JPS6128064Y2 - - Google Patents

Info

Publication number
JPS6128064Y2
JPS6128064Y2 JP816181U JP816181U JPS6128064Y2 JP S6128064 Y2 JPS6128064 Y2 JP S6128064Y2 JP 816181 U JP816181 U JP 816181U JP 816181 U JP816181 U JP 816181U JP S6128064 Y2 JPS6128064 Y2 JP S6128064Y2
Authority
JP
Japan
Prior art keywords
swash plate
cylinder block
partition wall
chamber
stopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP816181U
Other languages
Japanese (ja)
Other versions
JPS57121782U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP816181U priority Critical patent/JPS6128064Y2/ja
Publication of JPS57121782U publication Critical patent/JPS57121782U/ja
Application granted granted Critical
Publication of JPS6128064Y2 publication Critical patent/JPS6128064Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【考案の詳細な説明】 本考案は冷媒を圧縮する回転斜板式圧縮機に関
し、特に潤滑機構の改善に関するものである。
[Detailed Description of the Invention] The present invention relates to a rotary swash plate compressor for compressing refrigerant, and particularly relates to an improvement in the lubrication mechanism.

一般に、この種の回転斜板式圧縮機は、互いに
軸方向に整合して結合された2つのシリンダブロ
ツク内に設けられた斜板室内に駆動軸に傾斜して
固装された斜板に収納し、該斜板の回転に伴つて
ピストンがシリンダボア内を往復摺動し、冷媒の
圧縮作用を行なうように構成されている。前記斜
板とピストンとの間にはボールとシユーとが互い
に滑動自在に介設され、該斜板の回転運動のピス
トンの往復運動への変換が円滑に行なわれるよう
になつている。そして、これらの斜板、シユー、
ボールおよびピストン間の接触部分には激しい摩
擦が発生しており、このため、これらの接触部分
には潤滑油を常時供給する必要がある。
In general, this type of rotary swash plate compressor is housed in a swash plate that is tilted to the drive shaft and fixed in a swash plate chamber provided in two cylinder blocks that are connected and aligned in the axial direction. As the swash plate rotates, the piston slides back and forth within the cylinder bore, compressing the refrigerant. A ball and a shoe are slidably interposed between the swash plate and the piston, so that rotational movement of the swash plate is smoothly converted into reciprocating movement of the piston. And these swash plates,
Severe friction occurs in the contact areas between the ball and the piston, and therefore it is necessary to constantly supply lubricating oil to these contact areas.

前記接触部分の潤滑は主に、当該圧縮機の構造
により前記シリンダブロツク内下方に前記油溜り
または該油溜りと前記斜板室とを仕切る仕切壁上
の潤滑油を回転する前記斜板によりはね上げてオ
イルミスト状にしてこれら接触部分に供給するこ
とにより行なつている。
The contact portions are mainly lubricated by the rotating swash plate splashing up lubricating oil on the oil pool in the lower part of the cylinder block or on the partition wall that partitions the oil pool and the swash plate chamber due to the structure of the compressor. This is done by supplying the oil in the form of oil mist to these contact areas.

しかしながら、当該圧縮機の始動直後には、前
述のごとく前記ピストンが前記シリンダボア内で
往復摺動を開始し、かつ該シリンダボアの側端に
ある吸入口に設けられた吸入弁の作動開始によ
り、該シリンダボアと該吸入口により連通する低
圧室内の圧力が低下しはじめる。更に、該低圧室
内の圧力低下は、該低圧室と前記駆動軸とその嵌
合孔との間の隙間及びそこに配設されたニードル
ベアリングのニードル間の隙間により連通された
前記斜板室内の圧力を低下させる。特に、当該圧
縮機が始動前に所定時間停止されていたときに
は、前記低圧室内の圧力は該低圧室と連通する各
空間の圧力と平衡して同一圧力にあるため始動直
後における減圧変化は甚大なものである。従つ
て、該低圧室と連通する各空間の一部、即ち前記
斜板室内の圧力も始動直後においては急激に低下
する。このため、該斜板室と通孔を介し連通する
前記油溜りと仕切壁上の潤滑油に混入している冷
媒が膨張して、該潤滑油の激しい発泡現象が生
じ、該潤滑油の大部分は減圧源である前記低圧室
側へと瞬時に吸引されてしまう。その吸引された
多量の潤滑油は、更に前記低圧室から前記シリン
ダボアを経て冷房サイクルにその多くが流入する
一方、その一部は該シリンダボアと前記ピストン
との間のわずかな隙間から漏れるブローバイガス
と共に再び前記斜板室内に戻る。こうして、当該
潤滑油が前記冷房サイクルを循環し、前記ブロー
バイガスと共に徐々に前記斜板室内に戻るまでの
間に、前記油溜りと前記仕切壁上の制御板は前記
発泡現象及び前記吸引現象により涸渇してしま
う。従つて、この間は前記接触部分へ潤滑油が十
分に供給されず、摺動部材の焼き付きが発生し易
いという問題があつた。
However, immediately after the compressor is started, the piston begins to slide back and forth within the cylinder bore as described above, and the suction valve provided at the suction port at the side end of the cylinder bore starts operating. The pressure in the low pressure chamber that communicates with the cylinder bore through the suction port begins to drop. Furthermore, the pressure drop in the low pressure chamber is reduced by the pressure drop in the swash plate chamber, which is communicated by a gap between the low pressure chamber and the drive shaft and its fitting hole, and a gap between the needles of the needle bearing disposed therein. Reduce pressure. In particular, when the compressor has been stopped for a predetermined period of time before starting, the pressure inside the low pressure chamber is in equilibrium with the pressure in each space communicating with the low pressure chamber and is at the same pressure, so the change in pressure immediately after starting is significant. It is something. Therefore, the pressure within a portion of each space communicating with the low pressure chamber, that is, the swash plate chamber, also drops rapidly immediately after starting. As a result, the refrigerant mixed in the lubricating oil on the oil reservoir and partition wall, which communicates with the swash plate chamber through the through holes, expands, causing severe foaming of the lubricating oil, causing most of the lubricating oil to is instantly sucked into the low pressure chamber, which is the source of reduced pressure. Much of the sucked lubricating oil flows from the low-pressure chamber through the cylinder bore into the cooling cycle, while a portion of it flows together with blow-by gas leaking from a small gap between the cylinder bore and the piston. Return to the swash plate chamber again. In this way, while the lubricating oil circulates through the cooling cycle and gradually returns to the swash plate chamber together with the blow-by gas, the oil reservoir and the control plate on the partition wall are affected by the bubbling phenomenon and the suction phenomenon. It dries up. Therefore, during this period, lubricating oil is not sufficiently supplied to the contact portion, and there is a problem in that the sliding member is likely to seize.

従つて本考案は上述した不具合を解消するため
になされたものであり、当該圧縮機の始動直後等
において前記斜板室と前記油溜りとの圧力差が大
きいときに該斜板室と前記油溜りとの間の潤滑油
の通路面積を小さくして前記油溜りからの潤滑油
の流出を抑制し、しかも前記斜板室内の圧力はほ
ぼ一定となるものの前記斜板の高速なる揺動回転
による該斜板室内の気体の激しい流動現象(撹拌
現象)及び細かいが強い振動現象を伴う通常運転
時には、当該諸現象により前記油溜りの潤滑油の
発泡現象は始動直後と比べ少ないながらも発生
し、かつ該潤滑油の表面からはそのオイルミスト
が生ずる一方、前記斜板室内で前記斜板によりは
ね上げられた潤滑油のうち過剰なものは該斜板室
内壁面をつたわりその下方にある前記仕切壁の上
又は前記油溜りに貯溜されるので、このような潤
滑油の循環が順調に行ない得るように前記通路面
積を十分に大きく確保することを目的とするもの
である。この目的のために本考案は、シリンダブ
ロツクと、該シリンダブロツク内に設けられ且つ
斜板を回転自在に収納する斜板室と、前記シリン
ダブロツクの下部に設けられた油溜りと、該油溜
りの上方に設けられ且つ前記斜板の先端が接触可
能に潤滑油を保持する仕切壁と、該仕切壁の両側
縁と前記シリンダブロツクの周壁部内面との間に
設けられ且つ前記油溜りと前記斜板室とを連通す
る連通路とを備えた回転斜板式圧縮機において、
一側縁が前記仕切壁と係合し前記斜板室と油溜り
との圧力差により回動する緩衝板を前記連通路を
横断するように配設するとともに、前記シリンダ
ブロツクの周壁部内面に該緩衝板の上限位置と下
限位置とを夫々規制する上方ストツパと下方スト
ツパとを夫々突設し、前記緩衝板は上限位置にあ
るときに前記上方ストツパと協働して前記連通路
の大部分を遮断する一方、その他の位置にあると
きは前記連通路に十分な隙間を確保するように
し、前記油溜り内に常に必要量の潤滑油を保持
し、もつてボールやシユーなどの摺動部材の焼付
を防止することができる回転斜板式圧縮機を提供
するものである。
Therefore, the present invention has been made to solve the above-mentioned problems, and when the pressure difference between the swash plate chamber and the oil sump is large, such as immediately after starting the compressor, the swash plate chamber and the oil sump are The lubricating oil passage area between the swash plates is reduced to suppress the lubricating oil from flowing out from the oil reservoir, and although the pressure in the swash plate chamber remains approximately constant, the swash plate does not slant due to the high-speed rocking rotation of the swash plate. During normal operation accompanied by intense gas flow phenomena (stirring phenomena) in the plate chamber and fine but strong vibration phenomena, the bubbling phenomenon of the lubricating oil in the oil reservoir occurs due to these phenomena, although it is less than immediately after startup, and While oil mist is generated from the surface of the lubricating oil, excess lubricating oil splashed up by the swash plate in the swash plate chamber is transmitted along the wall surface of the swash plate chamber and onto the partition wall below. Alternatively, since the lubricating oil is stored in the oil reservoir, the purpose is to ensure that the passage area is sufficiently large so that the lubricating oil can be smoothly circulated. For this purpose, the present invention includes a cylinder block, a swash plate chamber provided within the cylinder block and rotatably housing a swash plate, an oil reservoir provided at the lower part of the cylinder block, and a swash plate chamber provided in the cylinder block to rotatably accommodate the swash plate. a partition wall that is provided above and holds lubricating oil so that the tip of the swash plate can come into contact with the partition wall, and a partition wall that is provided between both side edges of the partition wall and the inner surface of the peripheral wall of the cylinder block and that is connected to the oil reservoir and the slanted wall. In a rotary swash plate compressor equipped with a communication path communicating with a plate chamber,
A buffer plate whose one side edge engages with the partition wall and rotates due to the pressure difference between the swash plate chamber and the oil reservoir is disposed so as to traverse the communication path, and which is attached to the inner surface of the peripheral wall of the cylinder block. An upper stopper and a lower stopper are provided in a protruding manner to restrict the upper limit position and lower limit position of the buffer plate, respectively, and when the buffer plate is at the upper limit position, the buffer plate cooperates with the upper stopper to close most of the communication path. When the valve is shut off, and in any other position, a sufficient gap is secured in the communicating path, and the required amount of lubricating oil is always kept in the oil reservoir, thereby preventing sliding members such as balls and shoes. The present invention provides a rotary swash plate compressor that can prevent seizure.

以下、本考案の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図乃至第5図は本考案の一実施例を示し、
一対のシリンダブロツク1,1が互いに軸方向に
整合して結合され、これらシリンダブロツク1,
1には該シリンダブロツク1,1の軸心に沿つて
駆動軸用嵌合孔20(第2図参照)が穿設され、
該嵌合孔にはニードルベアリング21,21,2
1,21が配設され図示しない駆動源により駆動
される駆動軸2が挿入されている。該駆動軸2に
は斜板3が傾斜して固装され、前記シリンダブロ
ツク1,1内に形成された斜板室4内に前記駆動
軸2と一体に回転可能に配されている。
1 to 5 show an embodiment of the present invention,
A pair of cylinder blocks 1, 1 are coupled together in axial alignment, and these cylinder blocks 1,
1 is provided with a drive shaft fitting hole 20 (see FIG. 2) along the axis of the cylinder blocks 1, 1,
Needle bearings 21, 21, 2 are provided in the fitting hole.
1 and 21, and a drive shaft 2 driven by a drive source (not shown) is inserted. A swash plate 3 is obliquely fixed to the drive shaft 2 and is rotatably arranged in a swash plate chamber 4 formed in the cylinder blocks 1, 1 so as to be rotatable together with the drive shaft 2.

このシリンダブロツク1,1内には前記駆動軸
2と平行に且つ円周方向に等間隔に例えば3個の
シリンダボア5が形成され、各シリンダボア5内
に複動形のピストン6が夫々摺動自在に挿入され
ている。これらのピストン6は各々その中央部分
の内側が前記斜板3の周縁をまたぐようにえぐら
れ、そのえぐられた部分の対向する両端面に半球
状のボールポケツト7が形成され、前記ピストン
6は、これらのボールポケツト7に嵌められたボ
ール8、およびこのボール8に係合するシユー9
を介して、前記斜板3の両側面を挾持するように
して該斜板3と係合している。従つて、前記駆動
軸2の回転に伴つて前記斜板3は揺動回転してそ
の両側面に摺接される前記シユー9に押圧力を与
え、これにより前記ピストン6が夫々のシリンダ
ボア5内を往復摺動する。このシリンダボア5,
5内における前記ピストン6の往復摺動とそれに
伴う該シリンダボア5,5の夫々のシリンダヘツ
ド側に設けられた吸入口22,22の吸入弁と吐
出口23,23の吐出弁の作動により、吸入行程
時には該シリンダボア5,5と該吸入口22,2
2を介して連通する低圧室24,24側の冷媒を
該シリンダボア5,5内に吸入し、圧縮行程時に
は同様に前記吐出口23,23を介して連通する
高圧室25,25側へ該シリンダボア5,5内の
冷媒を吐出することによりポンプの働きをする。
For example, three cylinder bores 5 are formed in the cylinder blocks 1, 1 parallel to the drive shaft 2 and at equal intervals in the circumferential direction, and a double-acting piston 6 is slidable in each cylinder bore 5. is inserted into. Each of these pistons 6 is hollowed out so that the inside of its central portion straddles the periphery of the swash plate 3, and hemispherical ball pockets 7 are formed on opposite end surfaces of the hollowed out portion. , balls 8 fitted in these ball pockets 7, and a shoe 9 that engages with the balls 8.
The swash plate 3 is engaged with the swash plate 3 so as to sandwich both sides of the swash plate 3. Therefore, as the drive shaft 2 rotates, the swash plate 3 swings and rotates, applying a pressing force to the shoes 9 that are in sliding contact with both sides of the swash plate 3, thereby causing the pistons 6 to move into the respective cylinder bores 5. slide back and forth. This cylinder bore 5,
The reciprocating sliding of the piston 6 in the cylinder bores 5 and the associated operation of the suction valves of the suction ports 22, 22 and the discharge valves of the discharge ports 23, 23 provided on the cylinder head side of the cylinder bores 5, 5, respectively, cause suction. During stroke, the cylinder bores 5, 5 and the suction ports 22, 2
2, the refrigerant from the low pressure chambers 24, 24 communicating through the cylinder bores 5, 5 is drawn into the cylinder bores 5, 5, and during the compression stroke, the refrigerant is drawn into the high pressure chambers 25, 25 communicating through the discharge ports 23, 23. It works as a pump by discharging the refrigerant inside 5, 5.

前記一対のシリンダブロツク1,1の互いに隣
り合う前記シリンダボア5,5間にはこれらのシ
リンダボアと平行に延びる通孔(第2図参照)が
夫々形成され、そのうちの最下方の通孔は油溜り
10、残りの通孔は冷媒の吸入通路11および吐
出通路12として夫々利用されている。
Through holes (see FIG. 2) extending parallel to these cylinder bores are formed between the adjacent cylinder bores 5, 5 of the pair of cylinder blocks 1, 1, and the lowest through hole is an oil reservoir. 10, the remaining holes are used as a refrigerant suction passage 11 and a discharge passage 12, respectively.

この油溜り10と前記斜板3の周縁との間には
該斜板3の周縁の軌道に沿つて延びるように仕切
壁13が設けられている。この仕切壁13は、前
記各シリンダブロツク1,1の駆動軸2の嵌合孔
を形成する内周壁14,14から前記油溜り10
に向かつて半径方向外方に延出された半径方向壁
15,15の先端から直角に相臨む方向へ屈曲し
軸方向に水平に延びる2つの壁16,16同志を
互いに突き合わせ接合されてなつている。この仕
切壁13の両側縁とシリンダブロツク1の周壁部
17内面との間には前記斜板室4と前記油溜り1
0とを連通する連通路18,18が設けられてい
る。
A partition wall 13 is provided between the oil reservoir 10 and the peripheral edge of the swash plate 3 so as to extend along the trajectory of the peripheral edge of the swash plate 3. This partition wall 13 extends from the inner circumferential walls 14, 14 forming the fitting hole for the drive shaft 2 of each of the cylinder blocks 1, 1 to the oil reservoir 10.
Two walls 16, 16, which extend horizontally in the axial direction and are bent at right angles from the tips of the radial walls 15, 15 extending outward in the radial direction toward the radial direction, are butted and joined together. There is. The swash plate chamber 4 and the oil reservoir 1 are located between both side edges of the partition wall 13 and the inner surface of the peripheral wall 17 of the cylinder block 1.
0 are provided.

この連通路18,18に臨む前記仕切壁13の
駆動軸2と平行な両側縁にはその略全長に亘つ
て、前記シリンダブロツク1,1の周壁部17,
17内面に向かつて開口部を有する断面円形状の
係合溝13a,13aが形成されている。
On both side edges parallel to the drive shaft 2 of the partition wall 13 facing the communication passages 18, 18, the peripheral wall portions 17 of the cylinder blocks 1,
Engagement grooves 13a, 13a each having a circular cross section and openings toward the inner surface of 17 are formed.

夫々の係合溝13aに対向するシリンダブロツ
ク1の周壁部17内面には上方ストツパ17aと
下方ストツパ17bとが夫々複数個突設されてい
る。この上方ストツパ17a同志は第4図に示す
ように互いに軸方向に整列しており、各上方スト
ツパ17a相互間には極わずかな隙間Aが夫々設
けられている。前記下方ストツパ17b同志も同
様に第5図に示すように駆動軸2の軸方向に整列
しているが、各下方ストツパ17b相互間には大
きな隙間Bが夫々設けられている。
A plurality of upper stoppers 17a and a plurality of lower stoppers 17b are protruded from the inner surface of the peripheral wall portion 17 of the cylinder block 1 facing the respective engagement grooves 13a. The upper stoppers 17a are aligned with each other in the axial direction as shown in FIG. 4, and a very small gap A is provided between each upper stopper 17a. The lower stoppers 17b are similarly aligned in the axial direction of the drive shaft 2 as shown in FIG. 5, but a large gap B is provided between each of the lower stoppers 17b.

緩衝板19,19が一側縁を前記係合溝13
a,13aに夫々回動自在に係合して設けられ、
各緩衝板19は前記仕切壁13の軸方向の長さに
対応する長さを有する平板状の基部19aと、そ
の一側縁に全長に亘つて断面円形状に形成された
頭部19bとから成り、前記連通路18を横断す
るように配設されている。前記仕切壁13の係合
溝13a内に回転可能に嵌合された前記頭部19
bを支点として前記上方ストツパ17aと前記下
方ストツパ17bとの間を回動可能にされてい
る。尚、前記緩衝板19は前記シリンダブロツク
1の周壁部17の内周面との間に常に隙間Cを置
いて回動する幅を有するとともに前記斜板室4と
前記油溜り10との圧力差によつて回動されるよ
うな比重の材質をもつて形成されている。
The buffer plates 19, 19 connect one side edge to the engagement groove 13.
a, 13a, respectively, are rotatably engaged with each other,
Each buffer plate 19 includes a flat base 19a having a length corresponding to the axial length of the partition wall 13, and a head 19b having a circular cross section over the entire length on one side edge of the base 19a. It is arranged so as to cross the communication path 18. The head 19 is rotatably fitted into the engagement groove 13a of the partition wall 13.
It is rotatable between the upper stopper 17a and the lower stopper 17b using b as a fulcrum. The buffer plate 19 has a width that allows it to rotate with a gap C always maintained between it and the inner circumferential surface of the peripheral wall portion 17 of the cylinder block 1, and also to accommodate the pressure difference between the swash plate chamber 4 and the oil reservoir 10. It is made of a material with a specific gravity that allows it to be rotated.

上記構成において、当該圧縮機の停止時には前
記緩衝板19は前記下方ストツパ17bに着座し
ている。このとき、前記斜板室4と前記油溜り1
0とは前記隙間B,Cおよび前記緩衝板19の頭
部19bと前記仕切壁13の係合溝13bとの間
の隙間Dを連通されている。
In the above configuration, the buffer plate 19 is seated on the lower stopper 17b when the compressor is stopped. At this time, the swash plate chamber 4 and the oil reservoir 1
0 communicates with the gaps B and C and the gap D between the head 19b of the buffer plate 19 and the engagement groove 13b of the partition wall 13.

当該圧縮機の始動直後には、前述したように前
記低圧室24,24内の圧力が低下しはじめる。
この低圧室24,24内の圧力低下は、前記斜板
室4が前記駆動軸2とその嵌合孔20との間の隙
間及びそこに配設された前記ニードルベアリング
21,21,21,21のニードル間の隙間によ
り該低圧室24,24と連通しているため、前記
斜板室4内の圧力P2を低下させる。特に、当該圧
縮機が始動前に所定時間停止されていた場合に
は、前記低圧室24,24内の圧力は該低圧室と
連通する各空間の圧力と平衡して同一圧力にある
ため始動直後における減圧変化は甚大なものとな
る。従つて、該低圧室24,24と連通する各空
間の一部、即ち前記斜板室4内の圧力P2もその始
動直後においては急激に低下する。このような減
圧過程により、前記仕切壁13上及び前記油溜り
10内の潤滑油の発泡現象が生ずると共に減圧源
である前記低圧室24,24側へ向かう吸引現象
が生ずる。このため前記斜板室4側の圧力P2と油
溜り10側の圧力P1との差の増大が、前記緩衝板
19を前記斜板室4側に回動せしめ第3図に2点
鎖線で示すように前記上方ストツパ17aに押し
つける。このとき、前記斜板室4と前記油溜り1
0とは前記隙間A,CおよびDのみによつて連通
されており、該隙間Aは前述したように極めて狭
小であるので、前記連通路18の開口面積は非常
に小さくなる。その結果、前記油溜り10内の発
泡現象によつて上昇する潤滑油は一度に流出する
ことなく徐々に前記斜板室4へ供給されるので、
圧縮機の始動と同時に該油溜り10内の潤滑油が
瞬間的に涸渇することもなく前記斜板室4内の潤
滑油も瞬間的に涸渇することがない。
Immediately after the compressor is started, the pressure in the low pressure chambers 24, 24 begins to decrease as described above.
This pressure drop in the low pressure chambers 24, 24 is caused by the swash plate chamber 4 due to the gap between the drive shaft 2 and its fitting hole 20 and the needle bearings 21, 21, 21, 21 disposed therein. Since the needles communicate with the low pressure chambers 24, 24 through the gaps between the needles, the pressure P2 in the swash plate chamber 4 is reduced. In particular, if the compressor has been stopped for a predetermined period of time before starting, the pressure in the low pressure chambers 24, 24 will be at the same pressure in equilibrium with the pressure in each space communicating with the low pressure chamber, so immediately after starting The depressurization change at will be enormous. Therefore, the pressure P2 in a portion of each space communicating with the low-pressure chambers 24, 24, that is, the swash plate chamber 4, also drops rapidly immediately after starting. This pressure reduction process causes the lubricating oil on the partition wall 13 and in the oil reservoir 10 to bubble, and also to cause a suction phenomenon toward the low pressure chambers 24, which are the pressure reduction sources. Therefore, an increase in the difference between the pressure P 2 on the side of the swash plate chamber 4 and the pressure P 1 on the side of the oil reservoir 10 causes the buffer plate 19 to rotate toward the swash plate chamber 4, as shown by the two-dot chain line in FIG. Press it against the upper stopper 17a as shown in FIG. At this time, the swash plate chamber 4 and the oil reservoir 1
0 is communicated with only through the gaps A, C, and D, and since the gap A is extremely narrow as described above, the opening area of the communication path 18 is extremely small. As a result, the lubricating oil rising due to the foaming phenomenon in the oil reservoir 10 is gradually supplied to the swash plate chamber 4 without flowing out all at once.
The lubricating oil in the oil reservoir 10 is not instantaneously depleted at the same time as the compressor is started, and the lubricating oil in the swash plate chamber 4 is also not depleted instantaneously.

次に、当該圧縮機の始動後、通常運転状態に入
るのに伴い前記斜板室4と前記油溜り10との圧
力P2,P1同志は徐々に平衡状態になるが、斯かる
P2,P1同志が平衡状態になるにつれそれまで前記
上方ストツパ17aに当接していた前記緩衝板1
9は、該上方ストツパ17aから離間して前記下
方ストツパ17b側に回動する。この緩衝板19
が前記上方ストツパ17aから離間して前記下方
ストツパ17bに当接するまでの間は、前記連通
路18には隙間Cが確保され、該緩衝板19が前
記下方ストツパ17bに当接した状態では前記連
通路18には隙間Bが確保される。しかし、通常
運転時には前記斜板3の高速なる揺動回転による
該斜板室4内の撹拌現象及び振動現象とこれら現
象による発泡現象により、前記緩衝板19は、細
かく連続的に上下回動を繰り返す状態となり、下
方ストツパ17bと前記上方ストツパ17aとの
間に位置することがある。このような状態では、
前記隙間BおよびCが夫々確保され、前記油溜り
10の潤滑油はその発泡現象により前記油溜り1
0から前記斜板室4側へ該隙間BおよびCを通し
て適量供給されるとともに、冷房サイクルからブ
ローバイガスにより前記斜板室4内に戻された潤
滑油及び該斜板室4内で前記斜板3によりはね上
げられた潤滑油のうち過剰な潤滑油は該斜板室4
からその内壁面をつたわり前記隙間BおよびCを
通して前記油溜り10に帰還する。
Next, after the compressor starts, the pressures P 2 and P 1 in the swash plate chamber 4 and the oil reservoir 10 gradually reach an equilibrium state as the compressor enters a normal operating state.
As P 2 and P 1 reach an equilibrium state, the buffer plate 1, which had been in contact with the upper stopper 17a,
9 is separated from the upper stopper 17a and rotates toward the lower stopper 17b. This buffer plate 19
A gap C is ensured in the communication path 18 until the buffer plate 19 is separated from the upper stopper 17a and comes into contact with the lower stopper 17b, and when the buffer plate 19 is in contact with the lower stopper 17b, the communication path A gap B is secured in the passage 18. However, during normal operation, the buffer plate 19 repeatedly moves up and down finely and continuously due to the stirring and vibration phenomena in the swash plate chamber 4 due to the high-speed rocking rotation of the swash plate 3 and the bubbling phenomenon caused by these phenomena. state, and may be located between the lower stopper 17b and the upper stopper 17a. In such a situation,
The gaps B and C are each secured, and the lubricating oil in the oil sump 10 is caused to bubble up into the oil sump 1.
0 to the swash plate chamber 4 side through the gaps B and C, and the lubricating oil is returned to the swash plate chamber 4 by blow-by gas from the cooling cycle and is splashed up by the swash plate 3 in the swash plate chamber 4. Excess lubricating oil is removed from the swash plate chamber 4.
From there, the oil flows through the inner wall surface and returns to the oil sump 10 through the gaps B and C.

従つて、該油溜り10は常に適量の潤滑油を保
持することができる。
Therefore, the oil reservoir 10 can always hold an appropriate amount of lubricating oil.

尚、上述した実施例では複数の前記上方ストツ
パ17aを整列させて各上方ストツパ17a相互
間に隙間Aを設けるようにしたが、複数の該上方
ストツパ17aを整列させたものに替えて、第6
図に示すように、前記緩衝板19に対応する軸方
向の全長に亘つて一体に突出する単一の突出体1
7a′として、該突出体17a′の前記緩衝板19と
の接触面に凹部A′を形成することにより前記緩
衝板19との間に隙間を設けるようにしてもよ
い。
In the above embodiment, the plurality of upper stoppers 17a are arranged to provide a gap A between each upper stopper 17a, but instead of aligning the plurality of upper stoppers 17a, a sixth
As shown in the figure, a single protruding body 1 integrally protrudes over the entire length in the axial direction corresponding to the buffer plate 19.
As 7a', a gap may be provided between the protrusion 17a' and the buffer plate 19 by forming a recess A' in the contact surface with the buffer plate 19 of the protrusion 17a'.

また、第6図に示すように単一の突出体17
a′に凹部を設けることなく、該突出体17a′と前
記緩衝板19との相互の接触面の製造上の寸法誤
差を利用して隙間を得るようにしてもよい。
Further, as shown in FIG. 6, a single protruding body 17
Instead of providing a recess at a', the gap may be obtained by utilizing dimensional errors in manufacturing of the contact surfaces between the protrusion 17a' and the buffer plate 19.

以上説明したように本考案によれば、シリンダ
ブロツクと、該シリンダブロツク内に設けられ且
つ斜板を回転自在に収納する斜板室と、前記シリ
ンダブロツクの下部に設けられた油溜りと、該油
溜りの上方に設けられ且つ前記斜板の先端が接触
可能に潤滑油を保持する仕切壁と、該仕切壁の両
側縁と前記シリンダブロツクの周壁部内面との間
に設けられ且つ前記油溜りと前記斜板室とを連通
する連通路とを備えた回転斜板式圧縮機におい
て、一側縁が前記仕切壁と係合し前記斜板室と油
溜りとの圧力差により回動する緩衝板を前記連通
路を横断するように配設するとともに、前記シリ
ンダブロツクの周壁部内面に該緩衝板の上限位置
と下限位置とを夫々規制する上方ストツパと下方
ストツパとを夫々突設し、前記緩衝板は上限位置
にあるときに前記上方ストツパと協動して前記連
通路の大部分を遮断する一方、その他の位置にあ
るときは前記連通路に十分な隙間を確保するよう
にしたので、当該圧縮機の始動直後に前記油溜り
内の潤滑油が涸渇することがなく、しかも通常運
転時には前記連通路の開口面積を十分に確保する
ようにしたので、前記斜板室内の過剰な潤滑油は
該斜板室の内壁面をつたわり前記油溜りに貯溜さ
れると共に、必要とされる潤滑油は前記連通路を
通して該油溜りから前記斜板室内へ供給でき、こ
れに依つて、ボールやシユーなどの摺動部材の焼
付きを防止できる等の効果を奏する。
As explained above, according to the present invention, there is provided a cylinder block, a swash plate chamber provided in the cylinder block and rotatably housing a swash plate, an oil reservoir provided at a lower part of the cylinder block, and a swash plate chamber provided in the cylinder block to rotatably accommodate the swash plate. A partition wall that is provided above the reservoir and holds lubricating oil so that the tip of the swash plate can come into contact with the partition wall, and a partition wall that is provided between both side edges of the partition wall and the inner surface of the peripheral wall of the cylinder block and that is connected to the oil reservoir. In a rotary swash plate compressor having a communication passage communicating with the swash plate chamber, the communication passage includes a buffer plate whose one side edge engages with the partition wall and rotates due to a pressure difference between the swash plate chamber and the oil reservoir. An upper stopper and a lower stopper are disposed so as to cross the passage, and protrude from the inner surface of the peripheral wall of the cylinder block to restrict the upper limit position and lower limit position of the buffer plate, respectively, and the buffer plate is located at the upper limit position. When the compressor is in this position, it cooperates with the upper stopper to block most of the communication passage, while when it is in any other position, a sufficient gap is secured in the communication passage. Since the lubricating oil in the oil reservoir does not dry up immediately after startup, and a sufficient opening area of the communication passage is ensured during normal operation, excess lubricating oil in the swash plate chamber is drained away from the swash plate chamber. Necessary lubricating oil can be supplied from the oil reservoir to the swash plate chamber through the communication passage, thereby preventing the sliding of balls, shoes, etc. This has effects such as being able to prevent seizure of members.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例に依る回転斜板式圧
縮機の従断面図、第2図は第1図の−線断面
図、第3図は第2図の部分拡大図、第4図は第3
図の−線断面図、第5図は第3図のV−V線
断面図、第6図は本発明の別の実施例に使用する
上方ストツパを示す図である。 1……シリンダブロツク、3……斜板、4……
斜板室、10……油溜り、13……仕切壁、17
……シリンダブロツクの周壁部、17a……上方
ストツパ、17b……下方ストツパ、18……連
通路、19……緩衝板、A,B,C,D……隙
間。
Fig. 1 is a secondary sectional view of a rotary swash plate compressor according to an embodiment of the present invention, Fig. 2 is a sectional view taken along the line - - in Fig. 1, Fig. 3 is a partially enlarged view of Fig. 2, and Fig. 4 is the third
5 is a sectional view taken along the line V--V in FIG. 3, and FIG. 6 is a view showing an upper stopper used in another embodiment of the present invention. 1... Cylinder block, 3... Swash plate, 4...
Swash plate chamber, 10...Oil sump, 13...Partition wall, 17
... Peripheral wall of cylinder block, 17a ... Upper stopper, 17b ... Lower stopper, 18 ... Communication passage, 19 ... Buffer plate, A, B, C, D ... Gap.

Claims (1)

【実用新案登録請求の範囲】 1 シリンダブロツクと、該シリンダブロツク内
に設けられ且つ斜板を回転自在に収納する斜板
室と、前記シリンダブロツクの下部に設けられ
た油溜りと、該油溜りの上方に設けらた且つ前
記斜板の先端が接触可能に潤滑油を保持する仕
切壁と、該仕切壁の両側縁と前記シリンダブロ
ツクの周壁部内面との間に設けられ且つ前記油
溜りと前記斜板室とを連通する連通路とを備え
た回転斜板式圧縮機において、一側縁が前記仕
切壁と係合し前記斜板室と油溜りとの圧力差に
より回動する緩衝板を前記連通孔を横断するよ
うに配設するとともに、前記シリンダブロツク
の周壁部内面に該緩衝板の上限位置と下限位置
とを夫々規制する上方ストツパと下方ストツパ
とを夫々突設し、前記緩衝板は上限位置にある
ときに前記上方ストツパと協働して前記連通路
の大部分を遮断する一方、その他の位置にある
ときは前記連通路に十分な隙間を確保するよう
にしたことを特徴とする回転斜板式圧縮機。 2 前記両ストツパは夫々互いに整列する複数個
の突起より成り、上方ストツパの各突起間には
極くわずかな隙間を、下方ストツパの各突起間
には大きな隙間を設けたことを特徴とする実用
新案登録請求の範囲第1項記載の回転斜板式圧
縮機。
[Claims for Utility Model Registration] 1. A cylinder block, a swash plate chamber provided within the cylinder block and rotatably housing a swash plate, an oil reservoir provided at the lower part of the cylinder block, and a partition wall provided above and holding lubricating oil so that the tip of the swash plate can come into contact with the partition wall; In a rotary swash plate compressor having a communication passage communicating with a swash plate chamber, a buffer plate whose one side edge engages with the partition wall and rotates due to a pressure difference between the swash plate chamber and an oil reservoir is connected to the communication hole. an upper stopper and a lower stopper are provided on the inner surface of the peripheral wall of the cylinder block to respectively restrict the upper limit position and lower limit position of the buffer plate, and the buffer plate is placed in the upper limit position. The rotating slope is characterized in that when the upper stopper is in the position, most of the communication path is blocked by cooperation with the upper stopper, while when the rotation angle is in the other position, a sufficient gap is secured in the communication path. Plate compressor. 2. A practical use characterized in that both of the stoppers are each composed of a plurality of protrusions that are aligned with each other, and a very small gap is provided between each protrusion of the upper stopper, and a large gap is provided between each protrusion of the lower stopper. A rotating swash plate compressor according to claim 1 of the patent registration claim.
JP816181U 1981-01-23 1981-01-23 Expired JPS6128064Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP816181U JPS6128064Y2 (en) 1981-01-23 1981-01-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP816181U JPS6128064Y2 (en) 1981-01-23 1981-01-23

Publications (2)

Publication Number Publication Date
JPS57121782U JPS57121782U (en) 1982-07-29
JPS6128064Y2 true JPS6128064Y2 (en) 1986-08-20

Family

ID=29806325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP816181U Expired JPS6128064Y2 (en) 1981-01-23 1981-01-23

Country Status (1)

Country Link
JP (1) JPS6128064Y2 (en)

Also Published As

Publication number Publication date
JPS57121782U (en) 1982-07-29

Similar Documents

Publication Publication Date Title
US3888604A (en) Compressor for a refrigerating machine
US4637293A (en) Slant plate type hydraulic device
KR100235514B1 (en) Piston for compressors
KR101121945B1 (en) Fixed displacement piston type compressor
KR980009888A (en) Swash plate compressor
JPH05231309A (en) Structure for lubrication in piston type compressor
JPS6128064Y2 (en)
JP5846012B2 (en) Swash plate compressor
US4544331A (en) Swash-plate type compressor
US4289453A (en) Swash-plate type compressor
KR100235513B1 (en) Piston of a compressor
JPH09166074A (en) Sawsh plate lubricating structure of swash plate piston type variable displacement pump
CN112412792B (en) Compressor and refrigeration cycle device with same
JPS6242159B2 (en)
JPS6240557B2 (en)
JPH0626447A (en) Hydraulic pump motor
JPS6042234Y2 (en) Rotating swash plate compressor
JP2007002853A (en) Lubricating structure for fixed displacement piston type compressor
JP5146807B2 (en) Lubricating structure of swash plate compressor and swash plate compressor
JP2990877B2 (en) Swash plate compressor
KR101348854B1 (en) Compressor
JPS6042232Y2 (en) Rotating swash plate compressor
JP3575933B2 (en) Swash plate type fluid pump / motor
JPS6123672Y2 (en)
WO2022050183A1 (en) Variable-capacity swash-plate-type compressor