JPS61279068A - Molten carbonate fuel cell - Google Patents

Molten carbonate fuel cell

Info

Publication number
JPS61279068A
JPS61279068A JP60121774A JP12177485A JPS61279068A JP S61279068 A JPS61279068 A JP S61279068A JP 60121774 A JP60121774 A JP 60121774A JP 12177485 A JP12177485 A JP 12177485A JP S61279068 A JPS61279068 A JP S61279068A
Authority
JP
Japan
Prior art keywords
tile
cathode
separator
anode
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60121774A
Other languages
Japanese (ja)
Inventor
Minoru Hotta
実 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP60121774A priority Critical patent/JPS61279068A/en
Publication of JPS61279068A publication Critical patent/JPS61279068A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To press an electrode against a tile at required surface pressure even if the dispersion of thickness exists in the electrode by independently applying the force pressing the electrode against the tile and the force fastening the periphery for sealing. CONSTITUTION:In a fuel cell, a tile 1 impregnated with molten carbonate is placed between a cathode 2 and an anode 3, and they are partitioned with a separator 4 to form multiple layers. Manifold plates 5 and 6 having inner hollowed portions 5a and 6a in the center are placed between the tile 1 and the separator 4, and each periphery of the tile 1, separator 4, manifold plates 5 and 6 is fastened for sealing. The inner hollowed portions 5a and 6a are made crooked in a thickness direction to form the passage of fluid and to give spring action so as to position passage plates 7 and 8. By the passage plates 7 and 8 having spring action, the cathode 2 and anode 3 are pressed against the tile 1 at the required surface pressure.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は燃料の有する化学エネルギーを直接電気エネル
ギーに変換させるエネルギ一部門で用いる溶融炭酸塩燃
料電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to molten carbonate fuel cells used in the energy sector for converting the chemical energy of fuel directly into electrical energy.

[従来の技術] 現在までに提案されている溶融炭酸塩燃料電池としては
、たとえば、第5図に示す如く、電解質として溶融炭酸
塩を多孔質物質に浸み込ませてなるタイル(電解質板a
を、カソードbとアノードCの両電極で両面から挟み、
カソードb側に作動流体としてCO2を含んだ空気dを
供給すると共に、7ノードC側に作動流体としてH2等
の燃料を供給することによりカソードbとアノードCと
の間で発生する電位差により発電が行われるようにした
ユニットを、セパレータfを介して多層に積層させ、適
当な締付力で固定させるようにした構成のものがある。
[Prior Art] Molten carbonate fuel cells that have been proposed to date include, for example, tiles (electrolyte plate
is sandwiched between both electrodes, cathode B and anode C, from both sides,
By supplying air d containing CO2 as a working fluid to the cathode b side and supplying fuel such as H2 as a working fluid to the 7 node C side, power generation is generated by the potential difference generated between the cathode b and anode C. There is a configuration in which units configured to perform this process are stacked in multiple layers with separators f interposed in between and fixed with an appropriate tightening force.

[発明が解決しようとする問題点] ところが、従来の燃料電池では、タイルa、カソードb
5アノードC1セパレータfを重ねて外周部を所定の締
付力で締め付けて燃料電池を組み立てたとき、カソード
b及びアノードCをタイルaに押し付けるための手段と
して、第5図に示す如き波形の凹凸gをセパレータhに
固定する方式、あるいは、第6図に示す如く、セパレー
タfに突起りを成形させた方式のものが採用されている
ため、上記波形の凹凸9や突起りの高ざを所定に設定し
ておかないと、外周部に締付力を付与した際、セパレー
タfによるカソード2及びアノード3の電極板の過加圧
現象を生じさせることがおり、タイルaの割れを生じさ
せるおそれがある。又、カソード2、アノード3の各電
極の製作誤差で厚みにバラ付きがあると、かかる電極を
タイルaに均一に押し付けることができなかった。更に
、従来では、電極をタイルに押()付ける際に電極の保
持のために金網を用いる例もおるが、この金網によりガ
スの電極への接触が不十分となる問題がある。
[Problems to be solved by the invention] However, in the conventional fuel cell, tile a, cathode b
5. When the fuel cell is assembled by stacking the anode C1 separator f and tightening the outer periphery with a predetermined tightening force, a wave-shaped unevenness as shown in FIG. Since a method in which g is fixed to a separator h, or a method in which protrusions are formed on the separator f as shown in Fig. 6 is adopted, the height of the above-mentioned waveform irregularities 9 and protrusions can be adjusted to a predetermined height. If this setting is not made, when a tightening force is applied to the outer periphery, overpressure may occur on the electrode plates of the cathode 2 and anode 3 due to the separator f, which may cause cracks in the tile a. There is. Furthermore, if the thicknesses of the cathode 2 and anode 3 electrodes varied due to manufacturing errors, it was not possible to press the electrodes uniformly onto the tile a. Furthermore, conventionally, there are cases in which a wire mesh is used to hold the electrode when pressing the electrode against the tile, but this wire mesh has the problem of insufficient contact of the gas to the electrode.

そこで、本発明は、電極をタイルに押し付ける押付力と
、シールのため外周部に付与する締付力とを独立させ、
電極に製作誤差があり厚さにバラ付きがあっても必要な
面圧で電極をタイルに押し付けられるようにしようとす
るものである。
Therefore, the present invention makes the pressing force for pressing the electrode against the tile and the tightening force applied to the outer periphery for sealing independent.
The idea is to make it possible to press the electrode against the tile with the necessary surface pressure even if the electrode has manufacturing errors and variations in thickness.

[問題点を解決するための手段] 本発明は、溶融炭M塩を浸み込ませたタイルの両面を、
カソードとアノードの電極で挟み、その外側にセパレー
タを重ねて組み立てる燃料電池において、タイルの外周
部とセパレータの外周部との間に内部をくり扱いたマニ
ホールド板を挟み込み、シールのための締め付けはタイ
ル、マニホールド板、セパレータの外周部で行うように
し、且つマニホールド板の中央部の内部くり扱き部に、
作動流体の流路を形成し且つ所定のばね特性をもたせた
流路板を位置させ、該流路板で上記カソード及びアノー
ドをタイルから離れないように保持させるようにした構
成とする。
[Means for Solving the Problems] The present invention provides that both sides of the tile impregnated with molten carbon M salt,
In a fuel cell that is assembled by sandwiching the cathode and anode electrodes and stacking a separator on the outside, a manifold plate with a hollowed out interior is sandwiched between the outer periphery of the tile and the outer periphery of the separator, and the tightening for sealing is performed on the tile. , at the outer periphery of the manifold plate and separator, and at the internal recessed part in the center of the manifold plate,
A flow path plate that forms a flow path for the working fluid and has predetermined spring characteristics is positioned, and the cathode and anode are held by the flow path plate so as not to separate from the tiles.

[作  用] カソード側に作動流体たる空気を、又、アノード側に作
動流体たる水素を供給すると、空気はカソード側の流路
板に形成されている流路を流れて、この間に反応が行わ
れる。又、水素はアノード側の流路板に形成されている
流路を流れて、この間に反応が行われる。カソード側の
流路板とアノード側の流路板は、いずれも弾性がもだて
せであるなめ、組み立てたときにカソード、アノードを
タイルに必要な面圧で押し付けることができると共に、
カソード、アノードに製作誤差があって厚みにバラ付き
があっても、流路板のばね特性による撓みによって厚み
のバラ付きを吸収することができ、均一にタイルへ押し
付けることができる。
[Function] When air, which is a working fluid, is supplied to the cathode side, and hydrogen, which is a working fluid, is supplied to the anode side, the air flows through the channel formed in the channel plate on the cathode side, and a reaction occurs during this time. be exposed. Furthermore, hydrogen flows through a channel formed in the channel plate on the anode side, and a reaction occurs during this time. Both the channel plate on the cathode side and the channel plate on the anode side are elastic, so that when assembled, the cathode and anode can be pressed against the tile with the necessary surface pressure.
Even if the cathode and anode have manufacturing errors and variations in thickness, the deflection due to the spring characteristics of the channel plate can absorb the variation in thickness, allowing them to be pressed uniformly onto the tile.

[実 施 例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図及び第2図に示す如く、溶融炭酸塩を浸み込ませ
たタイル1を、カソード2とアノード3で両側から挟み
、セパレータ4で仕切って多層にできるようにした燃料
電池において、タイル1とセパレータ4との間に、中央
部に内部くり扱き部5a、6aを有するマニホールド板
5,6を介在させ、該マニホールド板5.6の外周部を
タイル1とセパレータ4間のスペーサとして殿能させ、
シールのための締め付けをタイル1、セパレータ4、マ
ニホールド板5,6の各外周部で行わせるようにする。
As shown in FIGS. 1 and 2, in a fuel cell, a tile 1 impregnated with molten carbonate is sandwiched between a cathode 2 and an anode 3 from both sides, and partitioned by a separator 4 to form a multilayered tile. Manifold plates 5 and 6 having internal hollow parts 5a and 6a in the center are interposed between tile 1 and separator 4, and the outer periphery of manifold plate 5.6 is used as a spacer between tile 1 and separator 4. make it possible,
Tightening for sealing is performed at each outer peripheral portion of the tile 1, separator 4, and manifold plates 5 and 6.

又、上記カソード側マニホールド板5の内部くり扱き部
5a及びアノード側マニホールド板6の内部くり汰き部
6aには、厚み方向に屈曲させて流体の流路を形成させ
ると共にばね特性を持たせてなる流路板7及び8をそれ
ぞれ位置させて、流路板7はカソード2とセパレータ4
の間、流路板8はアノード3とセパレータ4の間に介在
させ、上記シールのための締め付けとは別個にばね特性
を有する流路板7,8により必要な面圧でカソード2及
びアノード3をタイル1に押し付は得るようにする。
Further, the internal hollowed out part 5a of the cathode side manifold plate 5 and the internal hollowed out part 6a of the anode side manifold plate 6 are bent in the thickness direction to form a fluid flow path and have spring characteristics. The channel plates 7 and 8 are positioned so that the channel plates 7 are connected to the cathode 2 and the separator 4.
During this period, the channel plate 8 is interposed between the anode 3 and the separator 4, and apart from the tightening for the seal, the channel plates 7 and 8, which have spring characteristics, connect the cathode 2 and the anode 3 with the necessary surface pressure. If you press it on tile 1, you will get it.

なお、タイル1、セパレータ4、マニホールド板5,6
の各外周部の所要個所には、作動流体たる空気及び水素
ガス等の燃料を供給する流路と排出する流路が形成して
おり、前記カソード2側のマニホールド板5の内部くり
扱き部に、空気の供給側及び排出側の通路が開口させて
あつて、空気がカソード2側に導かれるようにしてあり
、又、アノード3側のマニホ・−ルド板6の内部くり央
き部には、燃料としての水素の供給側及び排出側の通路
が開口させてあり、水素がアノード3側に導かれるよう
にしである。
In addition, tile 1, separator 4, manifold plates 5 and 6
Flow paths for supplying and discharging fuel such as air and hydrogen gas, which are working fluids, are formed at required locations on the outer periphery of the manifold plate 5 on the cathode 2 side. The passages on the air supply side and the air discharge side are opened so that air is guided to the cathode 2 side, and the internal hollowed part of the manifold plate 6 on the anode 3 side is provided with an opening. The passages on the supply side and discharge side of hydrogen as fuel are opened so that hydrogen is guided to the anode 3 side.

タイル1にカソード2及びアノード3が充分に押し付け
られることがなく、カソード2、アノード3にタイル1
への接触部がないとき反応が充分に行われず、発電が行
われないことになるため、カソード2、アノード3の各
種はタイル1に押し付けられて保持されていることが必
要である。
The cathode 2 and anode 3 are not sufficiently pressed against the tile 1, and the tile 1 is pressed against the cathode 2 and anode 3.
The cathode 2 and the anode 3 need to be pressed and held against the tile 1 because if there is no contact with the tile 1, the reaction will not take place sufficiently and power generation will not occur.

マニホールド板5の内部くり抜き部5a内で且つカソー
ド2とセパレータ4との間に介在させられる流路板7は
、自身のもつばね特性により所要の面圧でカソード2を
タイル1に押し付けることができ、同様にマニホールド
板6の内部くり扱き部6a内で且つ7ノード3とセパレ
ータ4との間に介在させられる流路板8も自身のもつば
ね特性により所要の面圧でアノード3をタイル1に押し
付けることができる。これにより、カソード2、アノー
ド3に製作誤差があってもこの誤差を吸収して均一に押
し付けることができて電極の製作が容易となる。この流
路板7,8による電極の加圧は、周りを締めるシールの
ための加圧から独立させであるため、シールのだ・めの
燃料電池スタックの締付力とは無関係にカソード2、ア
ノード3の各電極をタイル1に必要な面圧で押し付ける
ことができる。これによりタイル1の割れを生じさせる
ことがなくなる。
The channel plate 7, which is interposed within the internal hollowed out portion 5a of the manifold plate 5 and between the cathode 2 and the separator 4, can press the cathode 2 against the tile 1 with a required surface pressure due to its own spring characteristics. Similarly, the channel plate 8, which is interposed within the hollowed-out portion 6a of the manifold plate 6 and between the seven nodes 3 and the separator 4, also uses its own spring characteristics to press the anode 3 against the tile 1 with the required surface pressure. Can be pushed. Thereby, even if there is a manufacturing error in the cathode 2 and anode 3, this error can be absorbed and pressed uniformly, making it easier to manufacture the electrodes. Since the pressure applied to the electrodes by the channel plates 7 and 8 is independent of the pressure applied by the surrounding seal, the cathode 2, Each electrode of the anode 3 can be pressed against the tile 1 with the necessary surface pressure. This prevents the tile 1 from cracking.

前記流路板5,6は、作動流体の流路を形成していてば
ね特性を有しているものであればよいが、具体的なもの
として、第3図及び第4図に示す如き形状のものが考え
られる。第3図の例は、第2図に示すものの斜視図で、
薄板の途中に切目9を入れて該切目9の部分で板を反対
方向に屈曲させるよ・うプレス加工して弾力性をもたせ
、且つ切目9の部分を開いて孔10を設け、作動流体が
上記孔10を通って板の表裏両面側を平行流となるよう
にしたものである。第4図の例は、薄板を波状に加工し
て適当個所に孔11を開けて作動流体が板の表裏側へ自
由に流れるようにしたものである。
The flow path plates 5 and 6 may be of any type as long as they form a flow path for the working fluid and have spring characteristics. Specifically, the flow path plates 5 and 6 may have a shape as shown in FIGS. 3 and 4. The following are possible. The example in FIG. 3 is a perspective view of what is shown in FIG.
A cut 9 is made in the middle of the thin plate, and the plate is pressed to bend in the opposite direction at the cut 9 to give it elasticity.The cut 9 is also opened to provide a hole 10 to allow the working fluid to flow. Parallel flow flows through the holes 10 on both the front and back sides of the plate. In the example shown in FIG. 4, a thin plate is processed into a corrugated shape and holes 11 are formed at appropriate locations so that the working fluid can flow freely to the front and back sides of the plate.

[発明の効果1 以上述べた如く、本発明の燃料電池によれば、タイルの
両面を挟むように位置させたカソード及びアノードの電
極板とセパレータとの間の空間に、作動流体を通過させ
且つ所定のばね特性をもたせてなる流路板を介在させ、
咳流路板のばね特性で電極板をタイルに均一に押し付は
得るようにしておるので、次の如き優れた効果を奏し得
る。
[Effect of the Invention 1] As described above, according to the fuel cell of the present invention, the working fluid is passed through the space between the cathode and anode electrode plates and the separator, which are positioned so as to sandwich both sides of the tile, and A channel plate having predetermined spring characteristics is interposed,
Since the electrode plate is evenly pressed against the tile by the spring characteristics of the cough channel plate, the following excellent effects can be achieved.

(1)電極のタイルへの押付圧とスタックのシールのた
めのマニホールドの締付圧とを独立にできるため、シー
ルのための締付圧の如何にかかわらず、タイルに対する
電極板の面圧は変らないため、タイルへの電極板の均一
抑圧を実現できると共に、タイルに割れを生じさせるこ
とを防止できる。
(1) Since the pressing pressure of the electrode against the tile and the clamping pressure of the manifold for sealing the stack can be made independent, the surface pressure of the electrode plate against the tile is independent of the clamping pressure for sealing. Since the electrode plate does not change, uniform suppression of the electrode plate to the tile can be realized, and cracking of the tile can be prevented.

(n)  電極板の厚さにバラ付きがあっても、このバ
ラ付きを流路板のばね特性で吸収でき、電極の製作が容
易となる。
(n) Even if there is variation in the thickness of the electrode plate, this variation can be absorbed by the spring characteristics of the channel plate, making it easy to manufacture the electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃料電池の断面図、第2図は第1図の
II−II断面図、第3図及び@4図はいずれも本発明
における流路板の実施例図、第5図は従来の燃料電池の
断面図、第6図は従来の燃料電池におけるセパレータの
一例を示す斜視図である。 1はタイル、2はカソード、3はアノード、4はセパレ
ータ、5,6はマニホールド板、7,8は流路板を示す
FIG. 1 is a sectional view of the fuel cell of the present invention, FIG. 2 is a sectional view taken along line II-II in FIG. The figure is a sectional view of a conventional fuel cell, and FIG. 6 is a perspective view showing an example of a separator in a conventional fuel cell. 1 is a tile, 2 is a cathode, 3 is an anode, 4 is a separator, 5 and 6 are manifold plates, and 7 and 8 are flow path plates.

Claims (1)

【特許請求の範囲】[Claims] 1)溶融炭酸塩を含浸させたタイルの両面をカソードと
アノードで挟み、その外側にセパレータを配した仕切り
をした溶融炭酸塩燃料電池において、上記タイルとセパ
レータとの間に内部くり抜き部を有するマニホールド板
を組み込んでカソードとセパレータとの間及びアノード
とセパレータとの間に各々空間を形成し、該各空間部に
、作動流体の流路を形成し且つ所定のばね特性をもたせ
た流路板を介在させ、カソード及びアノードを各流路板
でタイルに押し付けるよう構成したことを特徴とする溶
融炭酸塩燃料電池。
1) In a molten carbonate fuel cell having a partition in which both sides of a tile impregnated with molten carbonate are sandwiched between a cathode and an anode, and a separator is arranged on the outside thereof, a manifold having an internal cutout between the tile and the separator. A passage plate is formed by incorporating a plate to form a space between the cathode and the separator and between the anode and the separator, and in each of the spaces, a flow passage plate is provided which forms a flow passage for the working fluid and has predetermined spring characteristics. A molten carbonate fuel cell characterized in that the cathode and anode are interposed and pressed against the tile at each channel plate.
JP60121774A 1985-06-05 1985-06-05 Molten carbonate fuel cell Pending JPS61279068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60121774A JPS61279068A (en) 1985-06-05 1985-06-05 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60121774A JPS61279068A (en) 1985-06-05 1985-06-05 Molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPS61279068A true JPS61279068A (en) 1986-12-09

Family

ID=14819551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60121774A Pending JPS61279068A (en) 1985-06-05 1985-06-05 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPS61279068A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217959A (en) * 1985-07-15 1987-01-26 Fuji Electric Co Ltd Molten carbonate type fuel cell
JPH0193061A (en) * 1987-10-02 1989-04-12 Hitachi Ltd Molten carbonate fuel cell
JPH01140560A (en) * 1987-11-27 1989-06-01 Hitachi Ltd Fuel cell
EP0410159A1 (en) * 1989-07-24 1991-01-30 Asea Brown Boveri Ag Current collector for high temperature fuel cell
EP0418528A1 (en) * 1989-09-11 1991-03-27 Asea Brown Boveri Ag Current collector for ceramic fuel cells
EP0424691A1 (en) * 1989-10-23 1991-05-02 Asea Brown Boveri Ag Arrangement of elements for the conduction of current between ceramic hightemperature fuel cells
WO1991008595A1 (en) * 1989-11-24 1991-06-13 International Fuel Cells Corporation Fuel cell current collector
EP0432381A1 (en) * 1989-10-12 1991-06-19 Asea Brown Boveri Ag Arrangement of elements for the conduction of current between ceramic high temperature fuel cells
WO1999057781A1 (en) * 1998-05-02 1999-11-11 Ballard Power Systems Inc. Fuel cell stack assembly
FR2896623A1 (en) * 2006-01-23 2007-07-27 Renault Sas Full cell for motor vehicle, has bipolar plate supplying reactive gas to membrane electrode assembly cells and including intermediate conducting plate arranged between pressed plates delimiting conduits in which gas and coolant circulates
JP2007294407A (en) * 2006-03-28 2007-11-08 Takehiro:Kk Battery module
JP2008124033A (en) * 2006-03-28 2008-05-29 Takehiro:Kk Battery module
EP2235778A2 (en) * 2007-12-28 2010-10-06 Altergy Systems Modular unit fuel cell assembly
JPWO2014013747A1 (en) * 2012-07-17 2016-06-30 トヨタ車体株式会社 Fuel cell
JP2018536262A (en) * 2015-12-17 2018-12-06 バイエリッシェ モトーレン ヴェルケ アクチエンゲゼルシャフトBayerische Motoren Werke Aktiengesellschaft Method for manufacturing a bipolar plate

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217959A (en) * 1985-07-15 1987-01-26 Fuji Electric Co Ltd Molten carbonate type fuel cell
JPH0193061A (en) * 1987-10-02 1989-04-12 Hitachi Ltd Molten carbonate fuel cell
JPH01140560A (en) * 1987-11-27 1989-06-01 Hitachi Ltd Fuel cell
EP0410159A1 (en) * 1989-07-24 1991-01-30 Asea Brown Boveri Ag Current collector for high temperature fuel cell
EP0418528A1 (en) * 1989-09-11 1991-03-27 Asea Brown Boveri Ag Current collector for ceramic fuel cells
EP0432381A1 (en) * 1989-10-12 1991-06-19 Asea Brown Boveri Ag Arrangement of elements for the conduction of current between ceramic high temperature fuel cells
EP0424691A1 (en) * 1989-10-23 1991-05-02 Asea Brown Boveri Ag Arrangement of elements for the conduction of current between ceramic hightemperature fuel cells
WO1991008595A1 (en) * 1989-11-24 1991-06-13 International Fuel Cells Corporation Fuel cell current collector
WO1999057781A1 (en) * 1998-05-02 1999-11-11 Ballard Power Systems Inc. Fuel cell stack assembly
FR2896623A1 (en) * 2006-01-23 2007-07-27 Renault Sas Full cell for motor vehicle, has bipolar plate supplying reactive gas to membrane electrode assembly cells and including intermediate conducting plate arranged between pressed plates delimiting conduits in which gas and coolant circulates
JP2007294407A (en) * 2006-03-28 2007-11-08 Takehiro:Kk Battery module
JP2008124033A (en) * 2006-03-28 2008-05-29 Takehiro:Kk Battery module
EP2235778A2 (en) * 2007-12-28 2010-10-06 Altergy Systems Modular unit fuel cell assembly
EP2235778A4 (en) * 2007-12-28 2013-05-15 Altergy Systems Modular unit fuel cell assembly
US9614232B2 (en) 2007-12-28 2017-04-04 Altergy Systems Modular unit fuel cell assembly
JPWO2014013747A1 (en) * 2012-07-17 2016-06-30 トヨタ車体株式会社 Fuel cell
US10727511B2 (en) 2012-07-17 2020-07-28 Toyota Shatai Kabushiki Kaisha Fuel cell
JP2018536262A (en) * 2015-12-17 2018-12-06 バイエリッシェ モトーレン ヴェルケ アクチエンゲゼルシャフトBayerische Motoren Werke Aktiengesellschaft Method for manufacturing a bipolar plate
US11456465B2 (en) 2015-12-17 2022-09-27 Bayerische Motoren Werke Aktiengesellschaft Method for producing a bipolar plate

Similar Documents

Publication Publication Date Title
JP4959190B2 (en) Electrochemical system
JPS61279068A (en) Molten carbonate fuel cell
US6066409A (en) Electrochemical fuel cell stack with improved reactant manifolding and sealing
US6040076A (en) One piece fuel cell separator plate
US6777127B2 (en) Systems, apparatus and methods for bonding and/or sealing electrochemical cell elements and assemblies
EP0944926A1 (en) Fuel cell sub-assembly
US6017649A (en) Multiple step fuel cell seal
JPH084008B2 (en) Separator for fuel cell
JP5042588B2 (en) Fuel cell
JPH10228918A (en) End cell structure of fuel cell
JPH0443566A (en) Solid electrolyte type fuel cell
JPH05266912A (en) Fuel cell stack, device and method for equalizing fuel cell stack clamping force
JP3546495B2 (en) Cylindrical fuel cell
KR20170130185A (en) Electrochemical cell stack
US7670709B2 (en) Fuel cell seal with integral bridge
KR20200132294A (en) Elastomer cell frame for fuel cell and Manufacturing method thereof and Fuel cell stack comprising thereof
JPH0421988B2 (en)
JPH1092447A (en) Layer-built fuel cell
JPH0159704B2 (en)
US20070009780A1 (en) Sealing of multi-height surfaces
JPS6353857A (en) Fuel cell separator
JP2708500B2 (en) Stacked fuel cell
JPH01211868A (en) Fastening device for fuel cell
JPH10154519A (en) Fuel cell separator
JPH0727564Y2 (en) Fuel cell