JPS61281013A - Production of mullite powder of high purity - Google Patents

Production of mullite powder of high purity

Info

Publication number
JPS61281013A
JPS61281013A JP60120694A JP12069485A JPS61281013A JP S61281013 A JPS61281013 A JP S61281013A JP 60120694 A JP60120694 A JP 60120694A JP 12069485 A JP12069485 A JP 12069485A JP S61281013 A JPS61281013 A JP S61281013A
Authority
JP
Japan
Prior art keywords
mullite
powder
gel
fine
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60120694A
Other languages
Japanese (ja)
Other versions
JPH0448726B2 (en
Inventor
Shigeyuki Somiya
宗宮 重行
Keiichi Minegishi
峯岸 敬一
Jii Emu Yuu Isumaeru Emu
エム・ジー・エム・ユー・イスマエル
Zenjiro Nakai
中井 善治郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Cement Co Ltd
Original Assignee
Chichibu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd filed Critical Chichibu Cement Co Ltd
Priority to JP60120694A priority Critical patent/JPS61281013A/en
Priority to DE19863618576 priority patent/DE3618576A1/en
Publication of JPS61281013A publication Critical patent/JPS61281013A/en
Publication of JPH0448726B2 publication Critical patent/JPH0448726B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To obtain fine mullite powder of high purity having improved sintering property, by concentrating a mixture solution of boehmite sol and an aqueous solution of dispersed amorphous silica, drying the resultant gel, pulverizing the dried gel, and heating the powder. CONSTITUTION:A mixture solution of boehmite sol and an aqueous solution of dispersed amorphous silica, preferably colloidal silica or fine silica powder, is mixed at >=1.5 molar ratio (Al2O3/SiO2), and ten concentrated by heating, etc. until the pH value becomes <=3. The resultant gel of the mullite(-containing) composition is dried at >=100 deg.C temperature and finely pulverized in a ball mill, etc. to give fine gel powder, which is sintered in the open air atmosphere or hydrothermally treated at a high temperature under a high pressure to crystallize mullite crystals. Thus, the aimed fine mullite powder of high purity having improved sintering property is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微細で焼結性に優れた高fIB度ムライト粉末
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing fine, high-fIB degree mullite powder with excellent sinterability.

(従来の技術とその問題点) ムライトは3人kos・28 i 0z (Ajq O
s /s i Os  モル比!1.コ)で示されるケ
イ酸アルミニウムだが、ジエイ・エイ・パスタ(J、A
、Pa5k )  の研究論文(r L]eramrc
 In1ernaLional J* 9 (41、1
07〜113−(1983))[jるとA40s /8
 i Ch (D モk 比カ1.50ないしZ87の
範囲でアルミナと固溶体を形成する。
(Conventional technology and its problems) Mullite has 3 people kos・28 i 0z (Ajq O
s/s i Os molar ratio! 1. Aluminum silicate is represented by
, Pa5k) research paper (r L] eramrc
In1ernaLional J* 9 (41, 1
07-113-(1983)) [j and A40s /8
i Ch (D Mok Forms a solid solution with alumina in the range of ratio 1.50 to Z87.

このムライトは、従来より化学工業磁器や耐火物等に利
用されてきたが、近年は機械的性質の高温における安定
性や耐熱衝撃性に優れていることから、アルミナt−湊
ぐ電子材料用セラミックスとして、また窒化けい素、炭
化けい素と共&C1%i@構造用セラミックスとして有
望視されている。
Mullite has traditionally been used in chemical industrial porcelain and refractories, but in recent years it has been used in alumina T-minato ceramics for electronic materials due to its excellent mechanical properties such as stability at high temperatures and thermal shock resistance. It is also seen as promising as a &C1%i@structural ceramic together with silicon nitride and silicon carbide.

ムライトは、従来カオリナイト(A#、0.・5i02
・HsO)とアルミナの混合物あるいはアルミナとシリ
カの混合物を粉砕、焼成して製造されてきた。
Mullite is conventionally kaolinite (A#, 0.・5i02
・HsO) and alumina or alumina and silica are crushed and fired.

しかし、この場合、アルミナとシリカの均一混合や微粉
砕が離しかったり、アルミナとシリカの反応速匿が遅(
、高密度焼結体を得るのに1700 ’C以上の高温で
長時間9J8成する必要があったり、また遊離のシリカ
(クリストノ々ライト等)が残留して高温特性勿劣化さ
せたりする問題点がある。
However, in this case, the uniform mixing and fine pulverization of alumina and silica may be difficult, and the reaction rate between alumina and silica may be slow (
In order to obtain a high-density sintered body, it is necessary to carry out 9J8 formation at a high temperature of 1700'C or higher for a long time, and free silica (such as cristonolite) remains, which deteriorates the high-temperature properties. There is.

近年、微細構造が制御されしかも物理的性・−の優れた
セラミックスを、高純度で微細な粉末から製造しようと
する研究が行なわれ、例えばアルミニウム・n−ブトキ
シPやテトラエトキシラノール等の高価なアルミニウム
やシリコンのアルコキシト化合物から高純度ムライト微
粉末を合成する方法が開発されている。しかし、この方
法は(1)  少量の製品を得るのに高価な有機質原料
を比較的多tに使用する (2)  共沈物のA #/S i  比率を正確に制
御することが難しい (3)各工程に長時1−を要する 等の問題点があって、経済性に優れた工業的製法とをま
言えない。
In recent years, research has been conducted to produce ceramics with controlled microstructures and excellent physical properties from high-purity, fine powders. A method has been developed to synthesize high-purity mullite fine powder from aluminum and silicon alkoxide compounds. However, this method (1) uses a relatively large amount of expensive organic raw materials to obtain a small amount of product (2) it is difficult to accurately control the A #/S i ratio of the coprecipitate (3) ) There are problems such as the long time required for each step, and it cannot be said to be an economical industrial manufacturing method.

本発明は、従来の製造方法の以上のような問題点を解消
させ、微細で焼結性に優れた高純度ムライト質粉末の製
造方法を提供することを目的′とする。
It is an object of the present invention to solve the above-mentioned problems of conventional manufacturing methods and to provide a method for manufacturing fine, high-purity mullite powder with excellent sinterability.

(問題点を解決するための中段) この目的を達成するため本発明者らはゾル−ゲル法につ
いて鋭意研究した結果、ベーマイトゾルと非晶質シリカ
分散水溶液をkhO@ /8 ionのモル比が1.5
以上になるように混合し、この混合液をpH値が3以下
になるまでaaして生成したゲルを、乾燥、粉砕、加熱
することに19優れた高純度ムライト質粉末の製造に成
功したものである。
(Middle stage for solving the problem) In order to achieve this objective, the present inventors conducted extensive research on the sol-gel method, and found that the boehmite sol and amorphous silica dispersion aqueous solution were mixed at a molar ratio of khO@/8 ions. 1.5
We succeeded in producing a high-purity mullite powder that is excellent in drying, pulverizing, and heating the gel that is produced by mixing the above mixture and aa until the pH value becomes 3 or less. It is.

本発明では反応性の高いベーマイトゾル(γ−hbo 
(OH) )1に用いるのが特徴で、通常のジブサイト
(ATOs−3H鵞0)から成るアルミナゾルではジブ
サイトが安定な構造をとるためシリカ成分との反応性が
低く、極めて高温度に長時間保持しても未反乙のシリカ
やアルミナが残在して高純lのムライト以外造すること
ができない。このベーマイトゾルは、ベーマイトの分散
水浴液を80C以上に加熱しながら硝酸、塩酸等の無機
酸やrn酸等の有a#I!を適量加え、解膠することに
よって得られる。
In the present invention, highly reactive boehmite sol (γ-hbo
(OH) ) 1, and in alumina sol made of ordinary gibsite (ATOs-3H), gibsite has a stable structure, so it has low reactivity with silica components, and can be kept at extremely high temperatures for a long time. However, unrefined silica and alumina remain, making it impossible to produce anything other than high-purity mullite. This boehmite sol is prepared by heating a boehmite dispersion water bath solution to 80C or higher and then adding a #I! It is obtained by adding an appropriate amount of and peptizing it.

また、スピネル型欠陥構造をとり活性度の高いガンマ−
アルミナ(r −Ajl!vOs )を前記の酸で解膠
することによっても、反応性の高いベーマイトゾルを得
ることができる。
In addition, it has a spinel-type defect structure and has a highly active gamma
A highly reactive boehmite sol can also be obtained by peptizing alumina (r-Ajl!vOs) with the above-mentioned acid.

非晶質シリカについてはと(I/c限定しないが、反り
活性が高いコロイダルシリカ(シリカゾル)やシリカ砿
粒子が好ましい。
Regarding amorphous silica, colloidal silica (silica sol) and silica particles having high warpage activity are preferred, although they are not limited to I/c.

コクィダルシリカはシリカの超微粒子が水中に分散して
いるコロイド溶液で、シリカ倣粒子には湿式法で製造さ
れたホワイトカーゼンや乾式法のヒユームドシリカがあ
る。
Coquidal silica is a colloidal solution in which ultrafine silica particles are dispersed in water, and silica imitation particles include white casen produced by a wet process and fumed silica produced by a dry process.

これらのベーマイトゾルと非晶質シリカ分散水溶液をA
 ih Os /8 i 0xのモル比がムライト組成
の1.5、あるいはアルミナと固溶体を形底する1、5
以上の化石に混合し、この混合液のpH1?[を3以下
になるまで加熱等により濃縮する。
These boehmite sol and amorphous silica dispersion aqueous solution are
ih Os /8 i 0x molar ratio is 1.5 for mullite composition, or 1,5 for solid solution with alumina
Mix with the above fossils, and the pH of this mixture is 1? [Concentrate by heating etc. until it becomes 3 or less.

混合液のpH値を3以下に限定した理由は、この範囲に
おいて生成するゲル組成が化学旨論的に均質となると共
にゲル容積が極小となって取扱い易(なるためである。
The reason why the pH value of the mixed solution is limited to 3 or less is that the gel composition produced in this range becomes stoichiometrically homogeneous and the gel volume becomes extremely small, making it easy to handle.

pH値が3を越えるとゲル容積が増大したり、ゲル組成
の制御が難しくなったり、また焼結体特性の優れたムラ
イト結晶粉末が得られな(なつ友すして適当でない。
If the pH value exceeds 3, the gel volume increases, it becomes difficult to control the gel composition, and a mullite crystal powder with excellent sintered properties cannot be obtained (this is not suitable at all).

このように生成し次ムライト(質)組成のゲルt−t 
ooc以上の温度で乾燥してから、ボールミルや攪拌ば
ル等の粉砕装置でコンタミネーションに留意しなから微
粉砕する。得られたゲル微粉末を大気雰囲気で焼成した
り、また高温高圧下で水熱処理したりしてムライト結晶
を晶析することによって、微細で焼結性に優れた高純度
ムライト質が生成する。
The gel t-t produced in this way has a mullite (quality) composition.
After drying at a temperature above ooc, it is finely pulverized using a pulverizing device such as a ball mill or stirring bar, taking care to avoid contamination. A fine, high-purity mullite with excellent sinterability is produced by calcining the obtained fine gel powder in the air or hydrothermally treating it at high temperature and pressure to crystallize mullite crystals.

本発明により得られたムライト質粉末は極めて高い純度
を有し、ムライト単一槽から成っている。
The mullite powder obtained according to the present invention has extremely high purity and consists of a single mullite bath.

またX線回折法より求め次結晶子径は45ないし50 
nmと微細であるから、焼結性にも優れ1500C以下
の@匿でも容易に理論密度の98に以上の高VB度焼結
体が得られる。
Also, the crystallite diameter determined by X-ray diffraction method is 45 to 50.
Since it is as fine as nanometers, it has excellent sinterability, and a high VB degree sintered body with a theoretical density of 98 or higher can be easily obtained even at a temperature of 1500 C or lower.

なお本発明で開示した方法をムライト以外のケイ酸アル
ミニ9ム、例えばシリマナイト(ムIhOs”8 i0
鵞)+ f lン酸アルミニ9ム、ケルマニウム酸アル
ミニ9ム等にも適用が可能であり、本発明は高価な有機
質原料を用いない経済的にも優れた製法である。
Note that the method disclosed in the present invention can be applied to aluminum silicates other than mullite, such as sillimanite (IhOs).
It can also be applied to aluminum phosphate, aluminum kermanate, etc., and the present invention is an economically superior manufacturing method that does not use expensive organic raw materials.

(実施例) 以下、実施例について述べる。(Example) Examples will be described below.

実施例−1 市販のガンマ−アルミナ(昭和軽金属社製。Example-1 Commercially available gamma alumina (manufactured by Showa Light Metal Company).

γ−Ago、″UA−6605 @、AjtOs 97
.4%、 if、16ss1.7%)を80C以上で水
和させてからtx酸を適歓〃口えて生成したベーマイト
ゾルに、コロイダルシリカ(日本シリカニ業社製# ”
N1psij B220A−s8 !Ox  92.4
9iC、ATOs  0.5!% 、Jt、1oss 
6.0%)を入40./5102 のモル比が1.5 
Kなるように加え、混合液のpf(値が2になるまで加
熱、a縮した。生成したゲルを乾燥、粉砕後1400C
で1時間焼成して得られた粉末のX@回折図形を第1図
に示す、検出されたピークはすべてムライトに基因する
ものであり、結晶子径は45 nmであった。
γ-Ago, ″UA-6605 @, AjtOs 97
.. 4%, if, 16ss 1.7%) was hydrated at 80C or above, and then tx acid was added to the boehmite sol produced, and colloidal silica (manufactured by Nippon Silikani Gyo Co., Ltd. #"
N1psij B220A-s8! Ox 92.4
9iC, ATOs 0.5! %, Jt, 1oss
6.0%) 40. /5102 molar ratio is 1.5
K, and heated until the pf value of the mixture became 2. After drying and crushing the resulting gel, it was
The X@ diffraction pattern of the powder obtained by firing for 1 hour is shown in FIG. 1. All of the detected peaks were due to mullite, and the crystallite diameter was 45 nm.

実施例−2 実施例−富で用いたガンマ−アルミナを80C以上で水
和させてから硝酸を適普加えて生成したベーマイトゾル
に、実施例−1で用いたコロイダルシリカを入1に20
@ /8 i 020モル比が1.8になる工うに加え
、混合液の、H値が3になるまで加熱、績縮しfc、生
成したゲルを乾燥、粉砕後tsoocで雪時間焼成して
得られ九粉末のxai回折図形から検出されたピークは
すべてムライトに基因するものであり、結晶子径は50
 nmであった。
Example-2 The colloidal silica used in Example-1 was added to the boehmite sol produced by hydrating the gamma-alumina used in Example-Fu at 80C or higher and adding nitric acid as appropriate.
@ /8 i In addition to adjusting the molar ratio of 020 to 1.8, the mixed solution was heated until the H value reached 3, shrinked and dried, and the resulting gel was dried, crushed, and then baked in a tsooc. The peaks detected from the xai diffraction pattern of the nine powders obtained were all due to mullite, and the crystallite diameter was 50.
It was nm.

比較例−冨 アルミナゾル(触媒化学工業社製、°0ムTALO−I
D@AS−31)に実施例で用いたコロイダルシリカ′
 をムZ@Os/8i02のモル比が1.5になるよう
に加え、混合液のpH値が2になるまで加熱、@縮した
。生成したゲルを乾燥、粉砕後1400℃で1時間焼成
して得られた粉末のX41回折図形からムライトのほか
にグリストノζライトとα−ムロ03のピークが検出き
れた。
Comparative example - Tomi alumina sol (manufactured by Catalysts Kagaku Kogyo Co., Ltd., °0m TALO-I
Colloidal silica used in the example for D@AS-31)
was added so that the molar ratio of Z@Os/8i02 was 1.5, and the mixture was heated and condensed until the pH value of the mixture became 2. The resulting gel was dried and pulverized, and then calcined at 1400° C. for 1 hour. From the X41 diffraction pattern of the powder obtained, in addition to mullite, peaks of glystono ζite and α-mulo 03 were detected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例−重で生成したムライト粉末のX線回
折図形である。 第   1    図 20QtKべ 手続補正書(自発) 昭和61年4月14日
FIG. 1 is an X-ray diffraction pattern of mullite powder produced in Example-2. No. 1 Figure 20 QtK procedural amendment (voluntary) April 14, 1986

Claims (1)

【特許請求の範囲】[Claims] ベーマイトゾルと非晶質シリカ分散水溶液をAl_2O
_3/SiO_2のモル比が1.5以上になるように混
合し、この混合液をpH値が3以下になるまで濃縮して
生成したゲルを乾燥、粉砕、加熱することを特徴とする
高純度ムライト質粉末の製造方法。
Boehmite sol and amorphous silica dispersion aqueous solution are mixed with Al_2O
High purity characterized by mixing so that the molar ratio of _3/SiO_2 is 1.5 or more, concentrating this mixture until the pH value becomes 3 or less, and drying, pulverizing, and heating the resulting gel. A method for producing mullite powder.
JP60120694A 1985-06-05 1985-06-05 Production of mullite powder of high purity Granted JPS61281013A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60120694A JPS61281013A (en) 1985-06-05 1985-06-05 Production of mullite powder of high purity
DE19863618576 DE3618576A1 (en) 1985-06-05 1986-06-03 Process for preparing highly pure mullite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60120694A JPS61281013A (en) 1985-06-05 1985-06-05 Production of mullite powder of high purity

Publications (2)

Publication Number Publication Date
JPS61281013A true JPS61281013A (en) 1986-12-11
JPH0448726B2 JPH0448726B2 (en) 1992-08-07

Family

ID=14792655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60120694A Granted JPS61281013A (en) 1985-06-05 1985-06-05 Production of mullite powder of high purity

Country Status (2)

Country Link
JP (1) JPS61281013A (en)
DE (1) DE3618576A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265859A (en) * 1987-04-23 1988-11-02 Agency Of Ind Science & Technol Ceramics insulating material
JPH0288957A (en) * 1988-09-27 1990-03-29 Nohmi Bosai Ltd Gas sensitive thin-film element and production thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692266B2 (en) * 1989-08-30 1994-11-16 秩父セメント株式会社 Method for producing mullite-cordierite composite ceramics
US5316752A (en) * 1991-04-26 1994-05-31 Vista Chemical Company Process for preparing mixed oxides
FR2803437B1 (en) * 2000-01-04 2002-12-13 Electricite De France PROCESS FOR PRODUCING CERAMIC SUBSTRATES FOR PHOTOVOLTAIC CELLS

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533738A (en) * 1968-12-16 1970-10-13 Grace W R & Co Process for the preparation of synthetic mullite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265859A (en) * 1987-04-23 1988-11-02 Agency Of Ind Science & Technol Ceramics insulating material
JPH0288957A (en) * 1988-09-27 1990-03-29 Nohmi Bosai Ltd Gas sensitive thin-film element and production thereof

Also Published As

Publication number Publication date
JPH0448726B2 (en) 1992-08-07
DE3618576C2 (en) 1989-10-12
DE3618576A1 (en) 1986-12-11

Similar Documents

Publication Publication Date Title
del Monte et al. Stabilization of tetragonal ZrO2 in ZrO2–SiO2 binary oxides
US4829031A (en) Method of preparing ceramic compositions at lower sintering temperatures
Douy Polyacrylamide gel: an efficient tool for easy synthesis of multicomponent oxide precursors of ceramics and glasses
Lee et al. Preparation of Portland cement components by poly (vinyl alcohol) solution polymerization
Hirata et al. Characterization and Sintering Behavior of Alkoxide‐Derived Aluminosilicate Powders
JPS61205621A (en) Stabilized zirconia, manufacture and use for ceramic composition
Sales et al. Crystallization of sol-gel derived glass ceramic powders in the CaO-MgO-Al 2 O 3-SiO 2 system: Part II Cordierite
Monrós et al. Effect of hydrolysis time and type of catalyst on the stability of tetragonal zirconia-silica composites synthesized from alkoxides
JPS62223009A (en) Production of alpha-sialon powder
JPS61281013A (en) Production of mullite powder of high purity
JPH0339967B2 (en)
Roy et al. Synthesis and characterization of sol-gel-derived chemical mullite
JPS62202813A (en) Production of mullite fine powder containing uniformly dispersed zirconia
US4774068A (en) Method for production of mullite of high purity
JP3190060B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
JPS6357383B2 (en)
JPH042608A (en) Method for synthesizing zircon powder
KR100328943B1 (en) Method for preparing silica radome by slip casting process
EP0582644B1 (en) Process for preparing mixed oxides
JPH06219828A (en) Production of mullite-silicon carbide combined ceramics
JPS63144111A (en) Production of ultrafine powder of mullite having composition of stoichiometric amount
JPS61281065A (en) Manufacture of high temperature strength alumina silica baseceramic sintered body
JPH07101723A (en) Production of alpha alumina powder
JPH02102169A (en) Mullite composition
JPH05147924A (en) Production of alumina-silica powder