JPS61282794A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS61282794A
JPS61282794A JP12387685A JP12387685A JPS61282794A JP S61282794 A JPS61282794 A JP S61282794A JP 12387685 A JP12387685 A JP 12387685A JP 12387685 A JP12387685 A JP 12387685A JP S61282794 A JPS61282794 A JP S61282794A
Authority
JP
Japan
Prior art keywords
cut
fin
fins
heat transfer
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12387685A
Other languages
Japanese (ja)
Inventor
Takayuki Yoshida
孝行 吉田
Yoshiaki Tanimura
佳昭 谷村
Kiyoshi Sakuma
清 佐久間
Ikuo Tsukamoto
郁夫 塚本
Yutaka Seshimo
裕 瀬下
Masao Fujii
雅雄 藤井
Hiroyuki Umemura
博之 梅村
Makoto Yamada
信 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12387685A priority Critical patent/JPS61282794A/en
Publication of JPS61282794A publication Critical patent/JPS61282794A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To provide a heat exchanger in which the workability and heat transfer characteristic of heat transfer fins are improved and which is efficient by forming trapezoidal flat portions between rows in the air flowing direction as cut portions in the stage direction of fins, on the centerline in the trapezoidal height direction. CONSTITUTION:Each of heat transfer fins 1 has a plurality of through holes 13, and each pipe 2 penetrates a plurality of heat transfer fins 1. The fins 1 are delivered in the stage direction, and barring portions 10, through holes 13 and the tranpezoidal shape are formed. Thereafter, the fine 1 are cut on he flat portions 3, 4a and 4b positioned on the centerline in the height direction of the trapezoidal form by means of upper and lower cutters 5a and 5b in accordance with the necessary number of rows, and then are cut in a predetermined stage dimension. Thus, the fin cut portions are always made constant, and hence the working precision of the cut portion 8 can be maintained and fine splits (cutting irregularity) can be prevented from occurring.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、空気調和装置に使用さ扛る熱交換器の構成
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a heat exchanger used in an air conditioner.

〔従来の技術〕[Conventional technology]

第9図は例えば特願昭59−264087 号によυ提
案されている複数個の貫通孔を有し台形波状に屈曲した
フィンと、パイプより構成さnた熱交換器を示す構成図
である。図中(1)は複数個の貫通穴を有し台形波状に
屈曲したフィンを表わす。(2)は空気流牡(A)が積
層さ扛たフィン(11間を流れる妨たげとなるように配
置さ扛ているパイプである。(I:1は上記フィン(1
)に設けらnfC貫通孔である。不一においてフィン(
1)は、金形波状屈曲の位相をずらすように積層さnて
いる。
FIG. 9 is a block diagram showing a heat exchanger proposed in, for example, Japanese Patent Application No. 59-264087, which is composed of trapezoidal wave-shaped fins having a plurality of through holes and pipes. . In the figure, (1) represents a fin having a plurality of through holes and bent in a trapezoidal wave shape. (2) is a pipe in which the air flow pipe (A) is arranged so as to block the flow between the laminated fins (11).
) is an nfC through hole. Finn in Fuji (
1) The metal shapes are laminated to shift the phase of the wavy bends.

次にフィン装造の一般的方法を第3図ないし第5図に示
す。まず、ドラム状に巻回さjしたフィン帯材(図示さ
nていない)から送ら扛てバーリング部顛を数芽設した
フィン板材を第3図に示すように段方向(6)K送り、
複継列を一度に成形する。
Next, a general method of fin installation is shown in FIGS. 3 to 5. First, a fin strip material (not shown) wound into a drum shape is fed, and a fin plate material on which several burring parts are formed is fed in the step direction (6) K as shown in FIG.
Form multiple joints at once.

次に必要列数だけセットした上下カッター(5a)。Next, set the required number of rows of upper and lower cutters (5a).

(5b) Kよ9段方向に一度に切断する。このときフ
ィン(1)材の両端部(7a)、 (7b)も切断する
。そして段方向切断部(8)は1段寸法りを任意に設足
する必要があるため、必ずある寸法だけ電ね合わせ切断
部(9)を設け、フィン材(1)を段方向(61K送り
次を切断し所足の段寸法LK切断する。(第3図ではカ
ッター(5)は単一図示しかしていないが切断列数だけ
セットさしている。) さて、特願昭59−264087  号で示さrしる熱
交換器における伝熱フィン(1)を上記のような方法で
、゛段方向に切断する場合を第6図及び第7図に示す。
(5b) Cut in the K-9 direction at once. At this time, both ends (7a) and (7b) of the fin (1) material are also cut. Since it is necessary to arbitrarily provide one step dimension for the step direction cutting section (8), the electric matching cutting section (9) must be provided for a certain dimension, and the fin material (1) is cut in the step direction (61K feed). Cut the following and cut the required step size LK. (In Figure 3, only a single cutter (5) is shown, but the cutter (5) is set as many as the number of cutting rows.) FIGS. 6 and 7 show the case where the heat transfer fins (1) in a heat exchanger are cut in the stage direction using the method described above.

このフィン(1)は台形波状に屈曲しているため、第6
図においてフィン(1)が尚さHだけ上下に変動する。
This fin (1) is bent in a trapezoidal wave shape, so the sixth fin (1)
In the figure, the fin (1) still moves up and down by H.

フィン切断部(8)に図中B−Eの位置が考えら扛る。The fin cut portion (8) is located at the position B-E in the figure.

このように特願昭59−264087  号に示さ扛た
構成の熱交換器においての作用効果は第8・図のフィン
断面図により説明さnており、第8図においてフィン(
1a)と(1b)の間に形成さ扛る流路を第1流路(5
1)とし、フィン(1b)とフィン(1C)によって形
成さnる流路を第2流路(52)としている。第1流路
(51)と第2流路(52)を流nる流体の流量と全圧
を同一とすnば1図上の流n方向(蜀に直角な谷断面(
X−X)に於て、第1流路(51)と第2流路(52)
の断面積に、結果的に異っており、たとえばX−X断面
を考えねば、第1流路(51)の断面積は第2流路(5
2)に較べ大きいから、その部分で第1流路(51)を
流量る流体の流速は、第2流路(52)に較べ小さくな
るから、第1流路(51)と第2fft、路(52)と
の間に静圧差が生じその結果、第1流路(51)から第
2流路(52)に流体(墾気)の一部が貫通孔α睦4つ
て流入することになる。この時。
The effects of the heat exchanger having the structure shown in Japanese Patent Application No. 59-264087 are explained by the cross-sectional view of the fins in FIG.
The channel formed between 1a) and (1b) is called the first channel (5).
1), and the flow path formed by the fin (1b) and the fin (1C) is defined as the second flow path (52). If the flow rate and total pressure of the fluid flowing through the first flow path (51) and the second flow path (52) are the same, then the direction of the flow in Figure 1 (the cross section of the valley perpendicular to the
X-X), the first flow path (51) and the second flow path (52)
As a result, the cross-sectional area of the first flow path (51) is different from that of the second flow path (51).
2), the flow velocity of the fluid flowing through the first flow path (51) in that part is lower than that in the second flow path (52). (52), and as a result, a part of the fluid (air) flows from the first flow path (51) to the second flow path (52) through the through holes α. . At this time.

フィン(1b)に注目すると、第8図に示すように。If we pay attention to the fin (1b), as shown in FIG.

前述の略臼形波状の変型波形に従って第1流路(51)
から第2流路(52)、第2訛路(52)から第1流路
(51)への周期的な流体の流通が起こることになる。
The first flow path (51) follows the above-mentioned modified waveform having a substantially mortar-shaped waveform.
A periodic flow of fluid occurs from the second flow path (52) to the second flow path (52) and from the second flow path (52) to the first flow path (51).

即ち、このようにフィン(1)を栴成す扛ば。That is, the fin (1) is formed in this way.

一様吸込、一様吹出となっている面が流れ方向に順査に
ならんでいる形となり、一様吸込部の伝熱面では、境界
ノーを非常に博くできることにより。
The uniform suction and uniform outlet surfaces are arranged in a regular pattern in the flow direction, and the heat transfer surface of the uniform suction section can have a very wide boundary no.

飛細的な伝熱促進効果が得らn、吹出面に於ては助走区
間の繰り返し効果により、同じく高い伝熱性能が達成で
き、さらにパイプ(2)後方の死水域部分の流体空気が
2貫通孔ajを介して移動するため流nの淀みがなくな
り、死水域部分の熱伝達特注が改善され従来到底考えら
nもしなかった非常に筒い熱伝達特性を持った熱交換器
を得ることができるとしている。
The same high heat transfer performance can be achieved due to the repeated effect of the run-up section on the outlet surface, and the fluid air in the dead area behind the pipe (2) is Since the flow moves through the through holes aj, there is no stagnation in the flow, and the heat transfer customization in the dead zone area is improved, thereby obtaining a heat exchanger with extremely cylindrical heat transfer characteristics that was previously unthinkable. It is said that it can be done.

圧力損失については、前縁効果を用いたものに較べ少く
ともフィンを分断していないためストリップ前縁部の形
状抵抗が当然なくなり、その効果は大きいとしている。
Regarding pressure loss, compared to the case where the leading edge effect is used, at least the fins are not separated, so the shape resistance of the leading edge of the strip is naturally eliminated, and the effect is said to be greater.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように特願昭59−264087 においては、熱
伝達性能の向上、圧力損失の増加の小なること。
In this way, Japanese Patent Application No. 59-264087 aims to improve heat transfer performance and minimize the increase in pressure loss.

つま!ll性能面のみ言及さ扛ているが、フィンの切断
など熱交換器を製作する上での万策については言及さn
ていない。
wife! Only the performance aspects are mentioned, but there is no mention of precautions taken when manufacturing the heat exchanger, such as cutting the fins.
Not yet.

そして、第6図に示す台形波状屈曲フィンを第7図に示
すように台形波状屈曲の位相をずらすとB、  Oの位
置の場合、高さHの変動のためフィンの変形が大きく、
前記に述べた切断部Iltを段方向に一回ずらして2度
目を切断する位置、すなわち重ね合わせ切断部(9)に
おいて、切断ムラやささくnが発生してしまい6組立不
能となる思量がある。
If the trapezoidal wave-shaped bending fin shown in FIG. 6 is shifted in phase as shown in FIG.
At the position where the above-mentioned cutting part Ilt is shifted once in the step direction and the second cutting is made, that is, at the overlapping cutting part (9), uneven cutting and chipping occur, making assembly impossible. be.

また、熱交換器としての性能が低下することも考えらn
る。切断部(8)がDの場合は、フィンの変形iJB、
  Cの場合より小さくなるが(高さ方向H/2 )前
記ささく扛の発生等、同様の問題が発生する。
Also, it is possible that the performance as a heat exchanger will deteriorate.
Ru. If the cutting part (8) is D, the fin deformation iJB,
Although it is smaller than in the case of C (height direction H/2), similar problems such as the above-mentioned cracking occur.

切断部(8)がEの場合に、フィンの変形はほとんどな
いが、フィンの切断部が平担でないため、切断部の横方
向位置が不安定となり、やげり、前記ささくれが発生し
易い。
When the cut part (8) is E, there is almost no deformation of the fin, but since the cut part of the fin is not flat, the lateral position of the cut part becomes unstable, and the above-mentioned hangnail is likely to occur. .

以上のような特願昭59−264087号で示さしる熱
交換器における切断位置に対する不具合点に。
Regarding the problem with the cutting position in the heat exchanger shown in Japanese Patent Application No. 59-264087 as described above.

前記材料の両端部(7a)、 (7b)についても同様
のことがいえる。
The same can be said of both ends (7a) and (7b) of the material.

また、第6図に示すフィン(11を切断する場合に使用
する切断位置にセットしたカッター(5)を備えた型具
な第7図に示す位相をずらしたフィン(1)を切断する
場合には第8図の切断位置ll′2:&わせでカッター
(5)をセットした型具にする必要があり、この場合に
は、型交換等に多くの時間がかかると共にコストアップ
の原因ともなる問題点があった。
In addition, when cutting the phase-shifted fin (1) shown in Fig. 7, a molding tool equipped with a cutter (5) set at the cutting position used when cutting the fin (11) shown in Fig. 6 is used. Cutting position ll'2 in Figure 8: It is necessary to use a mold tool with the cutter (5) set in a cross-shape, and in this case, it takes a lot of time to change the mold, etc., and also causes an increase in cost. There was a problem.

本発明においてに上記点をふまえ、伝熱フィンの工作性
を向上させて伝熱特性の向上1等特性を低下させること
なく、効率よく熱交換器を提供することを目的とする。
In view of the above points, it is an object of the present invention to provide a heat exchanger efficiently by improving the workability of heat transfer fins without deteriorating the improved heat transfer characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る熱交換器は、空気流n方向列間の台形形状
平坦部をフィンの段方向切断部とし9台形形状高さ方向
の中心線上に形成したものである。
In the heat exchanger according to the present invention, the trapezoidal flat portion between the n-direction rows of airflow is formed on the center line in the height direction of the nine trapezoidal shapes, with the trapezoidal flat portions serving as the stepwise cut portions of the fins.

〔作用〕[Effect]

本発明における熱変換器は、フィンの切断部を台形形状
高さ方向中心線上に形成したのでフィン切断の精度を従
来と同じに維持でき、ささくnや切断ムラの発生を防ぐ
ことができる。
In the heat converter according to the present invention, the cut portion of the fin is formed on the center line of the trapezoidal shape in the height direction, so that the precision of cutting the fin can be maintained at the same level as in the past, and occurrence of cracks and uneven cutting can be prevented.

その結果、製造設備を変更することなく、高効率熱交換
器を実現できる。
As a result, a highly efficient heat exchanger can be realized without changing manufacturing equipment.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例を示す熱変換器の斜視図であ
る。第2図は本発明による伝熱フィンの断面図である。
FIG. 1 is a perspective view of a heat converter showing an embodiment of the present invention. FIG. 2 is a cross-sectional view of a heat transfer fin according to the present invention.

(1)は複数個の貫通孔0を有する伝熱フィンであJ、
(21Fiこの伝熱フィンを複数枚貫通装着させたパイ
プである。(31i1’パイプ(2a)(2b)の間、
すなわち列間にある台形形状平坦部、 (4a)(4b
)はフィン(1)両端の台形形状平坦部である。
(1) is a heat transfer fin having a plurality of through holes J,
(21Fi is a pipe in which multiple heat transfer fins are installed through the pipe. (31i1' Between pipes (2a) and (2b),
That is, the trapezoidal flat parts between the rows, (4a) (4b
) are trapezoidal flat parts at both ends of the fin (1).

(3)及び(4a)、 (4b) U台形形状平坦部は
、該台形形状高さ方向の中心線(Lυ上に形成さnてい
る。なおf31.  (4a)、 (4’b)は他の台
形形状平坦部の長さに対して極端に短かくしである。
(3) and (4a), (4b) The U trapezoidal flat part is formed on the center line (Lυ) in the height direction of the trapezoidal shape. This comb is extremely short compared to the length of other trapezoidal flat parts.

作用、効果については第2図について説明する。The action and effect will be explained with reference to FIG.

第2図において(5a)、 (5b)に、フィン(1)
を段方向に切断するための上下カッターである。
In Figure 2, fins (1) are shown in (5a) and (5b).
This is a vertical cutter for cutting in the direction of steps.

フィン(1)ハ段方向に送られ、バーリング部(II。The fin (1) is sent in the direction of the stage, and the burring part (II).

貫通孔α31.台形形状と成形さnた後、フィンの台形
形状高さ方向の中心線α9上に位置された平坦部f31
.  (4a)、 (4b)において必要列数に応じて
段方向に切断さnる。その際8段方向切断部(8)はあ
る寸法だけ重ね合わせて切断さ扛る。その後、所定の段
寸法に切断さnる。
Through hole α31. After being formed into a trapezoidal shape, the flat portion f31 is located on the center line α9 of the trapezoidal shape of the fin in the height direction.
.. In (4a) and (4b), cut in the step direction according to the required number of rows. At this time, the eight-stage direction cutting portions (8) are cut so as to overlap by a certain dimension. After that, it is cut into a predetermined step size.

台形形状の位相がずれた場合でも、固定さ詐た切断部に
は必ず台形形状高さ方向の中心線αυ上に、(8) 台形形状平坦部(3)が位置するので、前述と同様の装
置で切断できる。
Even if the phase of the trapezoid is shifted, the (8) flat part of the trapezoid (3) will always be located on the center line αυ in the height direction of the trapezoid in the cut section where the fixation is false. Can be cut with a device.

このようにフィン切断部を常に一定としたので切断部(
8)の加工種度を従来と同じに維持でき、ささくt′L
(切断ムラ)の発生を防止できる。
In this way, since the fin cutting part was always kept constant, the cutting part (
8) The degree of machining can be maintained the same as before, and the cutting t'L can be maintained.
(uneven cutting) can be prevented from occurring.

また、フィン両端部も台形形状高さ方向中心線上とした
ことにより2列数によらず、流体の入口。
In addition, both ends of the fins are placed on the center line of the trapezoidal shape in the height direction, so that the fluid can be inlet regardless of the number of two rows.

出口部の形状が一定となり組立が容易になる。The shape of the outlet portion is constant, making assembly easier.

なお、複数列の熱交換器の場合、パイプ間の台形形状高
さ方向中心線IKある平坦部(3)の長さが他の平坦部
(3)の長さに比べ極端に短かいため、第9図における
第1流路(51)と第2流路(52)の断面積が等しく
なる長さが短かいので、伝熱性能は。
In addition, in the case of a heat exchanger with multiple rows, since the length of one flat part (3) of the trapezoidal center line IK in the height direction between the pipes is extremely short compared to the length of other flat parts (3), Since the length at which the cross-sectional area of the first flow path (51) and the second flow path (52) in FIG. 9 are equal is short, the heat transfer performance is.

砺願昭59−264087のものに対し、はとんど低下
しない。
Compared to the one of Togano Sho 59-264087, the value does not decrease at all.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によnば、フィンの段方向切Mm
’a’台形形状篩さ方向中Iし線上に形成したため、従
来の一般的なフィン製造装置を変える必要がないので、
製造費は従来と変ることなく高い伝熱特注を持った高効
率な熱交換器を製造できるという効果がある。
As described above, according to the present invention, the fins are cut in the stepped direction Mm
Since the 'a' trapezoidal shape is formed on the center line in the sieve direction, there is no need to change the conventional general fin manufacturing equipment.
The effect is that a highly efficient heat exchanger with high heat transfer customization can be manufactured without changing the manufacturing cost from the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実癩例による熱交換器の斜視図、
第2図は本発明の伝熱フィンの切断状態を示す断面図、
第3図はフィン製造の一般的装置による伝熱フィンの切
断状態を一部切欠いて示す平面図、第4図ば第3図の断
面図5第5図は段方向にずらして切断する場合を説明す
る側面図、第6図は従来の伝熱フィンの切断状態を示す
断面図。 第7図は第6図伝熱フィンを位相をずらした場合の切断
状態を示す断面図、第8図は従来の熱交換器の作用を説
明する断面゛図、第9図は従来の熱交換器を示す断面図
である。 図中同一符号は同一または相尚部分を示し、(1)はフ
ィン、+21Uパイプ、(31U台形形状平坦部、(5
)は段方向切断用カッター、+61U段方向、(7)は
両端部、(8)は段方向切断部、(9)は東ね合せ切断
部、顛はバーリング部9、Utt台形台形形状力向中心
線である。       代理人 大 岩 増 雄第6
図 第7図 b          c      ヒ      
        D第8図 第9図
FIG. 1 is a perspective view of a heat exchanger according to a practical example of the present invention;
FIG. 2 is a sectional view showing a cut state of the heat transfer fin of the present invention;
Fig. 3 is a partially cutaway plan view showing how heat transfer fins are cut by a general fin manufacturing device; Fig. 4 is a cross-sectional view of Fig. 3; A side view for explanation, and FIG. 6 is a sectional view showing a cut state of a conventional heat transfer fin. Fig. 7 is a cross-sectional view showing the cut state when the heat transfer fins shown in Fig. 6 are shifted in phase, Fig. 8 is a cross-sectional view explaining the action of the conventional heat exchanger, and Fig. 9 is a cross-sectional view of the conventional heat exchanger. It is a sectional view showing a container. The same reference numerals in the figures indicate the same or similar parts, (1) fin, +21U pipe, (31U trapezoidal flat part, (5
) is a cutter for cutting in the step direction, +61U in the step direction, (7) is both ends, (8) is the step direction cutting part, (9) is the east alignment cutting part, the seam is the burring part 9, Utt trapezoid shape force direction This is the center line. Agent Masu Oiwa 6th
Figure 7 b c h
DFigure 8Figure 9

Claims (2)

【特許請求の範囲】[Claims] (1)複数個の貫通孔を有し、空気の流れ方向にそって
周期的に台形波状に屈曲したフィンを積層し、フィン間
を流れる空気の妨げになるようにパイプを配置し構成さ
れる熱交換器において、フィン端部及び熱交換器の空気
流れ方向列間の台形形状平坦部を該台形形状高さ方向の
中心線上に形成したことを特徴とする熱交換器。
(1) It is constructed by stacking fins that have multiple through holes and are periodically bent in a trapezoidal wave shape along the direction of air flow, and pipes are arranged to obstruct the air flowing between the fins. 1. A heat exchanger characterized in that a trapezoidal flat portion between the fin ends and the rows of the heat exchanger in the air flow direction is formed on the center line of the trapezoidal shape in the height direction.
(2)多数列フィン(例えば36列)製作型であって、
設定列(例えば2列)熱交換器のフィン製作工程におい
て上記平坦部を切断部として加工されたことを特徴とす
る特許請求の範囲第1項記載の熱交換器。
(2) A multi-row fin manufacturing type (for example, 36 rows),
2. The heat exchanger according to claim 1, wherein the flat portion is processed as a cut portion in a fin manufacturing process of a set row (for example, two row) heat exchanger.
JP12387685A 1985-06-07 1985-06-07 Heat exchanger Pending JPS61282794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12387685A JPS61282794A (en) 1985-06-07 1985-06-07 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12387685A JPS61282794A (en) 1985-06-07 1985-06-07 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS61282794A true JPS61282794A (en) 1986-12-12

Family

ID=14871556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12387685A Pending JPS61282794A (en) 1985-06-07 1985-06-07 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS61282794A (en)

Similar Documents

Publication Publication Date Title
US4756362A (en) Heat exchanger
EP0797754B1 (en) Finned tube heat exchanger and method of manufacture
EP0646231B1 (en) Heat exchange tubes
US4676304A (en) Serpentine-type heat exchanger having fin plates with louvers
DE60102725T2 (en) Heat exchangers, fins for heat exchangers, as well as methods for producing the same
US4830102A (en) Turbulent heat exchanger
JPH0514194B2 (en)
US4593756A (en) Fin-and-tube type heat exchanger
US4775007A (en) Heat exchanger for an air-conditioning apparatus
US4625378A (en) Method of manufacturing fin-tube heat exchangers
US5062475A (en) Chevron lanced fin design with unequal leg lengths for a heat exchanger
JPH04177092A (en) Heat exchanger and manufacture thereof
KR950025409A (en) Plate Fins for Heat Exchangers and Heat Exchangers
JP4671404B2 (en) Finned tube heat exchanger
EP0415584A2 (en) Stack type evaporator
EP0086559A2 (en) Improvements relating to heat exchangers
EP0838650B1 (en) Humped plate fin heat exchangers
JPS61282794A (en) Heat exchanger
US4488593A (en) Heat exchanger
JPS6020094A (en) Heat exchanger
JPH02242092A (en) Heat exchanger
DE10360240A1 (en) Heat exchanger rib/fin e.g. for application in motor vehicles, has lamellar arrangement provided with curved intermediate lamellae in flow parts of medium
EP0074122B1 (en) Heat exchanger
JPS63254396A (en) Finned heat exchanger
JPH0481717B2 (en)