JPS61284705A - Optical multiplexer and demultiplexer - Google Patents

Optical multiplexer and demultiplexer

Info

Publication number
JPS61284705A
JPS61284705A JP12601485A JP12601485A JPS61284705A JP S61284705 A JPS61284705 A JP S61284705A JP 12601485 A JP12601485 A JP 12601485A JP 12601485 A JP12601485 A JP 12601485A JP S61284705 A JPS61284705 A JP S61284705A
Authority
JP
Japan
Prior art keywords
optical
grating
wavelength
waveguide
multiplexing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12601485A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imoto
克之 井本
Minoru Maeda
稔 前田
Koji Ishida
宏司 石田
Hiroyoshi Matsumura
宏善 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12601485A priority Critical patent/JPS61284705A/en
Publication of JPS61284705A publication Critical patent/JPS61284705A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29323Coupling to or out of the diffractive element through the lateral surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Abstract

PURPOSE:To easily realize a small-sized optical multiplexer and demultiplexer for wavelength multiplexing of >=3 wavelengths at a low demultiplexing loss and low cost by forming a chirped grating having the grooves of continuously changing spaces in a three-dimensional optical waveguide and juxtaposing plural optical elements along the chirped grating. CONSTITUTION:The light signal of the three wavelengths lambda1-lambda3 (lambda1>lambda2<lambda3) propagating as shown by an arrow 1 in a single mode optical fiber is made incident on the optical waveguide 5. The optical waveguides 5, 5a, 5b are formed on a substrate 6 and the light signal of the wavelengths lambda1-lambda3 propagating in the waveguide 5 is made incident on the chirped grating. Since the period LAMBDAof the grating 7 is different, the light signal of the wavelengths lambda1-lambda3 is strongly reflected in respectively different positions and is multiplexed as shown by arrows 2-4. The groove period LAMBDA of the chirped grating can be realized by the interference of a convergent cylindrical wave 23 and a plane wave 24.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、光を合波または分波する光学デバイス、特に
光フアイバ通信の光波長多重伝送に用いられる光合波装
置、光分波装置、あるいは光合分波装置に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to an optical device that multiplexes or demultiplexes light, particularly an optical multiplexer, an optical demultiplexer, or an optical demultiplexer used for optical wavelength multiplexing transmission in optical fiber communication. Related to optical multiplexing and demultiplexing equipment.

〔発明の背景〕[Background of the invention]

光フアイバ通信における光波長多重伝送技術は経済化を
はかる上で重要である。上記光波長多重伝送において、
光合分波器は必須のデバイスである。
Optical wavelength division multiplexing transmission technology in optical fiber communications is important for economicalization. In the above optical wavelength division multiplexing transmission,
Optical multiplexer/demultiplexer is an essential device.

従来、簡易、小形化を目的として、斜め格子付三次元導
波路形光分波器が古屋氏、他によって信学会技術報告0
QE79−17.P121〜P127に報告されている
(第1図)。これは斜め格子材の2つの光導波路21.
22を並置させ、一方の光導波路21に複数の波長の異
なる光信号λ1.λ2を伝搬させ、上記斜め格子部で回
折されたある波長の光信号λ2をもう一方の光導波路2
2の斜め格子部で反射させて光導波路を伝搬させること
により分波を行なう構成である。しかし、この構成では
、3波長以上の波長多重を行なおうとすると。
Conventionally, for the purpose of simplicity and miniaturization, a three-dimensional waveguide type optical demultiplexer with diagonal grating was developed by Mr. Furuya and others in IEICE technical report 0.
QE79-17. It is reported in P121 to P127 (Fig. 1). This consists of two optical waveguides 21. made of diagonal grating material.
22 are arranged in parallel, and one optical waveguide 21 receives a plurality of optical signals λ1. λ2 is propagated, and the optical signal λ2 of a certain wavelength, which is diffracted by the diagonal grating section, is transferred to the other optical waveguide 2.
This configuration performs demultiplexing by reflecting the light at the second diagonal grating portion and propagating the light through the optical waveguide. However, with this configuration, if you try to perform wavelength multiplexing of three or more wavelengths.

斜め格子部付きの光導波路をそれに応じて増やさなけれ
ばならず、構造が大型化し、光導波路挿入損失が増える
。また格子の溝濁期の異なる斜め格子部を何回も形成し
なければならないため、作成プロセスが複雑となりコス
ト高となる。さらに。
The number of optical waveguides with diagonal grating portions must be increased accordingly, resulting in an enlarged structure and an increase in optical waveguide insertion loss. In addition, since diagonal lattice sections with different groove periods of the lattice must be formed many times, the production process becomes complicated and costs increase. moreover.

回折された光信号が拡がりをもつために、もう一方の光
導波路内に効率良く閉じ込めて伝搬させることもむずか
しく、分波損失が大きくなることと、3波以上の場合、
各々の分波された波長の受光電力に差が生じる、といっ
た問題点があると考えられる。
Because the diffracted optical signal has a spread, it is difficult to efficiently confine and propagate it within the other optical waveguide, and the demultiplexing loss increases, and in the case of three or more waves,
It is thought that there is a problem in that there is a difference in the received power of each demultiplexed wavelength.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記問題点を解決させることにある。 An object of the present invention is to solve the above problems.

すなわち、3波長以上の波長多重用光合分波装置を簡易
、かつ小形に、より低分波損失に、さらにより低コスト
に実現させる構成法を提供することにある。
That is, the object of the present invention is to provide a construction method that realizes an optical multiplexing/demultiplexing device for wavelength multiplexing of three or more wavelengths in a simple and compact manner, with lower demultiplexing loss, and at a lower cost.

〔発明の概要〕[Summary of the invention]

本発明の光合分波装置は、三次元光導波路中に、周期す
なわち溝の間隔が連続的に変化したグレーティング(チ
ヤープトグレーテイング)を形成させ、この周期の異な
っているチャブトグレーティングでそれぞれ異なる波長
の光信号を反射させることにより分波を行なう。そして
それら分波された光信号を上記光導波路に並置した受光
素子で受光するか、レンズを介して受光する、あるいは
波長選択性を有する光導波路(たとえば、光導波路のカ
ットオフ特性を利用した光導波路、狭帯域特性を有する
グレーティング導波路)を介して受光するようにしたも
のである。またその反対に受光素子の全部、あるいは一
部を半導体発光素子に替えることにより、光合波、ある
いは光合分波装置を構成をさせるものである。なお二次
元導波路(スラグ導波路)にチヤープトグレーテイング
を形成させ、光を分波させる構成のものが文献[プロシ
ーディンゲス・オブ・ザ・ソサエティー・オブ・フォト
・オプティカル・インストリュー・メンテ−ジョン・エ
ンジニアズ(Proc、Soc、Phot。
The optical multiplexing/demultiplexing device of the present invention forms a grating (chapt grating) in which the period, that is, the interval between grooves, continuously changes in a three-dimensional optical waveguide, and the chabut gratings with different periods have different characteristics. Demultiplexing is performed by reflecting optical signals of different wavelengths. The demultiplexed optical signals are then received by a light receiving element arranged in parallel with the optical waveguide, or through a lens, or by an optical waveguide with wavelength selectivity (for example, an optical waveguide using the cutoff characteristic of the optical waveguide). The light is received through a grating waveguide with narrowband characteristics. On the other hand, by replacing all or part of the light receiving element with a semiconductor light emitting element, an optical multiplexing or optical multiplexing/demultiplexing device can be constructed. A configuration in which a chirp grating is formed in a two-dimensional waveguide (slug waveguide) to split light is described in the literature [Proceedings of the Society of Photo-Optical Instrument Maintenance]. -John Engineers (Proc, Soc, Phot.

−0ptical In5tru、Engrs、) +
第176巻、第133頁(1979) ]にあるが、二
次元導波路の場合には光の集光用に入、出力に必ずレン
ズを用いなければならず、光結合損失をともなうことと
、受光素子も埋め込み構成としなければならないため、
製造方法がむずかしく、また最適結合調整が不可能なた
め結合効率も低い。
-0ptical In5tru, Engrs, ) +
Vol. 176, p. 133 (1979)], in the case of a two-dimensional waveguide, a lens must be used for input and output for condensing light, which causes optical coupling loss. Since the light-receiving element must also be embedded,
The manufacturing method is difficult, and the coupling efficiency is low because it is impossible to adjust the coupling optimally.

なお1本発明の三次元光導波路は、リッジ形以外に、埋
込み形、拡散形、装荷形、盛土形などの種種の三次元光
導波路を用いることができる。
Note that the three-dimensional optical waveguide of the present invention may be of various types other than the ridge type, such as a buried type, a diffused type, a loaded type, and an embankment type.

〔発明の実施例〕[Embodiments of the invention]

第2図に本発明の光分波の原理図を示す、同図(a)は
リッジ型光薄波路にチヤープトグレーテイング7を形成
した上面図を、(b)は右側面図を示したものである。
Fig. 2 shows a diagram of the principle of optical demultiplexing according to the present invention. Fig. 2 (a) shows a top view of a ridge-type optical thin wave path with a chirp grating 7 formed thereon, and Fig. 2 (b) shows a right side view. It is something.

端面20には単一モード光ファイバ(図示せず。)が接
続される。単一モード光ファイバ内を矢印1のごとく伝
搬してきた3つの波長λ1.λ2.λ3(λ、〉λ2〉
λ3)の光信号は光導波路5に入射する。光導波路5.
5a、5bは基板6(たとえば、GsA Q AstL
iNbOi +ガラスなどの材質)上に形成されている
。光導波路5を伝搬した波長λ1.λ2.λ、の光信号
はチヤープトグレーテイング7に入射する。チヤープト
グレーテイング7の周期Aは異なついてるので、波長λ
1゜λ2.λ、の光信号はそれぞれ異なる位置で強く反
射されて、矢印2,3.4のごとく分波される。
A single mode optical fiber (not shown) is connected to the end face 20. Three wavelengths λ1 . λ2. λ3(λ,〉λ2〉
The optical signal of λ3) enters the optical waveguide 5. Optical waveguide5.
5a and 5b are substrates 6 (for example, GsA Q AstL
iNbOi+material such as glass). The wavelength λ1 that propagated through the optical waveguide 5. λ2. The optical signal of λ is incident on the chirp grating 7. Since the period A of the chirp grating 7 is different, the wavelength λ
1°λ2. The optical signals of λ are strongly reflected at different positions and are separated as shown by arrows 2 and 3.4.

ここで、チヤープトグレーテイングの溝周期Aは、第3
図に示すように、集束円筒波23と平面波24の干渉に
よって次式のごとく実現させることはよく知られている
Here, the groove period A of the chirp grating is the third
As shown in the figure, it is well known that interference between a focused cylindrical wave 23 and a plane wave 24 is achieved as shown in the following equation.

ここに、λ、:レーザ光の真空中での波長n :空間媒
質の屈折率 第4図は第2図のそれぞれ分波された位置に受光素子8
,9.10を設けたものである。8,9゜10は、光導
波路が三次元構造であるので、受光電力が最大になるよ
うに光軸位置合せを行ないながら設置できる。
Here, λ: Wavelength of the laser beam in vacuum n: Refractive index of the spatial medium In Figure 4, the light receiving element 8 is placed at each demultiplexed position in Figure 2.
, 9.10. Since the optical waveguides 8 and 9° 10 have a three-dimensional structure, they can be installed while aligning the optical axis so that the received light power is maximized.

第5図は受光素子8,9.10と光導波路の間にレンズ
を設け、分波光のビーム径をしぼって受光素子に入射さ
せることにより、光結合効率を高めるようにするためと
、高速応答用の受光素子(受光面積が小さい、)を用い
、高速信号伝送用に適用可能にするようにしたものであ
る。
In Figure 5, lenses are installed between the light receiving elements 8, 9, and 10 and the optical waveguide to reduce the beam diameter of the demultiplexed light and make it incident on the light receiving element, thereby increasing the optical coupling efficiency and high-speed response. This device uses a light-receiving element (with a small light-receiving area) for use in high-speed signal transmission.

第6図は受光素子8,9.10の前に波長選択用の光導
波路14,15.16を設けた実施例である。14,1
5.16はそれぞれの波長λ、。
FIG. 6 shows an embodiment in which optical waveguides 14, 15.16 for wavelength selection are provided in front of the light receiving elements 8, 9.10. 14,1
5.16 is the respective wavelength λ,.

λ2.λ3の光信号がグレーティングから効率よく受光
素子に導波されるようにそれぞれの波長において最適構
造に選ぶ、たとえば光導波路16には、波長λ1.λ2
に対してはカットオフ条件を満すように光導波長路の幅
、厚み、あるいは屈折率が定められている。したがって
、光導波路16には波長λ1.λ2の光信号は伝搬せず
、漏話による品質劣化を抑制できる。また光導波路15
は波長λ1の光信号をカットオフするように定められて
いる。
λ2. For example, the optical waveguide 16 has a structure that is optimal for each wavelength so that the optical signal of wavelength λ3 is efficiently guided from the grating to the light receiving element. λ2
The width, thickness, or refractive index of the optical waveguide is determined so as to satisfy the cutoff conditions. Therefore, the optical waveguide 16 has wavelengths λ1. The optical signal of λ2 does not propagate, and quality deterioration due to crosstalk can be suppressed. In addition, the optical waveguide 15
is determined to cut off the optical signal of wavelength λ1.

光導波路14,15,16は受光素子例に行くにしたが
ってテーパ状に光導波路形状が変化するテーパ導波路で
もよい。
The optical waveguides 14, 15, and 16 may be tapered waveguides in which the shape of the optical waveguide changes in a tapered manner as the light receiving element approaches.

第7図は光導波路14.15にグレーティング17.1
8を設けた実施例である。17は波長λ1の光信号のみ
を通過させ、それ以外の波長の光信号は回折させて光導
波路から放射させる機能を有する。18は波長λ2の光
信号のみを通過させる機能を有する。チャネル間干渉に
よる漏話抑制用に有効な手段である。
Figure 7 shows the grating 17.1 on the optical waveguide 14.15.
This is an example in which 8 is provided. 17 has a function of passing only an optical signal of wavelength λ1, and diffracting optical signals of other wavelengths and emitting them from the optical waveguide. 18 has a function of passing only an optical signal of wavelength λ2. This is an effective means for suppressing crosstalk caused by inter-channel interference.

以上の説明は光分波についてであったが、受光素子8,
9.10を半導体発光素子に代えれば光合波装置になり
、また、一部分のみを半導体発光素子に代えれば光合分
波装置になる。光合分波装置の場合、たとえば第6,7
図において、8を半導体発光素子(波長λ1)とし、9
,10を受光素子(波長λ2.λ3)として、λ1〉λ
2〉λ1とすれば、波長λ□の光信号の近端および遠端
反射による受光素子9,10への、漏洩を抑制すること
ができる。これは前述したように、光導波路15.16
が波長λ1に対してはカットオフになり、伝搬できない
ためである。波長多重数は上記実施例の3波に限定され
ず、4波以上、さらには2波も実現することができる。
The above explanation was about optical demultiplexing, but the light receiving element 8,
If 9.10 is replaced with a semiconductor light emitting device, it becomes an optical multiplexing device, and if only a part is replaced with a semiconductor light emitting device, it becomes an optical multiplexing/demultiplexing device. In the case of an optical multiplexer/demultiplexer, for example, the sixth and seventh
In the figure, 8 is a semiconductor light emitting device (wavelength λ1), and 9 is a semiconductor light emitting device (wavelength λ1).
, 10 as light receiving elements (wavelength λ2, λ3), λ1>λ
If 2>λ1, it is possible to suppress leakage of the optical signal of wavelength λ□ to the light receiving elements 9 and 10 due to near-end and far-end reflections. As mentioned above, this is the optical waveguide 15.16
This is because the wavelength λ1 becomes cutoff and cannot be propagated. The number of wavelengths multiplexed is not limited to three waves as in the above embodiment, but four or more waves, or even two waves can be realized.

また光導波路5に波長特性をもたせるために、テーパ状
導波路とし、それにチャブトグレーティングを形成すれ
ば、より狭帯域フィルタ特性を有する光分波、光合波。
Furthermore, in order to give the optical waveguide 5 wavelength characteristics, if it is made into a tapered waveguide and a Chabutt grating is formed thereon, optical demultiplexing and optical multiplexing can be achieved with narrower band filter characteristics.

あるいは光合分波装置になる。Or it becomes an optical multiplexing/demultiplexing device.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、2波長以上の波長多重用の光分波、光
合波、あるいは光合分波装置を簡易、小形に、より低分
波損失に、さらにより低コストに実現させることができ
る。
According to the present invention, an optical demultiplexer, an optical multiplexer, or an optical multiplexer/demultiplexer for wavelength multiplexing of two or more wavelengths can be realized simply and compactly, with lower demultiplexing loss, and at a lower cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の斜め格子付三次元導波路形光分波器の概
略図、第2.4,5,6.7図は本発明の光分波装置、
または光合波装置、あるいは光合分波装置の実施例、第
3図は従来のチャーブトゲレーティング作成方法の概念
図である。 1.2,3.4・・・光の伝搬方向を示す矢印、5゜5
a、5b・・・光導波路、6・・・基板、7・・・チヤ
ープトグレーテイング、8,9.10・・・受光素子あ
るいは半導体発光素子、11,12,13・・・レンズ
、14.15,16・・・光導波路、17.18・・・
グレーティング、20・・・基板の端面。
Fig. 1 is a schematic diagram of a conventional three-dimensional waveguide type optical demultiplexer with a diagonal grating, and Figs. 2.4, 5, and 6.7 are the optical demultiplexer of the present invention.
Embodiments of the optical multiplexing device or the optical multiplexing/demultiplexing device, FIG. 3 is a conceptual diagram of a conventional method for producing cherbutogellating. 1.2, 3.4...Arrow indicating the direction of propagation of light, 5°5
a, 5b... Optical waveguide, 6... Substrate, 7... Chapped grating, 8, 9.10... Light receiving element or semiconductor light emitting element, 11, 12, 13... Lens, 14 .15,16... optical waveguide, 17.18...
Grating, 20... end face of the substrate.

Claims (1)

【特許請求の範囲】 1、三次元光導波路中にその伝搬方向に周期すなわち溝
の間隔が連続的に変化したチヤープトグレーテイングを
形成させ、複数の半導体発光素子、あるいは受光素子を
該チヤープトグレーテイングに沿つて並置したことを特
徴とする光合分波装置。 2、第1項の光合分波装置において、チヤープトグレー
テイングの溝の間隔を広い方から狭くなるように、ある
いはその逆になるように形成したことを特徴とする光合
分波装置。 3、第1、2項において、光導波路を伝搬する合波用の
光信号の波長が分波用の光信号の波長よりも長いことを
特徴とする光合分波装置。 4、第1〜3項において、チヤープトグレーテイングと
半導体発光素子、あるいは受光素子との間にレンズを設
けたことを特徴とする光合分波装置。 5、第1〜3項において、チヤープトグレーテイングと
半導体発光素子、あるいは受光素子との間に波長選択性
の光導波路を設けたことを特徴とする光合分波装置。 6、第5項において、波長選択性の光導波路に所望の波
長の光信号のみを通過させるグレーテイングを設けたこ
とを特徴とする光合分波装置。
[Claims] 1. A chirp grating in which the period, that is, the interval between grooves, continuously changes in the propagation direction is formed in a three-dimensional optical waveguide, and a plurality of semiconductor light emitting devices or light receiving devices are connected to the chirp grating. An optical multiplexing/demultiplexing device characterized by being arranged side by side along a grating. 2. An optical multiplexing/demultiplexing device according to item 1, characterized in that the intervals between the grooves of the chirp grating are formed so that they become narrower from wider or vice versa. 3. An optical multiplexing/demultiplexing device according to items 1 and 2, characterized in that the wavelength of the multiplexing optical signal propagating through the optical waveguide is longer than the wavelength of the demultiplexing optical signal. 4. An optical multiplexing/demultiplexing device according to items 1 to 3, characterized in that a lens is provided between the chirp grating and the semiconductor light emitting element or the light receiving element. 5. An optical multiplexing/demultiplexing device according to items 1 to 3, characterized in that a wavelength-selective optical waveguide is provided between the chirp grating and the semiconductor light emitting element or the light receiving element. 6. The optical multiplexing/demultiplexing device according to item 5, characterized in that the wavelength-selective optical waveguide is provided with a grating that allows only optical signals of a desired wavelength to pass through.
JP12601485A 1985-06-12 1985-06-12 Optical multiplexer and demultiplexer Pending JPS61284705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12601485A JPS61284705A (en) 1985-06-12 1985-06-12 Optical multiplexer and demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12601485A JPS61284705A (en) 1985-06-12 1985-06-12 Optical multiplexer and demultiplexer

Publications (1)

Publication Number Publication Date
JPS61284705A true JPS61284705A (en) 1986-12-15

Family

ID=14924588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12601485A Pending JPS61284705A (en) 1985-06-12 1985-06-12 Optical multiplexer and demultiplexer

Country Status (1)

Country Link
JP (1) JPS61284705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438759A2 (en) * 1989-12-26 1991-07-31 United Technologies Corporation Optical waveguide embedded light redirecting Bragg grating arrangement
EP0883827A1 (en) * 1996-02-14 1998-12-16 Corning Incorporated Low reflectivity fiber bragg grating with rectangular reflection function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129303A (en) * 1979-03-28 1980-10-07 Hitachi Ltd Thin film photo branching and photodetector
JPS616605A (en) * 1984-06-20 1986-01-13 Matsushita Electric Ind Co Ltd Light guide demultiplexer
JPS6167803A (en) * 1984-09-12 1986-04-08 Hitachi Ltd Optical multiplexer/demultiplexer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129303A (en) * 1979-03-28 1980-10-07 Hitachi Ltd Thin film photo branching and photodetector
JPS616605A (en) * 1984-06-20 1986-01-13 Matsushita Electric Ind Co Ltd Light guide demultiplexer
JPS6167803A (en) * 1984-09-12 1986-04-08 Hitachi Ltd Optical multiplexer/demultiplexer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438759A2 (en) * 1989-12-26 1991-07-31 United Technologies Corporation Optical waveguide embedded light redirecting Bragg grating arrangement
EP0883827A1 (en) * 1996-02-14 1998-12-16 Corning Incorporated Low reflectivity fiber bragg grating with rectangular reflection function
EP0883827A4 (en) * 1996-02-14 1999-04-28 Corning Inc Low reflectivity fiber bragg grating with rectangular reflection function

Similar Documents

Publication Publication Date Title
JP6089077B1 (en) Waveguide type optical diffraction grating and optical wavelength filter
US20030011833A1 (en) Planar holographic multiplexer/demultiplexer
US5745616A (en) Waveguide grating router and method of making same having relatively small dimensions
JP2858656B2 (en) Optical wavelength multiplexer / demultiplexer
JP2531634B2 (en) Optical multiplexer / demultiplexer
JPH116928A (en) Arrayed waveguide grating type wavelength multiplexer /demultiplexer
CA2175886C (en) Optical wavelength division multiplexer device
US20020176660A1 (en) Optical wavelength multiplexer/demultiplexer and use method thereof
JP2001221923A (en) Optical waveguide circuit
JP2001174653A (en) Array waveguide grating
JPS61284706A (en) Optical device
JPS61284707A (en) Optical multiplexer and demultiplexer
JPS5868713A (en) Optical demultiplexing circuit
JPS61284705A (en) Optical multiplexer and demultiplexer
JPH03171115A (en) Optical multiplexer/demultiplexer
JPH11160555A (en) Optical wavelength multiplexer/demultiplexer
JPS61223711A (en) Demultiplexer for optical communication
CA2379155A1 (en) Method and devices for multiplexing and de-multiplexing multiple wavelengths
JPS61249004A (en) Optical multiplexer and demultiplexer
JP2683161B2 (en) Optical multiplexer / demultiplexer
JP2600507B2 (en) Optical multiplexer / demultiplexer
JP2019124712A (en) Grating coupler and optical transmitter
JP2000235123A (en) Optical wavelength multiplexer/demultiplexer
JP2004145166A (en) Array type waveguide grid
JP2634979B2 (en) Optical multiplexer / demultiplexer