JPS61283325A - Apparatus for removing co2 - Google Patents

Apparatus for removing co2

Info

Publication number
JPS61283325A
JPS61283325A JP60121928A JP12192885A JPS61283325A JP S61283325 A JPS61283325 A JP S61283325A JP 60121928 A JP60121928 A JP 60121928A JP 12192885 A JP12192885 A JP 12192885A JP S61283325 A JPS61283325 A JP S61283325A
Authority
JP
Japan
Prior art keywords
heat exchanger
adsorbent
air
carbon dioxide
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60121928A
Other languages
Japanese (ja)
Inventor
Junji Hirotsuji
淳二 廣辻
Satoru Takeyama
竹山 哲
Kenjiyu Ozawa
建樹 小沢
Tamotsu Nomaguchi
野間口 有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60121928A priority Critical patent/JPS61283325A/en
Publication of JPS61283325A publication Critical patent/JPS61283325A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To contrive to conserve energy, by introducing air into an adsorbing tower packed with a CO2-adsorbent while cooling the same by a heat exchanger and a cooling means and heating the heat exchanger and the adsorbent by a heating means and alternately performing these operations by two units. CONSTITUTION:Now, it is assumed that one CO2 removing unit is set to an adsorbing process and the outer unit to a regeneration process. A current is supplied only to a freezer 6a to cool an adsorbent 5a while air is introduced into a heat exchanger 2a by a blower 1 to remove moisture therein and subsequently introduced into an adsorbing tower 4a where CO2 in air is adsorbed and the cooled air is passed through the heat exchanger 2a subsequently passed through a heat exchanger 2b to remove moisture in air before exhausted to the outside (e). A current is supplied to electric heaters 7b, 3b not only to melt ice in the heat exchangers but also to desorb CO2 while CO2 is exhausted from a line (c). These operations are alternately performed by two units to continuously perform adsorption and regeneration.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、空気中に含まれる炭酸ガスの除去装置に関
するもので、特に宇宙基地、宇宙船、潜水艦、深海潜水
艇などの密閉容器内に於いて人間の諸活動に伴って発生
する炭酸ガスを除去し、その蓄積を防いで、これら密閉
容器内の人間等生物の生命維持を図るとともに人間の諸
活動を容易にするための炭酸ガスの除去装置に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a device for removing carbon dioxide contained in the air, and particularly to a device for removing carbon dioxide gas contained in the air, particularly in a closed container such as a space base, a spacecraft, a submarine, or a deep-sea submersible. The purpose of this system is to remove carbon dioxide gas generated as a result of human activities, prevent its accumulation, and maintain the life of living things such as humans in these sealed containers, as well as to facilitate human activities. This invention relates to a removal device.

〔従来の技術〕[Conventional technology]

第4図は先行する炭酸ガス除去装置を示す構成図である
。図において、(1a、)#(lb)はそれぞれ空気及
び再生用ガスの送給手段であり、この例では軸流式送風
機が使われている。(2a)、(2b)は送風機(1a
)から送られる空気を冷却する熱交換器<aa>*(8
b)はそれぞれ熱交換器(2a)、(2b)に取付けら
れた加熱手段であってこの例では電熱器が使われている
。(4a)、(4b)はそれぞれ上記熱交換器(2a)
FIG. 4 is a block diagram showing the preceding carbon dioxide removal device. In the figure, (1a,) #(lb) are means for feeding air and regeneration gas, respectively, and in this example, an axial flow blower is used. (2a) and (2b) are blowers (1a)
) A heat exchanger <aa>*(8
b) is a heating means attached to the heat exchangers (2a) and (2b), respectively, and in this example, an electric heater is used. (4a) and (4b) are the heat exchangers (2a), respectively.
.

(2b)より流出する空気から炭酸ガスを除去する吸着
塔(5a)、(5b)はそれぞれ吸着塔(4a)、(4
b)内に吸着剤を充填した吸着剤充填層e (6aL(
6b)はそれぞれ吸着塔(4a) 、 (4b)に取付
けられた冷却手段であり、この例では冷凍機が用いられ
ている。ま?: (Ta)、(7b)はそれぞれ上記吸
着塔(4a)、(4b)に取り付けられた加熱手段であ
り、この例では電熱器が用いられている。(11a)、
(llb)、(x2a)、(x2b)はバルブ、(21
a)(25a) p (21b)A(25b) p C
”$ t @は気体を通す導管である。図面に向かって
左側を炭酸ガス除去ユニットA1右側を炭酸ガス除去ユ
ニットBと呼ぶことにする。
Adsorption towers (5a) and (5b) which remove carbon dioxide gas from the air flowing out from (2b) are adsorption towers (4a) and (4b), respectively.
b) Adsorbent packed bed e (6aL(
6b) is a cooling means attached to the adsorption towers (4a) and (4b), respectively, and in this example, a refrigerator is used. Ma? : (Ta) and (7b) are heating means attached to the adsorption towers (4a) and (4b), respectively, and in this example, an electric heater is used. (11a),
(llb), (x2a), (x2b) are valves, (21
a) (25a) p (21b) A (25b) p C
``$ t @ is a conduit through which gas passes.The left side in the drawing will be referred to as the carbon dioxide removal unit A1, and the right side will be referred to as the carbon dioxide removal unit B.

次に、動作について説明する。Next, the operation will be explained.

この炭酸ガス除去装置は、炭酸ガスの吸着過程(より詳
しくは、炭酸ガスと水分の除去過程)゛と、吸着剤(5
a)、(5b)および熱交換器(2a)p(zb)の再
生過程(より詳しくは 吸着剤(5a)、(5b)から
炭酸ガスを脱着させると(もに熱交換器(2a)、(2
b)内に氷結した水分を融解させて、炭酸ガスと水分を
回収するか、あるいは密閉空間の外へ排出する過程)を
交互に繰り返し、一方の炭酸ガス除去ユニットが吸着過
程にある時、他方の炭酸ガス除去ユニットが再生過程に
あるように構成されており、第4図では左側の炭酸ガス
除去ユニットAが吸着過程、右側の炭酸ガス除去ユニッ
トBが再生過程に入ったところを示している。バルブ(
lxa)は導管(24a)と導管(25a)が、バルブ
(od)は導管(24b)と導管(22)が、バルブ(
12a)は導管(21a)と導管(27)が、バルブ(
12b)は導管(21b)と導管(26)がそれぞれつ
ながっている状態にある。また、送風機(1a)は稼動
状態にある。炭酸ガスを吸着する過程にある炭酸ガス除
去ユニットAでは、電熱器(7a)*(sa)は通電せ
ず、冷凍機(6a)のみに通電している。逆に再生過程
にある炭酸ガス除去ユニットBでは冷凍機(6b)には
通電せず、電熱器(7b) 1(8b)に通電している
。まず、吸着過程にある左側のユニットAの動作につい
で説明する。密閉空間(図示せず)内の空気は、aより
送風機(1a)によって吸引され、導管(27)、バル
ブ(12a)導管(21a)熱交換器(2a)、第1の
導IF(28a)を経て吸着塔(4a)に導入され、こ
こで冷却された吸着剤充填層(5a)の吸着剤と接触す
る。このとき、空気中に含まれる炭酸ガスと水分が吸着
剤によって吸着除去されるとともに、吸着剤の冷熱が空
気によって奪われる。
This carbon dioxide removal device consists of a carbon dioxide adsorption process (more specifically, a carbon dioxide and water removal process) and an adsorbent (5
a), (5b) and the regeneration process of heat exchanger (2a) p(zb) (more specifically, when carbon dioxide gas is desorbed from adsorbent (5a), (5b) (both heat exchanger (2a), (2
b) The process of melting the water frozen inside and recovering carbon dioxide and water or discharging it outside the closed space) is repeated alternately, so that when one carbon dioxide removal unit is in the adsorption process, the other The carbon dioxide removal unit A on the left is in the regeneration process, and Figure 4 shows the carbon dioxide removal unit A on the left in the adsorption process and the carbon dioxide removal unit B on the right in the regeneration process. . valve(
lxa), the conduit (24a) and the conduit (25a), the valve (od), the conduit (24b) and the conduit (22), the valve (
12a), the conduit (21a) and the conduit (27) are connected to the valve (
12b) is in a state where the conduit (21b) and the conduit (26) are connected to each other. Further, the blower (1a) is in operation. In the carbon dioxide removal unit A, which is in the process of adsorbing carbon dioxide gas, the electric heater (7a)*(sa) is not energized, and only the refrigerator (6a) is energized. Conversely, in the carbon dioxide removal unit B in the regeneration process, the refrigerator (6b) is not energized, but the electric heater (7b) 1 (8b) is energized. First, the operation of the left unit A, which is in the suction process, will be explained. Air in the closed space (not shown) is sucked in by the blower (1a) from a, and is passed through the conduit (27), the valve (12a), the conduit (21a), the heat exchanger (2a), and the first conduit IF (28a). The adsorbent is introduced into the adsorption tower (4a), where it comes into contact with the cooled adsorbent in the adsorbent packed bed (5a). At this time, carbon dioxide and moisture contained in the air are adsorbed and removed by the adsorbent, and the cold energy of the adsorbent is taken away by the air.

そして、吸着剤の冷熱を奪った空気は第2の導管(24
a) 、バルブ(ha)を経て再び熱交換器(2a)に
導入され、ここで上記冷熱を吸着塔(4a)へ導入され
るべき、空気に与えたのち、導管(25a)を経てbよ
り密閉空間へ戻される。
Then, the air that has taken away the cold energy from the adsorbent is transferred to the second conduit (24
a) The air is introduced again into the heat exchanger (2a) via the valve (ha), where the cold heat is imparted to the air to be introduced into the adsorption tower (4a), and then from b via the conduit (25a). Returned to closed space.

こうして、次第に熱交換器(2a)の温度が下るので、
密閉空間から吸引された空気は熱交換器(2a)内で前
置って冷却され、空気中の水分を実質的に全て除去され
たのち、吸着塔(4a)へ導入され、吸着剤(5a)に
よって空気中の炭酸ガスを除去されるようになる。再生
過程から、吸着過程へ運転モードを切換えた直後は上記
の如く処理一温度が最適温度にすぐには達せず、若干処
理効率は低いが、時間の経過と共に定常状態に達し、炭
酸ガスの効率的な除去が行なわれる。吸着過程では、時
間の経過とともに吸着剤(5a)に吸着された炭酸ガス
の量が増え、吸着剤の炭酸ガス吸着余力が減り、遂には
炭酸ガスの破過(即ち、空気中に含まれる炭酸ガスの大
部分が、そのまま吸着剤充填層(5a)を通過する現象
)が起こり出しt;時点で吸着過程を終了し、再生過程
へ切り換える。つぎに、再生過程にある右側のユニット
Bの動作について説明する。
In this way, the temperature of the heat exchanger (2a) gradually decreases, so
The air sucked from the closed space is pre-cooled in the heat exchanger (2a) to remove substantially all the moisture in the air, and then introduced into the adsorption tower (4a) where it is filled with adsorbent (5a). ) removes carbon dioxide from the air. Immediately after switching the operation mode from the regeneration process to the adsorption process, the processing temperature does not reach the optimum temperature immediately as described above, and the processing efficiency is slightly low, but as time passes, it reaches a steady state and the carbon dioxide efficiency increases. removal is performed. In the adsorption process, the amount of carbon dioxide adsorbed by the adsorbent (5a) increases with the passage of time, the adsorbent's carbon dioxide adsorption capacity decreases, and eventually the carbon dioxide breaks through (i.e., the amount of carbon dioxide contained in the air increases). A phenomenon in which most of the gas passes through the adsorbent packed bed (5a) as it is begins to occur, at which point the adsorption process is terminated and the process is switched to the regeneration process. Next, the operation of the right unit B in the reproduction process will be explained.

再生用のガス(例えば窒素ガス)は、Cより送風機(1
b)によって吸引され、導管(22)、バルブ(ub)
%第2の導管(24b) 、吸着塔(4b) e第1の
導管(28b)。
Gas for regeneration (e.g. nitrogen gas) is supplied from C to a blower (1
b) suctioned by the conduit (22), valve (ub)
% second conduit (24b), adsorption tower (4b) e first conduit (28b).

熱交換器(2b) *導管(2xb) 、バルブ(x2
b) 、導管(26)を経て、吸着剤(5b)より炭酸
ガスを奪い、熱交換器(2b)より水分を奪ってdよ′
り回収される。
Heat exchanger (2b) * Conduit (2xb), valve (x2
b) Passes through the conduit (26), removes carbon dioxide from the adsorbent (5b), removes moisture from the heat exchanger (2b), and returns to d'.
will be collected.

なお、この時の再生用ガスの流量は、吸着過程における
空気の流量の数分の一程度が望ましい。
Note that the flow rate of the regeneration gas at this time is preferably about a fraction of the flow rate of air during the adsorption process.

電熱器(ab)、(7b)は通電中、また冷凍機(6b
)は停止しているので、熱交換器(2b) を吸着塔(
4b)の温度は上昇し、それぞれ氷結した水分の融解、
吸着されている炭酸ガスの脱着が起る。
The electric heaters (ab) and (7b) are energized, and the refrigerator (6b)
) is stopped, so the heat exchanger (2b) is transferred to the adsorption tower (
4b) The temperature increases, melting the frozen water, respectively.
Desorption of adsorbed carbon dioxide occurs.

炭酸ガス除去装置へ導入された窒素は導管(22Lバル
ブ(ob) 、導管(24b)を経て吸着塔(4b)内
へ流入し、ここで吸着剤充填層(5b)の吸着剤と接触
し吸着剤から炭酸ガスを脱着させてこれを取り込んだあ
と、導管(28b)を経て熱交換器(2b)内へ流入し
、ここで氷の融解によって生じた水を蒸発させて水分と
して取り込み、導管(2tb)バルブ(12b)および
導管(26)を経てdより密閉空間外へ排出される。
Nitrogen introduced into the carbon dioxide removal device flows into the adsorption tower (4b) through the conduit (22L valve (ob) and conduit (24b), where it comes into contact with the adsorbent in the adsorbent packed bed (5b) and is adsorbed. After desorbing carbon dioxide gas from the agent and capturing it, it flows into the heat exchanger (2b) through the conduit (28b), where water produced by melting of the ice is evaporated and captured as water, and the water is absorbed into the conduit (28b). 2tb) is discharged from d to the outside of the closed space via the valve (12b) and the conduit (26).

このようにして吸着剤および熱交換器(2b)を再生し
たあと、再び吸着過程へ切換える。なお、吸着過程と再
生過程への切換はバルブ(lla)、(llb)。
After regenerating the adsorbent and heat exchanger (2b) in this way, the process is switched to the adsorption process again. In addition, switching between the adsorption process and the regeneration process is performed by valves (lla) and (llb).

(x2a)、(x2b)の切換え、および電熱器C8a
>ec8b) #(7a)#(7b)を冷凍機(6a)
、(6b)の稼動、停止によって行なわれる。
(x2a), (x2b) switching, and electric heater C8a
>ec8b) #(7a) #(7b) into refrigerator (6a)
, (6b) are activated and stopped.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の炭酸ガス除去装置は以上のように構成されている
ので、■再生ガスならびにこの供給手段が必要であるた
め処理コストが高く不経済、■再生ガスによって炭酸ガ
スと水分が一括して回収されるため、■回収ガス中から
、炭酸ガスを原料として例えばボッシュ反応により酸素
を生産しようとする場合、(イ)水分のみを回収しよう
とする場合、炭酸ガスと水を分離する装置が必要、■炭
酸ガスと水分が同時除去されるため、密閉空間内の湿度
コントロールが不安定になるといった問題点があった。
Conventional carbon dioxide removal equipment is configured as described above, so: ■ Regeneration gas and its supply means are required, making the processing cost high and uneconomical; ■ Carbon dioxide and water are recovered all at once using the regeneration gas. (1) When attempting to produce oxygen from recovered gas by using carbon dioxide as a raw material, for example, by the Bosch reaction, (a) When attempting to recover only water, a device to separate carbon dioxide and water is required; Since carbon dioxide gas and moisture are removed at the same time, there is a problem in that humidity control in a closed space becomes unstable.

この発明は上記のような問題点を解消するためになされ
たもので、炭酸ガスと水分を別個に回収するとともに、
再生ガスが不用で、かつ除去した水分をまた密閉空間内
へ戻すようにして密閉空間内の湿度変化を起こさない装
置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and in addition to recovering carbon dioxide gas and water separately,
To provide a device which does not require regeneration gas and does not cause changes in humidity within the closed space by returning the removed moisture to the closed space.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る炭酸ガス除去装置は、空気を冷却し空気
中に含まれる水分の少なくとも一部を凍結させる熱交換
器、冷却手段により冷却され、上記冷却された空気中の
炭酸ガスを吸着する吸着剤、上記吸着剤が充填された吸
着塔、上記熱交換器と吸着塔を連通ずる第1および第2
の導管、上記熱交換器で冷却された空気を第1の導管、
上記吸着塔、第2の導管、および上記熱交換器の順に送
給する送給手段、上記熱交換器を加熱して凍結された水
分を除去し、上記熱交換器を再生する第1の加熱手段、
並びに上記吸着剤を加熱して吸着された炭酸ガスを除去
し、上記吸着剤を再生する第2の加熱手段を備える炭酸
ガス除去ユニットを少すくとも2個具備し、一方のユニ
ットが吸着過程・にある時他方のユニットが再生過程に
あるように吸着運転と再生運転を交互に繰り返すと共に
、吸着過程を経た空気を再生過程にある上記熱交換器に
導入するように構成したものである。
The carbon dioxide removal device according to the present invention includes a heat exchanger that cools air and freezes at least a part of moisture contained in the air, and an adsorption device that adsorbs carbon dioxide in the cooled air. an adsorbent, an adsorption tower filled with the adsorbent, and first and second adsorption towers that communicate the heat exchanger and the adsorption tower.
a conduit, the air cooled by the heat exchanger is transferred to a first conduit,
A feeding means for feeding the adsorption tower, the second conduit, and the heat exchanger in this order; first heating for heating the heat exchanger to remove frozen moisture and regenerating the heat exchanger; means,
and at least two carbon dioxide removal units each having a second heating means for heating the adsorbent to remove the adsorbed carbon dioxide and regenerating the adsorbent; The adsorption operation and the regeneration operation are alternately repeated so that when the unit is in the regeneration process, the other unit is in the regeneration process, and the air that has undergone the adsorption process is introduced into the heat exchanger that is in the regeneration process.

〔作用〕[Effect]

この発明においては、吸着過程を経た空気を再生過程に
ある熱交換器に導入し、湿度の低い空気を用いて、水分
を回収するので、吸着過程で水分。
In this invention, the air that has gone through the adsorption process is introduced into a heat exchanger that is in the regeneration process, and the moisture is recovered using air with low humidity, so the moisture is removed during the adsorption process.

炭酸ガスを取り除かれた空気は、再び再生過程にある熱
交換器において加湿されるの゛で、密閉空間内の湿度に
及ぼす影響は殆んどなく、湿度コントロールも安定に行
なえる。
Since the air from which carbon dioxide gas has been removed is humidified again in the heat exchanger during the regeneration process, there is almost no effect on the humidity in the closed space, and humidity control can be performed stably.

〔実施例〕〔Example〕

以下、この発明の一実施例を図をもとに説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す構成図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

図において、(14a)、(14b)はバルブであり、
他の符号は第4図に示す従来のものと同一部分を示す。
In the figure, (14a) and (14b) are valves,
Other symbols indicate the same parts as the conventional one shown in FIG.

第5図に向かって左側のユニットAは吸着過程、右側の
ユニットBは再生過程にあり、バルブ(lla)。
Unit A on the left side of FIG. 5 is in the adsorption process, unit B on the right side is in the regeneration process, and the valve (lla).

(llb)t(18a)、(18b)の状態は第4図に
示す従来のと同一である。バルブ(14a)は、導管(
29)と導管(2xa)をつなぐ状態、即ち、送風機(
1a)によってまず熱交換器(2a)に端然を供給する
状態にある。
The states of (llb)t(18a) and (18b) are the same as the conventional one shown in FIG. The valve (14a) is connected to the conduit (
29) and the conduit (2xa) are connected, that is, the blower (
1a), the heat exchanger (2a) is first supplied with heat.

またバルブ(14b)は、導管(25a)と導管(21
b)をつなぐ状態、すなわち、吸着過程で処理された空
気を再生過程にある熱交換器へ送る状態にある。
The valve (14b) also connects the conduit (25a) and the conduit (21
b), that is, the air treated in the adsorption process is sent to the heat exchanger in the regeneration process.

吸着過程にある左側のユニットAは従来の場合と同様に
して操作するが、ここで処理された空気は、導管(25
a) 、バルブ(14b) 、導管(21b)を経て、
熱交換器(2b)内へ流入し、ここで氷の融解によって
生じた水を蒸発させて水分として取り込み、導管(2s
b) 、バルブ(tab) 、導管(28b)を経てe
より密閉空間内へ回収される。一方吸着剤に吸着された
炭酸ガスは、従来例と同一動作で濃縮炭酸ガスとして回
収されるか、あるいは密閉空間外へ排出される。このよ
うに、除湿されている吸着過程の処理ガスを再生ガスと
して熱交換器に流入させるようにしたので、■密閉空間
内の湿度に影響を及ぼさない、■再生ガスが不用、■炭
酸ガスのみを回収できるという極めて優れた効果がある
Unit A on the left, which is in the adsorption process, is operated in the same way as in the conventional case, but the air treated here is transferred to the conduit (25
a), via the valve (14b) and the conduit (21b);
The water flows into the heat exchanger (2b), where the water generated by melting the ice is evaporated and taken in as moisture, and the water is transferred to the conduit (2s).
b) via valve (tab) and conduit (28b) e
It is collected into a more closed space. On the other hand, the carbon dioxide gas adsorbed by the adsorbent is either recovered as concentrated carbon dioxide gas in the same manner as in the conventional example, or is discharged outside the closed space. In this way, the process gas from the adsorption process, which has been dehumidified, flows into the heat exchanger as regeneration gas, so that: ■ It does not affect the humidity in the closed space, ■ Regeneration gas is not required, and ■ Only carbon dioxide gas is used. It has an extremely excellent effect in that it can recover

第2図はこの発明の他の実施例を示し、第1図の実施例
において熱交換器(2a)、(2b)に冷凍機などの冷
却手段(axa)、(8th)を備えたものである。こ
の実施例によれば、吸着過程において空気中の水分が効
率的に除去されるので、吸着剤と接触してこれに吸着さ
れる水分の量が著しく減少し、吸着剤の炭酸ガス吸着容
量がさらに増大する。
FIG. 2 shows another embodiment of the present invention, in which the heat exchangers (2a) and (2b) are equipped with cooling means (axa) such as a refrigerator (8th) in the embodiment of FIG. be. According to this example, since moisture in the air is efficiently removed during the adsorption process, the amount of moisture that comes into contact with and is adsorbed by the adsorbent is significantly reduced, and the carbon dioxide adsorption capacity of the adsorbent is increased. Further increase.

第8図はこの発明の他の実施例を示し、吸着剤(5a)
、(5b)用の冷却手段及び加熱手段として一台の冷凍
機を用い、吸着過程で奪った熱を再生過程で加熱用に利
用せんとするものである。この実施例によれば、冷凍機
が一台で済み、吸着剤再生用の加熱器が不用となる上に
、省エネルギ効果がさらに増大する。
FIG. 8 shows another embodiment of the present invention, in which the adsorbent (5a)
, (5b), one refrigerator is used as a cooling means and a heating means, and the heat taken in the adsorption process is used for heating in the regeneration process. According to this embodiment, only one refrigerator is required, a heater for regenerating the adsorbent is not required, and the energy saving effect is further increased.

なお、この発明に用いる熱交換器の型式については、特
に制約はなく、例えばシェルチューブ型熱交換器を支障
なく使用できる。
There are no particular restrictions on the type of heat exchanger used in this invention, and for example, a shell tube heat exchanger can be used without any problem.

また、冷却手段として用いる冷凍機の型式についても特
に制約はなく、フレオンなどを用いた圧縮式冷凍機、ヘ
リウムなどを用いたJ−T膨張サイクル冷凍機、ヘリウ
ムなどを用いたスターリングサイクル冷凍機などを支障
なく使用できるが、スターリングサイクル冷凍機は、(
7)フレオンなどの毒性ガスを使わないので安全である
。(1′)圧8162を使わないので騒音が小さい、@
排熱を利用できるので省エネルギ的である。に)成積保
数が圧縮式に次いで高い、など多くの利点を持っている
ので、宇宙基地などの密閉空間に於ける使用に適してい
る。
There are also no particular restrictions on the type of refrigerator used as a cooling means, such as a compression type refrigerator using Freon, a J-T expansion cycle refrigerator using Helium, or a Stirling Cycle refrigerator using Helium. However, Stirling cycle refrigerators (
7) It is safe because it does not use toxic gases such as freon. (1') Low noise because pressure 8162 is not used, @
It is energy-saving because waste heat can be used. It has many advantages, such as the second highest accumulation coefficient after the compression type, making it suitable for use in closed spaces such as space bases.

また、吸着剤の冷却方法についても特に制約はなく、吸
着剤と冷凍機の冷却管を直接接触させる直接法、または
吸着塔の外壁から冷却したり吸着剤と接触させる空気を
冷却する間接法のいずれであってもよく、あるいはこれ
らを併用してもよい。
Furthermore, there are no particular restrictions on the method of cooling the adsorbent; either a direct method in which the adsorbent is brought into direct contact with the cooling pipe of the refrigerator, or an indirect method in which the adsorbent is cooled from the outer wall of the adsorption tower or the air that is brought into contact with the adsorbent is cooled. Either one may be used, or a combination of these may be used.

また、この発明で用いる加熱手段についても特に制約は
なく、電熱器、冷凍機の高温排熱などを支障なく使用で
きる。また、吸着剤の加熱方法も上記の冷却方法と同じ
ように直接法と間接法のいずれも用いることができる。
Further, there are no particular restrictions on the heating means used in the present invention, and electric heaters, high-temperature waste heat from refrigerators, etc. can be used without any problem. Furthermore, as for the method of heating the adsorbent, either a direct method or an indirect method can be used, similar to the above-mentioned cooling method.

さらに、この発明で用いる送風機の型式についても特に
制約はない。上記実施例では押し込み型を示したが、も
ちろん吸引型を用いてもよい。
Furthermore, there are no particular restrictions on the type of blower used in this invention. In the above embodiment, a push-in type was shown, but of course a suction type may also be used.

この発明に使用する吸着剤としては、シリカゲル等も使
えるが炭酸ガスに対する吸着容量の大きなゼオライト即
ち、結晶性アルミノシリケートが好ましく、特にモレキ
ュラーシーブ4A、モレキュラーシーブ5A、モレキュ
ラーシーブ18X(ユニオンカーバイド社製)若しくは
これらの同等品が好ましい。
As the adsorbent used in this invention, silica gel or the like can be used, but zeolite, that is, crystalline aluminosilicate, which has a large adsorption capacity for carbon dioxide gas is preferable, and in particular, Molecular Sieve 4A, Molecular Sieve 5A, and Molecular Sieve 18X (manufactured by Union Carbide) are preferred. or equivalent products thereof are preferred.

尚、この発明の炭酸ガス除去装置を運転するにあたり、
空気の冷却温度には特に制約はないが、通常0°C〜−
100°Cが好ましい。また、吸着剤の冷却温度にも特
に制約はなく、通常0’C〜−100°Cであり、吸着
剤の再生温度も特に限定されず、通常、常温〜100°
Cの範囲で適宜設定すればよい。
In addition, when operating the carbon dioxide removal device of this invention,
There are no particular restrictions on the cooling temperature of the air, but it is usually between 0°C and -
100°C is preferred. In addition, there is no particular restriction on the cooling temperature of the adsorbent, which is usually 0'C to -100°C, and the regeneration temperature of the adsorbent is also not particularly limited, and is usually room temperature to 100°C.
It may be set appropriately within the range of C.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、空気を冷却し空気中
に含まれる水分の少なくとも一部を凍結させる熱交換器
、冷却手段により冷却され、上記冷却された空気中の炭
酸ガスを吸着する吸着剤、上記吸着剤が充填された吸着
塔、上記熱交換器と吸着塔を連通ずる第1および第2の
導管、上記熱交換器で冷却された空気を第1の導管、上
記吸着塔、第・2の導管、および上記熱交換器の順に送
給する送給手段、上記熱交換器を加熱して凍結された水
分を除去し、上記熱交換器を再生する第1の加熱手段、
並びに上記吸着剤を加熱して吸着された炭酸ガスを除去
し、上記吸着剤を再生する第2の加熱手段を備える炭酸
ガス除去ユニットを少なくとも2個具備し、一方のユニ
ットが吸着過程にある時他方のユニットが再生過程にあ
るように吸着運転と再生運転を交互に繰り返すと共に、
吸着過程を経た空気を再生過程にある上記熱交換器に導
入するように構成したので、■密閉空間内の湿度に影響
を及ぼさない、■再生ガスが不用、■炭酸ガスのみ回収
できるという極めて優れた効果がある。
As described above, according to the present invention, air is cooled by a heat exchanger that cools air and freezes at least a portion of moisture contained in the air, and a cooling means that adsorbs carbon dioxide in the cooled air. an adsorbent, an adsorption tower filled with the adsorbent, first and second conduits that communicate the heat exchanger and the adsorption tower, a first conduit that connects the air cooled by the heat exchanger, the adsorption tower, a second conduit and a feeding means for feeding in order to the heat exchanger; a first heating means for heating the heat exchanger to remove frozen moisture and regenerating the heat exchanger;
and at least two carbon dioxide removal units equipped with second heating means for heating the adsorbent to remove the adsorbed carbon dioxide and regenerating the adsorbent, when one unit is in the adsorption process. While repeating adsorption operation and regeneration operation alternately so that the other unit is in the regeneration process,
The structure is such that the air that has gone through the adsorption process is introduced into the heat exchanger that is in the regeneration process, so it is extremely superior in that it does not affect the humidity in the closed space, does not require regeneration gas, and can only recover carbon dioxide gas. It has a positive effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す構成図、第図におい
て、(la)#(lb)は送給手段、(2aL (2b
)は熱交換器、(8a)、(8b)は第1の加熱手段、
(4a)。 (4b)は吸着塔、(5a)p(5b)は炭酸ガス吸着
剤、(6)。 (6aL(6b)、(81a)、(81b)は冷却手段
、(lla)〜(15a)。 (llb)〜(tsb)はバルブ、(2xa)−a5a
)、(2xb)〜(25b) 、 (26)〜(27)
、 (28a) 、 (28b) 、 (29) 、 
(80a) 、 (80b)(82a ) p (a 
2 b )は導管である。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
FIG. 1 is a block diagram showing an embodiment of the present invention. In FIG. 1, (la) #(lb) are feeding means, (2aL (2b
) is a heat exchanger, (8a) and (8b) are first heating means,
(4a). (4b) is an adsorption tower, (5a)p (5b) is a carbon dioxide adsorbent, (6). (6aL(6b), (81a), (81b) are cooling means, (lla) to (15a). (llb) to (tsb) are valves, (2xa)-a5a
), (2xb) ~ (25b), (26) ~ (27)
, (28a), (28b), (29),
(80a) , (80b) (82a) p (a
2b) is a conduit. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)空気を冷却し空気中に含まれる水分の少なくとも
一部を凍結させる熱交換器、冷却手段により冷却され、
上記冷却された空気中の炭酸ガスを吸着する吸着剤、上
記吸着剤が充填された吸着塔、上記熱交換器と吸着塔を
連通する第1および第2の導管、上記熱交換器で冷却さ
れた空気を第1の導管、上記吸着塔、第2の導管、およ
び上記熱交換器の順に送給する送給手段、上記熱交換器
を加熱して凍結された水分を除去し、上記熱交換器を再
生する第1の加熱手段、並びに上記吸着剤を加熱して吸
着された炭酸ガスを除去し、上記吸着剤を再生する第2
の加熱手段を備える炭酸ガス除去ユニットを少なくとも
2個具備し、一方のユニットが吸着過程にある時他方の
ユニットが再生過程にあるように吸着運転と再生運転を
交互に繰り返すと共に、吸着過程を経た空気を再生過程
にある上記熱交換器に導入するように構成した炭酸ガス
除去装置。
(1) Cooled by a heat exchanger or cooling means that cools the air and freezes at least a part of the moisture contained in the air,
an adsorbent that adsorbs carbon dioxide gas in the cooled air; an adsorption tower filled with the adsorbent; first and second conduits communicating the heat exchanger and the adsorption tower; a feeding means for feeding the frozen air to the first conduit, the adsorption tower, the second conduit, and the heat exchanger in this order; heating the heat exchanger to remove frozen moisture; a first heating means for regenerating the adsorbent; and a second heating means for heating the adsorbent to remove adsorbed carbon dioxide and regenerating the adsorbent.
The carbon dioxide removal unit is equipped with at least two carbon dioxide removal units equipped with heating means, and when one unit is in the adsorption process, the other unit is in the regeneration process, so that the adsorption operation and the regeneration operation are alternately repeated, and the adsorption process is performed. A carbon dioxide removal device configured to introduce air into the heat exchanger during a regeneration process.
JP60121928A 1985-06-05 1985-06-05 Apparatus for removing co2 Pending JPS61283325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60121928A JPS61283325A (en) 1985-06-05 1985-06-05 Apparatus for removing co2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60121928A JPS61283325A (en) 1985-06-05 1985-06-05 Apparatus for removing co2

Publications (1)

Publication Number Publication Date
JPS61283325A true JPS61283325A (en) 1986-12-13

Family

ID=14823389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60121928A Pending JPS61283325A (en) 1985-06-05 1985-06-05 Apparatus for removing co2

Country Status (1)

Country Link
JP (1) JPS61283325A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275487A (en) * 2005-03-30 2006-10-12 Shimizu Corp Carbon dioxide removing air conditioning system
JP2013208534A (en) * 2012-03-30 2013-10-10 Hitachi Ltd Carbon dioxide recovery system, and carbon dioxide recovery method using the same
WO2023234131A1 (en) * 2022-05-31 2023-12-07 三菱電機株式会社 Co2 adsorption device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275487A (en) * 2005-03-30 2006-10-12 Shimizu Corp Carbon dioxide removing air conditioning system
JP2013208534A (en) * 2012-03-30 2013-10-10 Hitachi Ltd Carbon dioxide recovery system, and carbon dioxide recovery method using the same
WO2023234131A1 (en) * 2022-05-31 2023-12-07 三菱電機株式会社 Co2 adsorption device

Similar Documents

Publication Publication Date Title
US4472178A (en) Adsorptive process for the removal of carbon dioxide from a gas
KR930010762B1 (en) Preliminary refining method of seperating air
CN104168978B (en) For the technique that removing carbon dioxide is removed from air-flow
WO2017163549A1 (en) Carbon dioxide collection method and collection device
WO2018135206A1 (en) Carbon dioxide recovery method and recovery apparatus
JP2000317244A (en) Method and device for purifying gas
JPH0938446A (en) Pretreatment of air liquefying and separating equipment and equipment therefor
JPS6272504A (en) Production of nitrogen having high purity
JPH0565206B2 (en)
JPS61283325A (en) Apparatus for removing co2
JP2007093085A (en) Carbon dioxide gas removing device
JP4185004B2 (en) Air refrigerant refrigeration equipment
JP2644823B2 (en) Regeneration method of helium gas purification adsorber
JPH07185248A (en) Absorbing apparatus
JPH09122432A (en) Gas separator using pressure swing adsorption process
JPH08337402A (en) Device for removing impurity from gaseous hydrogen and its operating method
JP2000279740A (en) Method for producing air reduced in water and carbon dioxide contents and device therefor and regenerating method of adsorbent
JPH05137958A (en) Device for removing carbon dioxide in ventilation air
JPH0139812B2 (en)
JPH07144114A (en) Device for shortening regeneration time of pretreatment adsorber for feed air used for air liquefying separator
JP3195986B2 (en) Helium gas supply method and device
CN219474356U (en) System for heating regeneration gas
JPH0768042B2 (en) High-purity oxygen production method
JPS6123008B2 (en)
JP6851839B2 (en) Heat recovery type oxygen nitrogen supply system