温度変化を第3図
に示す。
Comparative Example 1 50 parts by weight of ethylene/vinyl acetate copolymer (Mitsubishi Yuka Gen, Yucalon-Eva X-'i'oo, hereinafter simply abbreviated as EVA) having a melting point of 75°C was blended with 50 parts by weight of PVAc of Example 1. 0.5 as in Example 2 using the composition.
.. A composite steel plate with an intermediate layer of mm thickness was used. FIG. 3 shows the temperature change in damping property η of the obtained composite steel plate at 1000 Hz.

P V Acのtanδ最大値を示す54℃においてE
VAの剛性率は1.OXl 0’ dyne /cJで
あり、剛性率が不足すると共に、EVAの有する相溶性
により、得られた複合鋼板のηは第3図に示された様に
全体に低く、pVAcによるりのピークが明確でない。
E at 54°C showing the maximum value of tan δ of P V Ac
The rigidity of VA is 1. OXl 0' dyne /cJ, and due to the insufficient rigidity and the compatibility of EVA, the η of the obtained composite steel plate is low overall as shown in Figure 3, and the peak due to pVAc is low. Not clear.

実施例6 ガラス転移点が約100℃のポリスチレン(三菱モンサ
ント製、ダイヤレックスHF’/7、以下PSと略称す
る)と融点が152℃のポリプロピレン(三菱油化源、
三菱ノーブレンFX4)との等重量配合組成物を用いた
複合鋼板のηの温度変化を第4図に示す。
Example 6 Polystyrene with a glass transition point of about 100°C (Mitsubishi Monsanto, Dialex HF'/7, hereinafter abbreviated as PS) and polypropylene with a melting point of 152°C (Mitsubishi Yukagen, abbreviated as PS).
FIG. 4 shows the temperature change in η of a composite steel plate using a composition of equal weight with Mitsubishi Noblen FX4).

psのtanδ最大値は109℃において3.4であり
、その温度におけるポリプロピレンの剛性率は9,8 
X 108dyne / c−であった。得られた複合
鋼板の制振性能の最大値は120℃において0.14で
あり、組成物のtanδ最大値湿度における剛性率は1
,8 X I O” dyne / cJであった。
The maximum tan δ value of ps is 3.4 at 109°C, and the rigidity modulus of polypropylene at that temperature is 9.8
X 108 dyne/c-. The maximum vibration damping performance of the obtained composite steel plate was 0.14 at 120°C, and the stiffness modulus at the maximum tan δ humidity of the composition was 1.
, 8 X I O” dyne/cJ.

実施例4 実施例6のポリプロピレンの代わりに融点が133℃の
高密度ポリエチレン(三菱油化源、ユカロン−HDXB
Z 50 A、以下HDPKと略称する)を用いた複合
板のηの温度変化を第4図に示す。
Example 4 High-density polyethylene with a melting point of 133°C (Mitsubishi Yuka Gen, Yucalon-HDXB) was used instead of the polypropylene of Example 6.
FIG. 4 shows the temperature change in η of a composite plate using Z 50 A (hereinafter abbreviated as HDPK).

psのtanδ最大値混度1混炭℃におけるHDPII
Cの剛性率は5.I X I 08dyne’/ c+
d、組成物のtanδ最大値における組成物の′剛性率
はJ3X10’dyne / cJであった。また複合
鋼板のη最大値は第4図に示すとおり120℃で0.1
1であった。
HDPII at ps tan δ maximum mixture 1 mixed coal °C
The rigidity of C is 5. I X I 08dyne'/c+
d, The 'stiffness modulus of the composition at the maximum value of tanδ of the composition was J3X10'dyne/cJ. In addition, the maximum value of η of the composite steel plate is 0.1 at 120℃ as shown in Figure 4.
It was 1.

実施例5 実施例1においてPVAc の代わりにガラス転移点が
約20℃のスチレン−アクリル酸エステル共重合体(ス
チレン含量50重量%、分子量21万、以下SAEと略
称する)を用いる他は、実施例1と同様にして、制振用
複合鋼板を得た。
Example 5 The same procedure was carried out as in Example 1, except that a styrene-acrylic acid ester copolymer (styrene content: 50% by weight, molecular weight: 210,000, hereinafter abbreviated as SAE) having a glass transition point of about 20° C. was used instead of PVAc. A damping composite steel plate was obtained in the same manner as in Example 1.

得られた各種の複合鋼板の制振性能の最大値ηmaxお
よびその湿度、組成物のtanδが最大値を示す温度T
 tan a maxにおける組成物の剛性率G′を第
3表に示す。各種配合比の制振鋼板のいくつかにつき、
その制振性ηの温度変化は第5図に示すとおりである。
Maximum value ηmax of vibration damping performance of the obtained various composite steel plates, its humidity, and temperature T at which tan δ of the composition exhibits the maximum value
The rigidity G' of the composition at tan a max is shown in Table 3. For some vibration damping steel plates with various compounding ratios,
The temperature change in the damping property η is as shown in FIG.

SAEのtanδ最大値およびその湿度はそれぞれ2.
9および40℃であり、ppの40℃におけるG′は3
.2 X l 09dyne/ crlであった。
The maximum tan δ value of SAE and its humidity are 2.
9 and 40°C, and G' at 40°C of pp is 3
.. It was 2×109dyne/crl.

第2表Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図はポリ酢酸ビニル−ポリプロピレン系組成物を用
いた複合鋼板の制振性ηの温度変化を示すグラフであり
、第2図は同じ系の組成物の剛性率G′およびtanδ
の温度変化を示す。第3図はポリ酢酸ビニルに、低密度
ポリエチレンまたはエチレン−酢酸ビニル共重合体を配
゛合した組成物を用いた複合鋼板の制振性η、第4図は
ポリスチレンにポリプロピレンまたは高密度ポリエチレ
ンを配合した組成物による複合鋼板の制振性りを示す。 第5図はスチレン−アクリル酸エステル共重合体とホ゛
リプロピレンとの組成物を用いた複合鋼板の制振性ηを
示す。
Fig. 1 is a graph showing temperature changes in the damping property η of a composite steel plate using a polyvinyl acetate-polypropylene composition, and Fig. 2 is a graph showing the rigidity G' and tan δ of the same composition.
shows the temperature change. Figure 3 shows the damping properties η of a composite steel plate using a composition in which polyvinyl acetate is combined with low-density polyethylene or ethylene-vinyl acetate copolymer, and Figure 4 shows the vibration damping properties η of a composite steel plate using a composition in which polyvinyl acetate is combined with polypropylene or high-density polyethylene. The vibration damping properties of the composite steel plate due to the blended compositions are shown. FIG. 5 shows the vibration damping properties η of a composite steel plate using a composition of styrene-acrylic acid ester copolymer and polypropylene.

Claims (2)

【特許請求の範囲】[Claims] (1)互いに相溶しない下記の非晶性熱可塑性樹脂(a
)および結晶性熱可塑性樹脂(b)のそれぞれ少なくと
も1種よりなり、該樹脂(a)の10〜95重量%およ
び該樹脂(b)の90〜5重量%からなることを特徴と
する制振用樹脂組成物。 (i)非晶性熱可塑性樹脂(a):相対的に低いガラス
転移点を有し、かつ、−50〜150℃の温度で、周波
数0.1〜20000Hzの範囲内に0.5以上のta
nδ最大値を有する非晶性重合体 (ii)結晶性熱可塑性樹脂(b):前記非晶性熱可塑
性樹脂(a)のガラス転移点より高い融点を有し、かつ
、該非晶性熱可塑性樹脂(a)がtanδの最大値を示
す温度および周波数において1×10^8dyne/c
m^2以上の剛性率を有する結晶性重合体
(1) The following amorphous thermoplastic resins (a
) and a crystalline thermoplastic resin (b), each comprising 10 to 95% by weight of the resin (a) and 90 to 5% by weight of the resin (b). Resin composition for use. (i) Amorphous thermoplastic resin (a): has a relatively low glass transition point and has a frequency of 0.5 or more in the range of 0.1 to 20,000 Hz at a temperature of -50 to 150°C. ta
Amorphous polymer having nδ maximum value (ii) Crystalline thermoplastic resin (b): having a melting point higher than the glass transition point of the amorphous thermoplastic resin (a), and the amorphous thermoplastic resin 1×10^8 dyne/c at the temperature and frequency where resin (a) exhibits the maximum value of tan δ
Crystalline polymer having a rigidity of m^2 or more
(2)結晶性熱可塑性樹脂(b)が非晶性熱可塑性樹脂
(a)のガラス転移点より30℃以上高い融点を有する
、特許請求の範囲第(1)項に記載の組成物。
(2) The composition according to claim (1), wherein the crystalline thermoplastic resin (b) has a melting point that is 30° C. or more higher than the glass transition point of the amorphous thermoplastic resin (a).
JP11970284A 1984-06-11 1984-06-11 Resin composition for vibration damping Pending JPS6128551A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP11970284A JPS6128551A (en) 1984-06-11 1984-06-11 Resin composition for vibration damping
AU43268/85A AU563256B2 (en) 1984-06-11 1985-06-04 Vibration - damping resin composition
CA000483506A CA1256787A (en) 1984-06-11 1985-06-07 Vibration-damping clamping composite metal plate
KR1019850004072A KR900000972B1 (en) 1984-06-11 1985-06-10 Vibration-damping resin composition
DE19853587555 DE3587555T2 (en) 1984-06-11 1985-06-11 Vibration damping laminate.
EP19850107194 EP0164728B1 (en) 1984-06-11 1985-06-11 Vibration-damping laminate
US06/867,416 US4740427A (en) 1984-06-11 1986-05-15 Vibration-damping composite metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11970284A JPS6128551A (en) 1984-06-11 1984-06-11 Resin composition for vibration damping

Publications (1)

Publication Number Publication Date
JPS6128551A true JPS6128551A (en) 1986-02-08

Family

ID=14767962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11970284A Pending JPS6128551A (en) 1984-06-11 1984-06-11 Resin composition for vibration damping

Country Status (2)

Country Link
JP (1) JPS6128551A (en)
KR (1) KR900000972B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048898A1 (en) * 2009-10-20 2011-04-28 日東電工株式会社 Vibration-damping sheet, method for damping vibration of vibrating member, and method of use
WO2011048900A1 (en) * 2009-10-20 2011-04-28 日東電工株式会社 Vibration damping sheet, method for damping vibration of vibrating member, and method for utilizing the vibrating member
US10344156B2 (en) 2015-05-15 2019-07-09 Sumitomo Chemical Company, Limited Aqueous dispersion mixture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048898A1 (en) * 2009-10-20 2011-04-28 日東電工株式会社 Vibration-damping sheet, method for damping vibration of vibrating member, and method of use
WO2011048900A1 (en) * 2009-10-20 2011-04-28 日東電工株式会社 Vibration damping sheet, method for damping vibration of vibrating member, and method for utilizing the vibrating member
JP2011089545A (en) * 2009-10-20 2011-05-06 Nitto Denko Corp Vibration damping sheet, method for damping vibration of vibrating member and method of using the member
US10344156B2 (en) 2015-05-15 2019-07-09 Sumitomo Chemical Company, Limited Aqueous dispersion mixture

Also Published As

Publication number Publication date
KR900000972B1 (en) 1990-02-23
KR860000148A (en) 1986-01-25

Similar Documents

Publication Publication Date Title
US4740427A (en) Vibration-damping composite metal plate
EP0061270B2 (en) Diaphragm for an electro-acoustic transducer
JPH0254000B2 (en)
JP3360823B2 (en) Non-bitumen sound-absorbing material
JPS60258262A (en) Vibration-damping polymer composition
JPS6128551A (en) Resin composition for vibration damping
US5232785A (en) Vibration damping sheet
JPS6128553A (en) Vibration absorbing polymer composition
JPH07122056B2 (en) Composition for composite type damping material
JPH0253999B2 (en)
JPH0613621B2 (en) Resin composition for vibration damping laminate
JPS62290537A (en) Laminated sheet consisting of polypropylene group resin
JPS6160759A (en) Vibration-damping resin composition
JP2547802B2 (en) Composition for composite type damping material
JP3316921B2 (en) Vibration energy absorber
JPS63193831A (en) Composite type vibration-damping laminate
JPS62152751A (en) Viscoelastic multilayer body for manufacturing composite type vibration-damping material
JPH0434499B2 (en)
JP2003003018A (en) Resin composition for ligneous molded article
JPS63278845A (en) Viscoelastic multilayer body for preparing composite type damping material
JP2002305783A (en) Speaker component and its manufacturing method
JPH01263148A (en) Composition for composite type vibration-damping material
JPS622982B2 (en)
JPS6162630A (en) Anti-vibration type resin composition
KR20210078970A (en) Surface treatment composition for vibration damping steel sheet and vibration damping steel sheet