JPS61276947A - Shape memory ti-ni alloy having small hysteresis and its manufacture - Google Patents

Shape memory ti-ni alloy having small hysteresis and its manufacture

Info

Publication number
JPS61276947A
JPS61276947A JP11772685A JP11772685A JPS61276947A JP S61276947 A JPS61276947 A JP S61276947A JP 11772685 A JP11772685 A JP 11772685A JP 11772685 A JP11772685 A JP 11772685A JP S61276947 A JPS61276947 A JP S61276947A
Authority
JP
Japan
Prior art keywords
shape memory
alloy
temperature
small hysteresis
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11772685A
Other languages
Japanese (ja)
Inventor
Takehisa Seo
武久 瀬尾
Yoshiyuki Murakawa
村川 義行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11772685A priority Critical patent/JPS61276947A/en
Publication of JPS61276947A publication Critical patent/JPS61276947A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To obtain a shape memory alloy having remarkably small hysteresis by subjecting a shape memory Ti-Ni alloy having a specified composition to heating, cooling, cold working and aging under prescribed conditions. CONSTITUTION:An alloy consisting of 49.0-50.3atom% Ni and the balance Ti is heated to 600-1,100 deg.C and cooled to carry out soln. heat treatment, and it is cold worked at 5-60% working rate and aged at 300-600 deg.C to obtain a shape memory Ti-Ni alloy having small hysteresis. The alloy has a composite structure consisting of a Ti-Ni phase and other phase and satisfies formulae As-Mf<=15 deg.C and Af-Ms<=15 deg.C (where Ms and Mf are martensitic transformation start and finish temps., respectively, and As and Af are reverse transformation start and finish temps., respectively).

Description

【発明の詳細な説明】 イ)産業上の利用分野 本発明は、Ti−Ni系の小ヒステリシス形状記憶合金
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A) Field of Industrial Application The present invention relates to a Ti-Ni based small hysteresis shape memory alloy.

口)従来の技術 Ti−Ni系形状記憶合金は顕著な形状記憶効果を示す
こと及び優れた機械的性質、耐食性等を有することから
最も広範囲な実用化の検討がなされているものである。
(Example) Prior Art Ti--Ni shape memory alloys are the ones that have been studied in the widest range for practical use because they exhibit a remarkable shape memory effect and have excellent mechanical properties, corrosion resistance, etc.

形状記憶効果は低温でマルテンサイト状態にある材料を
変形した後加熱すると元の形状に戻るものであり、こう
した効果を生ずる温度は合金の逆変態開始温度(As点
)、逆変態終了温度(Af点)、マルテンサイト変態開
始温度(Ms点)およびマルテンサイト変態終了温度(
Mf点)によって決定され、As点において形状記憶効
果が開始されAf点で終了するものである。
The shape memory effect is a phenomenon in which a material that is in a martensitic state at low temperatures is deformed and then returns to its original shape when heated. point), martensitic transformation start temperature (Ms point) and martensitic transformation end temperature (
The shape memory effect starts at the As point and ends at the Af point.

この形状記憶効果を生ずる際の回復力は50〜60kg
 / m rrfに及ぶものであり、この回復力を種々
の応用量へ利用する検討が成されている。
The recovery power when producing this shape memory effect is 50 to 60 kg.
/mrrf, and studies are being conducted to utilize this resilience for various applications.

その応用の代表例に形状記憶効果を繰り返し生じさせる
ことを利用したアクチュエーターがある。
A typical example of its application is an actuator that utilizes the repeated generation of a shape memory effect.

このアクチュエーターはパイアスカとしての通常のコイ
ルバネ(バイアスバネ)と形状記憶合金コイルバネとが
組み合わされたものであり、低温においては形状記憶合
金がバイアスバネよりも降伏応力の小さなマルテンサイ
ト相の状態であるためにバイアスバネの方が強く、形状
記憶合金を変形するように動作し、逆に高温においては
形状記憶合金がバイアスバネよりも降伏応力の大きなβ
相の状態となり、形状記憶合金がバイアスバネを変形す
るように動作する。
This actuator is a combination of a normal coil spring (bias spring) and a shape memory alloy coil spring, and at low temperatures the shape memory alloy is in a martensitic phase state with a lower yield stress than the bias spring. The bias spring is stronger and acts to deform the shape memory alloy, and conversely at high temperatures the shape memory alloy has a larger yield stress β than the bias spring.
phase, and the shape memory alloy acts to deform the bias spring.

この場合変態点温度が安定していることと、高温相←→
低温相の変態ヒステリシスが小さい程小さな温度範囲に
おいてアクチュエーターとしての動作が容易に得られ、
また熱応答性の点からも非常に有利になる。
In this case, the transformation point temperature is stable and the high temperature phase ←→
The smaller the transformation hysteresis of the low temperature phase, the easier it is to operate as an actuator in a small temperature range.
It is also very advantageous in terms of thermal responsiveness.

しかし、従来のTi−Ni系合金においては高温相←→
低温相の変態ヒステリシス(Af−Ms)が20〜30
℃程度と大きく、このため低温相、高温和を可逆的に得
てアクチュエーターを動作させる温度範囲が大きくなら
ざるを得す、動作温度範囲が限定されることおよび熱応
答性が劣るという欠点があった。
However, in conventional Ti-Ni alloys, the high temperature phase ←→
Transformation hysteresis (Af-Ms) of low temperature phase is 20-30
℃, and as a result, the temperature range in which the actuator operates must be widened by reversibly obtaining a low temperature phase and a high temperature sum, which has the drawbacks of a limited operating temperature range and poor thermal response. Ta.

こうした観点から、高温相←→低温相の変態ヒステリシ
スが小さい形状記憶合金を得る方法としては、Ni量5
0.3at%を越えるいわゆるNi過剰組成のTi−N
i合金において、600℃以上の熱処理後(溶体化熱処
理)、600℃以下の温度で時効処理を施したり、ある
いはTi−Ni合金に第3元素として、Fe、Mnある
いはA1等を添加して中間相変態を導入する方法が提示
されている。
From this point of view, as a method for obtaining a shape memory alloy with a small transformation hysteresis of high temperature phase←→low temperature phase, the Ni content is 5.
Ti-N with a so-called Ni excess composition exceeding 0.3 at%
In the i alloy, after heat treatment at 600°C or higher (solution heat treatment), aging treatment is performed at a temperature of 600°C or lower, or by adding a third element such as Fe, Mn or A1 to the Ti-Ni alloy. A method of introducing phase transformation is presented.

しかし、上記Ni過剰組成のTi−Ni系形状記憶合金
あるいは、第3元素を添加した。Ti−Ni系形状記憶
合金は、熱間加工性が非常に劣り、高度の熱間加工技術
を必要とし、製造上問題である。
However, the above-mentioned Ti-Ni-based shape memory alloy having an excessive Ni composition or a third element was added. Ti--Ni shape memory alloys have very poor hot workability and require advanced hot working techniques, which is a problem in manufacturing.

ハ)発明が解決しようとする問題点 一方、熱間加工性の比較的容易な化学量論組成のTi−
Ni系形状記憶合金あるいは、Ni過少範囲のTi−N
i系形状記憶合金においては、上記熱−3= 処理を適用しても小ヒステリシス化は達成されなし)。
C) Problems to be solved by the invention On the other hand, Ti-
Ni-based shape memory alloy or Ti-N with insufficient Ni
In the case of i-based shape memory alloys, small hysteresis is not achieved even when the above heat treatment is applied.

本発明は、以上の問題点に関して、Ni49.0〜50
゜3at%の組成範囲におけるT i −N i系形状
記憶合金において、小ヒステリシス化を達成しようとす
るものである。
The present invention solves the above problems with Ni49.0-50
The present invention aims to achieve small hysteresis in a Ti-Ni-based shape memory alloy in a composition range of 3 at%.

二)問題点を解決するための手段 本願発明者らは、種々検討を行った結果、上記組成範囲
のTi−Ni系形状記憶合金を600〜1100℃の温
度範囲で加熱冷却(溶体化熱処理)し、その後。
2) Means for Solving the Problems As a result of various studies, the inventors of the present application have determined that a Ti-Ni shape memory alloy having the above composition range is heated and cooled in a temperature range of 600 to 1100°C (solution heat treatment). And then.

加工率5〜60%の冷間加工を行い、更に300〜60
0℃の温度範囲で時効処理することにより、前記問題点
を解決するに至った。
Perform cold working at a processing rate of 5 to 60%, and further reduce to 300 to 60%.
By performing aging treatment in a temperature range of 0° C., the above-mentioned problems have been solved.

ホ)作用 本発明は、一般に溶体化熱処理、時効処理では中間相変
態が起らないとされているNi濃度49.0〜50.3
at%のTi−Ni系形状記憶合金に溶体化熱処理急冷
後に加工率5〜60%の冷間加工を施すことにより1合
金内部に加工歪を導入してのち、時効析出反応を促進し
たものである。
E) Effect The present invention is based on a Ni concentration of 49.0 to 50.3, which is generally considered to cause no intermediate phase transformation in solution heat treatment and aging treatment.
At% Ti-Ni shape memory alloy is subjected to solution heat treatment and quenching, followed by cold working at a working rate of 5 to 60% to introduce working strain into the alloy and then promote the aging precipitation reaction. be.

4一 本処理により、複相化が可能になり、中間相変態が現出
する結果として、変態開始温度が上昇し、−右進変態が
遅れ、変態ヒステリシス(Af−Ms)が小さくなるの
である。
The 4-strand process makes it possible to create multiple phases, and as a result of the appearance of intermediate phase transformation, the transformation start temperature increases, the rightward transformation is delayed, and the transformation hysteresis (Af-Ms) becomes smaller. .

次に、本発明の処理温度、冷間加工率の限定理由を述べ
る。溶体化熱処理温度については、600℃未満におい
ては、T i N iマトリックス中への他相の十分な
固溶が得られなく、その効果が十分でない。また110
0℃を越えると、酸化によりTi元素の滅失が問題とな
るので、600〜1100℃の温度範囲に限定した。
Next, the reasons for limiting the processing temperature and cold working rate of the present invention will be described. Regarding the solution heat treatment temperature, if it is less than 600° C., sufficient solid solution of other phases in the T i Ni matrix cannot be obtained, and the effect is not sufficient. 110 again
If the temperature exceeds 0°C, loss of Ti element due to oxidation becomes a problem, so the temperature range was limited to 600 to 1100°C.

時効処理温度については、600℃を越えると中間相変
態が導入できなくなり、また、300℃未満においては
中間相粒子の析出が起らないので300〜600℃の温
度範囲に限定した。
The aging treatment temperature was limited to a temperature range of 300 to 600°C because if it exceeds 600°C, mesophase transformation cannot be introduced, and if it is less than 300°C, precipitation of mesophase particles does not occur.

冷間加工については、加工率5%未満では、中間相の析
出に寄与する十分な加工歪を与えることが出来ず、また
60%を越える加工率では、被加工材が破断する等、実
際作業上で問題があるので5〜60%に限定した。
Regarding cold working, if the working rate is less than 5%, it is not possible to give sufficient working strain that contributes to the precipitation of the intermediate phase, and if the working rate exceeds 60%, the workpiece may break, etc., which may cause problems in actual work. Since there is a problem with the above, it is limited to 5 to 60%.

なお、本発明の製造方法においては、中間相変態の現出
により、小ヒステリシス化が可能であると供にNi濃度
に依存することなく、変態点を安定させることもできる
In addition, in the manufacturing method of the present invention, due to the appearance of intermediate phase transformation, it is possible to create a small hysteresis, and it is also possible to stabilize the transformation point without depending on the Ni concentration.

へ)実施例 以下、本発明を実施例に基づき説明する。f) Example The present invention will be explained below based on examples.

(実施例1) 第1表に示すような種々の合金を高周波誘導炉にて溶解
した後、鍛造およびスウェージングにより、5.8φの
線材とし、700℃にて1時間の溶体化熱処理をした。
(Example 1) Various alloys shown in Table 1 were melted in a high-frequency induction furnace, then forged and swaged to form a 5.8φ wire rod, and solution heat treated at 700°C for 1 hour. .

その後、冷間伸線加工により、断面減少率7%、2%、
36%の加工を行い、加工無しく加工率0%)の試料を
含めて各々300〜600℃で1時間の時効処理を実施
した。この状態において示差走査熱量計(以後DSC)
変態点を測定した。第1図に本発明合金第1表、B、C
の試料の冷却時、086曲線を示すが、加工率7z以上
でピークが2つ(Ms’ −Mf’ 、Ms−Mf)認
められ、中間相変態が導入されていることが明らかであ
り、同様な現象は試料Aにおいても認められた。第2図
は、086曲線を基にして試料Bで加工率20%、およ
び試料Cで加工率7%の場合について溶体化処理のまま
、および各時効処理後における変態点を示すものである
。(冷間加工を加えたものは、実際の形状記憶効果に関
係する変態点としてAs’ 、Af’Ms’ 、 Mf
’ を選んだ。) 第2図より、ヒステリシス、Af−Ms(加工を加えた
ものはAf’−Ms)あるいはAs−Mf(加工を加え
たものはAs’ −Mf’ )は、冷間加工を行なわな
い場合に20℃以上の大きな値を示しているが、本発明
においては、5℃程度と著しく小さくなっている。
After that, by cold wire drawing, the cross-section reduction rate was 7%, 2%,
Aging treatment was performed at 300 to 600° C. for 1 hour for each sample, including samples with 36% processing and no processing (processing rate 0%). In this state, a differential scanning calorimeter (hereinafter referred to as DSC)
The transformation point was measured. Figure 1 shows Table 1 of the alloys of the present invention, B, C.
When the sample is cooled, it shows a 086 curve, but two peaks (Ms'-Mf', Ms-Mf) are observed at working rates of 7z or more, and it is clear that an intermediate phase transformation has been introduced, and the same This phenomenon was also observed in sample A. FIG. 2 shows the transformation points after solution treatment and after each aging treatment for Sample B at a processing rate of 20% and Sample C at a processing rate of 7% based on the 086 curve. (For those subjected to cold working, the transformation points related to the actual shape memory effect are As', Af'Ms', Mf
' I chose. ) From Figure 2, the hysteresis, Af-Ms (Af'-Ms for the processed one) or As-Mf (As'-Mf' for the processed one), is the same when no cold working is performed. Although it shows a large value of 20°C or more, in the present invention, it is significantly smaller to about 5°C.

第1表 また、溶体化熱処理、冷間加工、時効処理の条件の組合
せにより、ヒステリシスをほぼ0℃とすることも十分可
能である。
Table 1 also shows that by combining the conditions of solution heat treatment, cold working, and aging treatment, it is possible to achieve a hysteresis of approximately 0°C.

(実施例2) 本発明合金成分範囲のTi−Ni系形状記憶合金のNi
濃度と変態温度の変動を調査した。固溶化熱処理は70
0℃X1hr、冷間加工率(冷間伸線)3部、時効処理
は400℃、450℃、500 ’CX 1 hrの条
件である。第3図には、M s (M s ’ )点の
挙動、またAf(Af’ )点の挙動を示す。固溶化熱
処理後のMs、Af点はNi濃度のわずかな変動により
、大きな挙動を示している。一方、冷間加工を行ない、
時効処理を実施した場合はMs’ 、 Af’点はNi
濃度に依ることなく、はぼ一定の温度域になっている。
(Example 2) Ni of Ti-Ni-based shape memory alloy within the alloy composition range of the present invention
The variation of concentration and transformation temperature was investigated. Solution heat treatment is 70
The conditions were 0° C. x 1 hr, cold working rate (cold wire drawing) of 3 parts, and aging treatment at 400° C., 450° C., and 500' CX 1 hr. FIG. 3 shows the behavior of the M s (M s ′) point and the behavior of the Af (Af′) point. The Ms and Af points after the solution heat treatment show significant behavior due to slight fluctuations in the Ni concentration. On the other hand, cold working is performed,
When aging treatment is performed, Ms' and Af' points are Ni
Regardless of the concentration, the temperature range is almost constant.

ト)発明の効果 以上述べたように本発明による合金は、従来合金に比べ
著しくヒステリシスが小さく、このため、小さな温度範
囲においてアクチュエーター等の動作が容易に得られ、
また熱応答性にも非常に優れており、極めて有益なもの
である。
g) Effects of the Invention As mentioned above, the alloy according to the present invention has significantly smaller hysteresis than conventional alloys, and therefore, the operation of actuators etc. can be easily obtained in a small temperature range.
It also has excellent thermal responsiveness, making it extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図−1,2,3は、種々加工率における冷却時DS
C曲線を示す図、第2図−1,2は、試料Bで加工率2
0%、および試料Cで加工率7%の場合について時効処
理後における変動点を示す図、第3図は、Ni濃度によ
るM s (M s ’ )、Af(Af’ )点の挙
動を示す図である。 (幻幕l鶴彫 (ジ)ryt罫シ
Figure 1-1, 2, and 3 show DS during cooling at various processing rates.
The diagram showing the C curve, Figure 2-1 and 2, is sample B with a processing rate of 2.
Figure 3 shows the behavior of the M s (M s ′) and Af (Af′) points depending on the Ni concentration. It is a diagram. (Genmaku l crane carving (ji) ryt ruler

Claims (1)

【特許請求の範囲】 1 原子%でNi49.0〜50.3%、残部Ti及び
不可避的不純物よりなる合金でTi−Ni相及び他相と
の複合組織を有し、As−Mfが15℃以下、Af−M
sが15℃以下であることを特徴とする小ヒステリシス
Ti−Ni系形状記憶合金。 Ms:マルテンサイト変態開始温度 Mf:マルテンサイト変態終了温度 As:逆変態開始温度 Af:逆変態終了温度2 原子
%でNi49.0〜50.3y,、残部Ti及び不可避
的不純物よりなる合金を600〜1100℃で加熱冷却
後、加工率5〜60%の冷間加工を施し、その後300
〜600℃で時効処理を行ない、As−Mfが15℃以
下、Af−Msが15℃以下とすることを特徴とする小
ヒステリシスTi−Ni系形状記憶合金の製造方法。
[Claims] An alloy consisting of 49.0 to 50.3% Ni at 1 atomic%, the balance Ti and unavoidable impurities, and has a composite structure with a Ti-Ni phase and other phases, and has an As-Mf temperature of 15°C. Below, Af-M
A small hysteresis Ti-Ni shape memory alloy, characterized in that s is 15°C or less. Ms: Martensitic transformation start temperature Mf: Martensitic transformation end temperature As: Reverse transformation start temperature Af: Reverse transformation end temperature 2 An alloy consisting of 49.0 to 50.3y of Ni at atomic %, the balance Ti and inevitable impurities is 600% After heating and cooling at ~1100℃, cold working with a processing rate of 5 to 60% is performed, and then 300℃
A method for producing a small hysteresis Ti-Ni shape memory alloy, characterized in that aging treatment is performed at ~600°C, and As-Mf is kept at 15°C or less and Af-Ms is kept at 15°C or less.
JP11772685A 1985-05-31 1985-05-31 Shape memory ti-ni alloy having small hysteresis and its manufacture Pending JPS61276947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11772685A JPS61276947A (en) 1985-05-31 1985-05-31 Shape memory ti-ni alloy having small hysteresis and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11772685A JPS61276947A (en) 1985-05-31 1985-05-31 Shape memory ti-ni alloy having small hysteresis and its manufacture

Publications (1)

Publication Number Publication Date
JPS61276947A true JPS61276947A (en) 1986-12-06

Family

ID=14718765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11772685A Pending JPS61276947A (en) 1985-05-31 1985-05-31 Shape memory ti-ni alloy having small hysteresis and its manufacture

Country Status (1)

Country Link
JP (1) JPS61276947A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265680A (en) * 2005-03-25 2006-10-05 Toyohashi Univ Of Technology Superelastic material and its production method
US7306683B2 (en) * 2003-04-18 2007-12-11 Versitech Limited Shape memory material and method of making the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7306683B2 (en) * 2003-04-18 2007-12-11 Versitech Limited Shape memory material and method of making the same
US7789975B2 (en) 2003-04-18 2010-09-07 Versitech Limited Shape memory material and method of making the same
JP2006265680A (en) * 2005-03-25 2006-10-05 Toyohashi Univ Of Technology Superelastic material and its production method

Similar Documents

Publication Publication Date Title
JPH01279736A (en) Heat treatment for beta titanium alloy stock
JPS6237353A (en) Manufacture of shape memory alloy
JPS5920440A (en) Shape memory copper alloy
JPS61276947A (en) Shape memory ti-ni alloy having small hysteresis and its manufacture
US2645575A (en) Chromium-nickel titanium base alloys
JPH01242763A (en) Manufacture of ti-ni shape memory alloy reduced in hysteresis
JPH02270938A (en) Iron-based shape memorizing alloy and preparation thereof
JPS61183455A (en) Manufacture of ni-ti type shape memory material
JPS59150047A (en) Shape memory alloy and its manufacture
JPS60141852A (en) Manufacture of shape memory alloy
JP2603463B2 (en) Low temperature reversible shape memory alloy
JPH0238547A (en) Manufacture of ti-ni shape memory alloy
JP3271329B2 (en) Shape memory alloy
JPS624462B2 (en)
JP3344946B2 (en) Functionally graded alloy and method for producing the same
JPS60187652A (en) High-elasticity alloy
JPS6314834A (en) Tiniv shape memory alloy
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
Dutkiewicz et al. Phase transitions during continuous heating of martensitic CuAlMn alloys
JP2573507B2 (en) Shape memory alloy and manufacturing method thereof
JPH03150333A (en) Shape memory alloy and its manufacture
JPS62211339A (en) Ni-ti-cr shape memory alloy
JPH108168A (en) Nickel-titanium-zirconium(hafnium) shape memory alloy improved in workability
JPH059686A (en) Production of shape memory niti alloy
JPS62199758A (en) Manufacture of shape memory alloy material