JPS61285352A - Screw type heat pump - Google Patents

Screw type heat pump

Info

Publication number
JPS61285352A
JPS61285352A JP12672185A JP12672185A JPS61285352A JP S61285352 A JPS61285352 A JP S61285352A JP 12672185 A JP12672185 A JP 12672185A JP 12672185 A JP12672185 A JP 12672185A JP S61285352 A JPS61285352 A JP S61285352A
Authority
JP
Japan
Prior art keywords
liquid
refrigerant
economizer
main body
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12672185A
Other languages
Japanese (ja)
Inventor
藪本 治
奈津夫 神崎
三吉 清忠
定男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12672185A priority Critical patent/JPS61285352A/en
Publication of JPS61285352A publication Critical patent/JPS61285352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Central Heating Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、中間冷却器である液過冷却器(エコノマイザ
)を備えたスクリュ式ヒートポンプに関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a screw heat pump equipped with a liquid subcooler (economizer) that is an intercooler.

(従来技術) 従来、この種のヒートポンプとして、第3図に示すもの
が公知であり、スクリエ圧縮磯本体(以下、本体という
。)1.凝縮器2.液過冷却器3.11膨張弁4および
蒸発器5を含むクローズドループ6が形成しである。さ
らに、第2膨張弁7を含み、液送冷却933の入側にて
クローズドループ6から分岐して液過冷却器3内の熱交
換器8に通じる分岐ライン9と、この熱交換器8から中
間圧力状態にあるガス閉込み空間に開口させるように本
体1に形成したエコノマイザホール10に通じるエコノ
マイザライン11とが設けてあり、第1゜器8の出側に
冷媒温度検出可能に設けた第1.第2感温手段12.1
3からの信号に基づいて行うように形成しである。
(Prior Art) Conventionally, as this type of heat pump, the one shown in FIG. Condenser 2. A closed loop 6 comprising a liquid subcooler 3.11 an expansion valve 4 and an evaporator 5 is formed. Further, a branch line 9 including a second expansion valve 7 and branched from the closed loop 6 at the inlet side of the liquid feed cooling 933 and leading to the heat exchanger 8 in the liquid supercooler 3; An economizer line 11 is provided leading to an economizer hole 10 formed in the main body 1 so as to open into a gas confinement space in an intermediate pressure state. 1. Second temperature sensing means 12.1
It is configured to perform based on the signal from 3.

そして、本体1により冷媒を圧縮して、高圧。Then, the main body 1 compresses the refrigerant to high pressure.

高温ガス状態で吐出しく状態a)、これを凝縮器2にて
管14内の水との間の熱交換により冷却して凝縮(液化
)させ、高圧液体状態でここから送出している(凝縮開
始時を状態す、凝縮完了時を状!!c)。
State a) is discharged in a high-temperature gas state, and is cooled and condensed (liquefied) in the condenser 2 by heat exchange with water in the pipe 14, and then sent out from here in a high-pressure liquid state (condensed gas). Indicates the start time and indicates the condensation completion time!!c).

この高圧液体状態の冷媒(状態C)を、液過冷却器3の
手前で一部分岐させて分岐ライン9に送り、第2膨張弁
7での絞り膨張により降圧させて低温〃ス、液状態(状
態d)として熱交換器8内を通過させている。一方、残
りの部分の冷媒を液過冷却器3に送り、ここで熱交換器
8内の冷媒との間の熱交換により圧カ一定のままで過冷
却するとともに(状態e)、熱交換器8内の冷媒を完全
にガス状態にしている(状態f)。換言すれば、第2感
温手段13によりエコノマイザライン11内の温度を検
出して、この検出温度に基づいて、エコノマイザライン
11内の冷媒が完全にガス状態になるように第2膨張弁
7の開度(絞り)を調節している。
This high-pressure liquid state refrigerant (state C) is partially branched before the liquid subcooler 3 and sent to the branch line 9, and the pressure is lowered by throttling expansion in the second expansion valve 7, resulting in a low-temperature refrigerant (state C). It is passed through the heat exchanger 8 in state d). On the other hand, the remaining part of the refrigerant is sent to the liquid supercooler 3, where it is supercooled while the pressure remains constant by heat exchange with the refrigerant in the heat exchanger 8 (state e), and the heat exchanger 8 The refrigerant in 8 is completely in a gas state (state f). In other words, the temperature inside the economizer line 11 is detected by the second temperature sensing means 13, and based on this detected temperature, the second expansion valve 7 is adjusted so that the refrigerant inside the economizer line 11 is completely in a gas state. Adjusting the opening (aperture).

ついで、液過冷却器3で冷却した高圧液体状態の冷媒(
状態e)を第1膨張弁4で絞り膨張により降圧させて、
低温ガス、液状態としく状態g)、これを蒸発器5にて
管15内の水との間の熱交換により気化させ、低圧、低
温ガス状態(状態h)として本体1に送り吸込ませてい
る。なお、この場合も上記同様第1感温手段12により
蒸発器5の出側の冷媒の温度を検出して、この検出温度
に基づいて、この出側での冷媒が完全にガス状態になる
ように第1膨張弁4の開度(絞り)を調節している。
Next, the high-pressure liquid refrigerant cooled in the liquid supercooler 3 (
The pressure in state e) is lowered by throttling expansion using the first expansion valve 4,
The low-temperature gas (state g) is in a liquid state, and is vaporized by heat exchange with the water in the tube 15 in the evaporator 5, and then sent to the main body 1 as a low-pressure, low-temperature gas state (state h), where it is inhaled. There is. In this case as well, the temperature of the refrigerant on the outlet side of the evaporator 5 is detected by the first temperature sensing means 12 as described above, and based on this detected temperature, the refrigerant on the outlet side is completely turned into a gas state. The opening degree (throttle) of the first expansion valve 4 is adjusted accordingly.

さらに、本体1にて、この吸込んだ冷媒の圧縮を開始す
るとともに、圧縮の中間段階において上記エコノマイザ
ライン11からのガス状態の冷媒をエコノマイザホール
10よりガス閉込み空間へ供給している(状態j)。
Furthermore, the main body 1 starts compressing the sucked refrigerant, and in the intermediate stage of compression, the gaseous refrigerant from the economizer line 11 is supplied from the economizer hole 10 to the gas confinement space (state j ).

そして、圧縮後、本体1より吐出した冷媒(状態a)を
凝縮器2に送って循環させ、以下上記同様の作用を繰返
し行うようになっている。
After compression, the refrigerant (state a) discharged from the main body 1 is sent to the condenser 2 and circulated, and the same operation as described above is repeated.

以上の冷媒の循環過程における各状態(a、b、・・・
j)を温度−エントロピ(T−8)線図上に示すと第2
図のようになり、図中の各記号は上記各状態の同記号の
ものに対応している。
Each state (a, b,...
j) on the temperature-entropy (T-8) diagram, the second
As shown in the figure, each symbol in the figure corresponds to the same symbol in each of the above states.

また、図中点g゛は第3図において液過冷却器3を設け
ないで、凝縮器2を出た冷媒を直接第1膨張弁4に導い
た場合のptSi膨張弁4の出側の冷媒の状態を表して
おり、このT−8線図上1点gwll+ZIXで囲まれ
た部分の而8!(面Mig * h 、 z 、 xと
いう。以下同様)および面積g’+ll+Z*Vは蒸発
器5の冷却能力を表している。
In addition, point g' in the figure indicates the refrigerant on the outlet side of the ptSi expansion valve 4 when the liquid supercooler 3 is not provided in FIG. It represents the state of 8!, which is the part surrounded by one point gwll+ZIX on this T-8 diagram. (referred to as surfaces Mig*h, z, and x; the same applies hereinafter) and area g'+ll+Z*V represent the cooling capacity of the evaporator 5.

したがって、液過冷却器3を設けることにより、これを
設けない場合に比べて、面積gwg’+VtX(ハツチ
ング部分)だけ増加したことになる。
Therefore, by providing the liquid supercooler 3, the area is increased by gwg'+VtX (hatched portion) compared to the case where the liquid supercooler 3 is not provided.

このように、従来は液過冷却器3は蒸発器5での冷却能
力を増大させるために用いられており、上記のように中
間圧力の液体状態の冷媒(状態d)を液過冷却器3で完
全に蒸発させるように第2膨張弁7を制御しているため
、本体1内における圧縮中のガスの冷却効果は殆どなく
、圧縮動力の減少に寄与しなかった。
In this way, the liquid subcooler 3 has conventionally been used to increase the cooling capacity of the evaporator 5, and as described above, the liquid state refrigerant (state d) at an intermediate pressure is transferred to the liquid subcooler 3. Since the second expansion valve 7 was controlled so as to completely evaporate the gas, there was almost no cooling effect on the gas being compressed within the main body 1, and it did not contribute to a reduction in the compression power.

ところが、近年ヒートポンプが広範囲に普及するにつれ
て、特に大規模な熱利用系への適用のため、省エネルギ
効果の高い、成績係数cop(=蒸発能力/圧縮動力)
が良好なヒートポンプの開発が強く要請されていた。
However, in recent years, as heat pumps have become widespread, especially for large-scale heat utilization systems, the coefficient of performance cop (=evaporation capacity/compression power), which has a high energy-saving effect, has become more popular.
There was a strong demand for the development of a heat pump with good performance.

(発明の目的) 本発明は、上記従来の事情に鑑みてなされたもので、そ
の目的はCOPの改善を可能としたスクリュ式ヒートポ
ンプを提供することにある。
(Objective of the Invention) The present invention has been made in view of the above-mentioned conventional circumstances, and its object is to provide a screw type heat pump that can improve COP.

(発明の構成) 本発明は、上記の目的を達成するために本体と凝縮器と
液過冷却器と蒸発器用の第1膨張弁と蒸発器とを含むク
ローズドループと、第2膨張弁を含み、液過冷却器の入
側にて上記クローズドループから分岐して濃過冷却器内
の熱交換器に通じる分岐ラインと、この熱交換器から中
間圧力状態にあるガス閉込み空間に開口させるように本
体に形成したエコノマイザホールに通じるエコノマイザ
ラインとを備えたスクリュ式ヒートポンプにおいて、上
記凝縮器の入側に冷媒温度を検出可能に感温手段を設け
、かつ上記第2膨張弁を上記熱交換器内での冷媒の気化
が、本体内で液圧縮を起こさない範囲で部分的に行われ
るように、上記感温手段からの温度信号に基づいて弁開
度が変化するように形成するとともに、上記エコノマイ
ザホールをスクリュ圧縮機本体内に収納したロータの歯
溝に沿って複数個設けて構成した。
(Structure of the Invention) In order to achieve the above object, the present invention includes a closed loop including a main body, a condenser, a liquid supercooler, a first expansion valve for an evaporator, and an evaporator, and a second expansion valve. , a branch line that branches from the closed loop at the inlet side of the liquid supercooler and leads to a heat exchanger in the concentrated supercooler, and a branch line that opens from this heat exchanger to a gas confinement space in an intermediate pressure state. and an economizer line leading to an economizer hole formed in the main body, a temperature sensing means is provided on the inlet side of the condenser to be able to detect the refrigerant temperature, and the second expansion valve is connected to the heat exchanger. The valve is formed so that the degree of opening of the valve changes based on the temperature signal from the temperature sensing means so that vaporization of the refrigerant within the main body is partially performed within a range that does not cause liquid compression within the main body. A plurality of economizer holes are provided along the tooth grooves of the rotor housed within the screw compressor body.

(実施例) 次に、本発明の一実施例を図面にしたがって説明する。(Example) Next, one embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明に係るスクリュ式ヒートポンプを示し
、第3図に示す装置とは第2感温手段13およびエコノ
マイザホール10を除き、池は実質的に同一であり、対
応する部分には同一番号を付して説明を省略する。
FIG. 1 shows a screw type heat pump according to the present invention, and the pond is substantially the same as the device shown in FIG. 3 except for the second temperature sensing means 13 and the economizer hole 10, and the corresponding parts are The same numbers will be given and the explanation will be omitted.

第1図に示す装置では、第2感温手段13は凝縮器2の
入側の冷媒温度を検出可能に設けてあり、この検出温度
に基づいて、熱交換器8内での冷媒の気化が、本体1内
で液圧縮を起こさない範囲で部分的に行われるように、
第2膨張弁7の開度を調節している。したがって、エコ
ノマイザラインll内の冷媒はガスと液体の混合状態に
ある(状@f”)。
In the device shown in FIG. 1, the second temperature sensing means 13 is provided to be able to detect the refrigerant temperature on the inlet side of the condenser 2, and based on this detected temperature, the refrigerant is vaporized in the heat exchanger 8. , so that it is partially carried out within the range that does not cause liquid compression within the main body 1,
The opening degree of the second expansion valve 7 is adjusted. Therefore, the refrigerant in the economizer line 11 is in a mixed state of gas and liquid (shape @f'').

また、エコノマイザホール10は、本体1内のロータの
歯溝16に沿って複数個設けてありエコノマイザホール
10より注入する冷媒が一部液体であっても、〃ス閉込
み状態にある歯溝16内に一様に広がるように形成しで
ある。すなわち、冷媒がガス状態の場合は、これを−個
のエコノマイザホール10より注入しても、即座に歯溝
16の内部全体に広がり易いが、液体の場合は広がりに
くく、圧縮中の歯溝16内の冷媒との間の熱交換が有効
に行われないため、上記の様に注入する液体を分散させ
て、圧縮中の冷媒の冷却効果を高めるようにしである。
Further, a plurality of economizer holes 10 are provided along the tooth grooves 16 of the rotor in the main body 1, and even if some of the refrigerant injected from the economizer holes 10 is liquid, the tooth grooves 16 are in a state where gas is trapped. It is formed so that it spreads evenly inward. That is, when the refrigerant is in a gas state, even if it is injected through - number of economizer holes 10, it easily spreads throughout the tooth space 16, but when it is a liquid, it does not spread easily and the tooth space 16 during compression Since heat exchange with the refrigerant inside the compressor is not effective, the injected liquid is dispersed as described above to enhance the cooling effect of the refrigerant during compression.

この結果、エコノマイザホール10より注入した冷媒は
本体1内で飽和ガス状態になり(状態「)、圧縮中の冷
媒(状!!j)を冷却すると同時に、これと混合して(
状態jl)、−緒に圧縮された後本体1より吐出され(
状FJa’)、以後上記同様の作用を繰返す。
As a result, the refrigerant injected from the economizer hole 10 becomes a saturated gas state (state ``)'' in the main body 1, cools the refrigerant being compressed (state !!j), and at the same time mixes with this (state ``)''.
state jl), - is discharged from the main body 1 after being compressed (
FJa'), and the same action as above is repeated thereafter.

したがって、第2図より明らかなように、このヒートポ
ンプでは、本体1からの冷媒の吐出温度を、第3図の装
置の場合と比べてTaからTa’まで冷却するように、
エコノマイザホール10がらの液量を制御するので、圧
縮動力が面積a*aZJ”1jの部分(ハツチング部分
)だけ減少する。さらに、第1膨張弁4へ送る冷媒(液
体)の過冷却も行うので(状!!e参照)、蒸発器5で
の冷却能力は液過冷却器3のない場合に比べて面積g+
g”+1’+Xだけ増加しており、上記面積a+a’t
J’tJの部分による動力減少と相俟って高いCOPが
得られるようになっている。
Therefore, as is clear from FIG. 2, in this heat pump, the discharge temperature of the refrigerant from the main body 1 is cooled from Ta to Ta' compared to the case of the device shown in FIG.
Since the amount of liquid in the economizer hole 10 is controlled, the compression power is reduced by the area a*aZJ''1j (hatched area).Furthermore, the refrigerant (liquid) sent to the first expansion valve 4 is supercooled. (Refer to Condition!!e), the cooling capacity of the evaporator 5 is larger than that of the case without the liquid supercooler 3 by area g +
g"+1'+X, and the above area a+a't
Combined with the reduction in power due to the J'tJ portion, a high COP can be obtained.

なお、上記実施例では液過冷却器3を1段だけ設けたも
めを示したが、本発明はこれに限るものでなく、液過冷
却器3を多段に設けてもよい。そして、この場合、エフ
7マイザホール10は、より高圧側のエコ7マイザライ
ン中の本体1内のより高圧側の歯溝部に注入するように
形成するのが6′Fましく、理論的には段数の増加とと
もにヒートポンプのCOPは高くなる。
In addition, although the above-mentioned example showed a problem in which only one stage of liquid subcooler 3 was provided, the present invention is not limited to this, and liquid subcooler 3 may be provided in multiple stages. In this case, the F7 miser hole 10 should be formed so as to be injected into the tooth groove on the higher pressure side in the main body 1 of the ECO7 miser line on the higher pressure side. As the number of stages increases, the COP of the heat pump increases.

(発明の効果) 以上の説明より明らかなように、本発明によれば、凝縮
器の入側に冷媒温度を検出可能に感温手段を設け、かつ
上記第2膨張弁を、熱交換器内での冷媒の気化が、本体
内で液圧縮を起こさない範囲で部分的に行われるように
、感温手段からの温度信号に基づいて弁開度が変化する
ように形成するとともに、エコノマイザホールを本体内
に収納したロータの歯溝に沿って複数個設けである。
(Effects of the Invention) As is clear from the above description, according to the present invention, a temperature sensing means is provided on the inlet side of the condenser to be able to detect the refrigerant temperature, and the second expansion valve is connected to the inside of the heat exchanger. In order to partially vaporize the refrigerant within the main body without causing liquid compression, the valve opening degree is changed based on the temperature signal from the temperature sensing means, and the economizer hole is A plurality of them are provided along the tooth grooves of the rotor housed in the main body.

このため、液過冷却器を備えていない1段油冷式ヒート
ポンプに比べて冷却能力を増大させることができるだけ
でなく、従来の液過冷却器を備えたヒートポンプに比べ
ても圧縮動力が減少し、COPを向上させることができ
る。
Therefore, not only can the cooling capacity be increased compared to a single-stage oil-cooled heat pump without a liquid subcooler, but the compression power is also reduced compared to a conventional heat pump equipped with a liquid subcooler. , COP can be improved.

また、本体がらの冷媒の吐出温度が低下するため、従来
これを下げるために必要であった高価な油冷却器が不要
となり、装置の構成を単純化することが可能となる。
Furthermore, since the discharge temperature of the refrigerant from the main body is lowered, an expensive oil cooler, which was conventionally required to lower the temperature, is no longer necessary, and the configuration of the apparatus can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るスクリュ式ヒートポンプの機器構
成図、第2図はT−8線図、第3図は従来のスクリュ式
ヒートポンプの機器構成図である。 1・・・本体、2・・・凝縮器、3・・・液適冷却器、
4・・・第1膨張弁、5・・・蒸発器、6・・・クロー
ズドループ、7・・・第2膨張弁、8・・・熱交換器、
9・・・分岐ライン、10・・・エコノマイザホール、
11・・・エコノマイサライン、13・・・第2感温手
段、16・・・歯溝。
FIG. 1 is an equipment configuration diagram of a screw type heat pump according to the present invention, FIG. 2 is a T-8 diagram, and FIG. 3 is an equipment configuration diagram of a conventional screw type heat pump. 1...Main body, 2...Condenser, 3...Liquid suitable cooler,
4... First expansion valve, 5... Evaporator, 6... Closed loop, 7... Second expansion valve, 8... Heat exchanger,
9... Branch line, 10... Economizer hole,
11... Economizer line, 13... Second temperature sensing means, 16... Tooth groove.

Claims (1)

【特許請求の範囲】[Claims] (1)スクリュ圧縮機本体と凝縮器と液過冷却器と蒸発
器用の第1膨張弁と蒸発器とを含むクローズドループと
、第2膨張弁を含み、液過冷却器の入側にて上記クロー
ズドループから分岐して液過冷却器内の熱交換器に通じ
る分岐ラインと、この熱交換器から中間圧力状態にある
ガス閉込み空間に開口させるようにスクリュ圧縮機本体
に形成したエコノマイザホールに通じるエコノマイザラ
インとを備えたスクリュ式ヒートポンプにおいて、上記
凝縮器の入側に冷媒温度を検出可能に感温手段を設け、
かつ上記第2膨張弁を上記熱交換器内での冷媒の気化が
、本体内で液圧縮を起こさない範囲で部分的に行われる
ように、上記感温手段からの温度信号に基づいて弁開度
が変化するように形成するとともに、上記エコノマイザ
ホールをスクリュ圧縮機本体内に収納したロータの歯溝
に沿って複数個設けたことを特徴とするスクリュ式ヒー
トポンプ。
(1) A closed loop including a screw compressor main body, a condenser, a liquid supercooler, a first expansion valve for the evaporator, and an evaporator, and a second expansion valve, and the above on the inlet side of the liquid supercooler. A branch line branches from the closed loop and leads to a heat exchanger in the liquid supercooler, and an economizer hole is formed in the screw compressor body so that the heat exchanger opens into the gas confinement space in an intermediate pressure state. In a screw type heat pump equipped with a communicating economizer line, a temperature sensing means is provided on the inlet side of the condenser to be able to detect the refrigerant temperature,
and the second expansion valve is opened based on the temperature signal from the temperature sensing means so that the refrigerant in the heat exchanger is partially vaporized within a range that does not cause liquid compression within the main body. A screw type heat pump characterized in that the economizer holes are formed so as to vary in temperature, and a plurality of the economizer holes are provided along the tooth grooves of a rotor housed in a screw compressor main body.
JP12672185A 1985-06-11 1985-06-11 Screw type heat pump Pending JPS61285352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12672185A JPS61285352A (en) 1985-06-11 1985-06-11 Screw type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12672185A JPS61285352A (en) 1985-06-11 1985-06-11 Screw type heat pump

Publications (1)

Publication Number Publication Date
JPS61285352A true JPS61285352A (en) 1986-12-16

Family

ID=14942224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12672185A Pending JPS61285352A (en) 1985-06-11 1985-06-11 Screw type heat pump

Country Status (1)

Country Link
JP (1) JPS61285352A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488066A (en) * 1987-09-28 1989-04-03 Daikin Ind Ltd Refrigeration circuit
JPS6490961A (en) * 1987-09-30 1989-04-10 Daikin Ind Ltd Refrigeration circuit
WO2005026554A1 (en) * 2003-09-09 2005-03-24 Daikin Industries, Ltd. Screw compressor and freezer
JP2008232613A (en) * 2007-03-21 2008-10-02 Grasso Gmbh Refrigeration Technology Control method of co2 refrigeration device performing two-stage compression
JP2008541000A (en) * 2005-05-19 2008-11-20 クォンタム エナジー テクノロジーズ プロプライアトリー リミテッド Heat pump device and fluid heating method
JP2012097755A (en) * 2012-01-12 2012-05-24 Fujitsu General Ltd Injection-corresponding two-stage compression rotary compressor
US8857211B2 (en) 2007-03-30 2014-10-14 Fujitsu General Limited Injectable two-staged rotary compressor and heat pump system
US9200820B2 (en) 2009-10-20 2015-12-01 Mitsubishi Electric Corporation Heat pump apparatus with ejector cycle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101753A (en) * 1976-02-23 1977-08-26 Mayekawa Mfg Co Ltd Refrigerating apparatus
JPS5844942A (en) * 1981-09-11 1983-03-16 Topy Ind Ltd Trimming method for end face of link for catapillar and its punching unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101753A (en) * 1976-02-23 1977-08-26 Mayekawa Mfg Co Ltd Refrigerating apparatus
JPS5844942A (en) * 1981-09-11 1983-03-16 Topy Ind Ltd Trimming method for end face of link for catapillar and its punching unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488066A (en) * 1987-09-28 1989-04-03 Daikin Ind Ltd Refrigeration circuit
JPS6490961A (en) * 1987-09-30 1989-04-10 Daikin Ind Ltd Refrigeration circuit
WO2005026554A1 (en) * 2003-09-09 2005-03-24 Daikin Industries, Ltd. Screw compressor and freezer
CN100424442C (en) * 2003-09-09 2008-10-08 大金工业株式会社 Screw compressor and freezer
US7836724B2 (en) 2003-09-09 2010-11-23 Daikin Industries, Ltd. Screw compressor and freezer
JP2008541000A (en) * 2005-05-19 2008-11-20 クォンタム エナジー テクノロジーズ プロプライアトリー リミテッド Heat pump device and fluid heating method
JP2008232613A (en) * 2007-03-21 2008-10-02 Grasso Gmbh Refrigeration Technology Control method of co2 refrigeration device performing two-stage compression
US8857211B2 (en) 2007-03-30 2014-10-14 Fujitsu General Limited Injectable two-staged rotary compressor and heat pump system
US9200820B2 (en) 2009-10-20 2015-12-01 Mitsubishi Electric Corporation Heat pump apparatus with ejector cycle
JP2012097755A (en) * 2012-01-12 2012-05-24 Fujitsu General Ltd Injection-corresponding two-stage compression rotary compressor

Similar Documents

Publication Publication Date Title
KR100285665B1 (en) refrigeration unit
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
US6385981B1 (en) Capacity control of refrigeration systems
US6701730B2 (en) Refrigerating apparatus, refrigerator, air-cooled type condenser unit for refrigerating apparatus and compressor unit
US5626025A (en) Liquid pressure amplification with bypass
JPS61285352A (en) Screw type heat pump
JPH06337171A (en) Refrigerating device
JPH0443261A (en) Freezing device
JPS58145859A (en) Two-stage screw refrigerator
JPS5969661A (en) Refrigeration cycle
JPS6230693Y2 (en)
JPS5849776B2 (en) Two-stage compression refrigeration equipment
JPH025312Y2 (en)
KR0159238B1 (en) Two-step expanding apparatus using accumulator of an airconditioner
JPH0518613A (en) Device of refri gerating cycle
JPS5833068A (en) Two-stage compression refrigerating cycle
JPS6251383B2 (en)
JPH0476358A (en) Device in refrigerating cycle
JPS62142965A (en) Heat pump device
JPS59147955A (en) Heat pump type air conditioner
JPH0718608B2 (en) Refrigeration equipment
JPS59153074A (en) Refrigeration cycle device
CN116576590A (en) Distributed compression refrigeration system
JPH07146013A (en) Water cooler
JPH0251110B2 (en)