JPS61276303A - Manufacture of rare earths permanent magnet - Google Patents

Manufacture of rare earths permanent magnet

Info

Publication number
JPS61276303A
JPS61276303A JP60118515A JP11851585A JPS61276303A JP S61276303 A JPS61276303 A JP S61276303A JP 60118515 A JP60118515 A JP 60118515A JP 11851585 A JP11851585 A JP 11851585A JP S61276303 A JPS61276303 A JP S61276303A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
alloy
compound
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60118515A
Other languages
Japanese (ja)
Inventor
Itaru Okonogi
格 小此木
Seiji Miyazawa
宮沢 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP60118515A priority Critical patent/JPS61276303A/en
Publication of JPS61276303A publication Critical patent/JPS61276303A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Abstract

PURPOSE:To obtain a homogeneous pressure compact having no internal strain, by heat-sintering after orienting of the magnetic field and molding the power alloy, mixed with binding material, of the rare earths magnet under heating at a temp. higher than normal. CONSTITUTION:The alloy compound composed of the rare earths metal, the transition metal and semimetals, Y, Sm, Ce, Nd, Gd, Tb, Dy, etc. are dissolved and prepared the alloy and then the impalpable powder of them, e.g., 2mum-100mum in size, are prepared. Thereafter the magnetic mixture are formed after heating them putting and them in fluid state using organic resin, fats, and oils, etc. for binding material. A magnetic raw compound 4 is produced from this magnetic mixture by using the magnetic field extrusion forming method. This compound is loaded into a barrel 2 and heated around the outside by a heater 3 and then pushed forward by a plunger 1. Consequently, they pass through the region which is formed the magnetic field, i.g. 8KOe or more, in a gap part 6 holded by an electromagnet coil 5, wherein a compact 8 is formed as the result of air cooling and solidifying, and then they are heat sintered by the electric furnace.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類永久磁石の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing rare earth permanent magnets.

〔発明の概要〕[Summary of the invention]

本発明は、希土類永久磁石の製造方法において、特に焼
結希土類磁石の改良であり、希土類磁石合金粉末と結合
剤からなる混合物を磁場押出成形法により成形後焼結し
てつくられることにより、焼結磁石の寸法精度を高め、
2次加工を極めて少くできる上、磁気特性の劣化を防止
できるようにしたものである。
The present invention relates to a method for producing rare earth permanent magnets, in particular an improvement to sintered rare earth magnets, and is produced by molding and sintering a mixture of rare earth magnet alloy powder and a binder using a magnetic field extrusion method. Improving the dimensional accuracy of the compacted magnet,
This makes it possible to minimize secondary processing and prevent deterioration of magnetic properties.

〔従来の技術〕[Conventional technology]

従来の焼結希土類磁石の製造方法は、例えば、特公昭5
B−9804号の様に、希土類磁石合金粉末を高い圧力
(数トン/、、TI)で圧縮成形するためのものであっ
た。
Conventional methods for producing sintered rare earth magnets include, for example,
Like No. B-9804, it was for compression molding rare earth magnet alloy powder at high pressure (several tons/, TI).

〔本発明が解決しようとする問題点及び目的〕しかし、
前述の従来技術では次のような問題点を有する。
[Problems and objectives to be solved by the present invention] However,
The above-mentioned conventional technology has the following problems.

(1)  比較的形状の単純な物品しか成形できない。(1) Only articles with relatively simple shapes can be molded.

例えば円柱、角柱1円板などの形状で、焼結後2次加工
によって製品形状に加工することを原則としている。
For example, the shape is a cylinder, a prismatic disk, etc., and as a general rule, it is processed into a product shape by secondary processing after sintering.

(2)  乾式加圧成形のため、金型表面と磁石混合粉
末の間には摩擦を生じ、圧粉成形物は不均一加圧される
ため、焼結時に収縮率に差違を生じる。
(2) Due to dry pressure molding, friction occurs between the mold surface and the magnetic mixed powder, and the compacted product is pressed unevenly, resulting in a difference in shrinkage rate during sintering.

このため物品は、変形量が大きくなり、必然的に加工量
が大きくなる。このことは、加工歪の発生が大となり、
且つ、加工時間が遅くなるので、磁気性能、コスト(生
産性)低下の原因になる。
Therefore, the amount of deformation of the article becomes large, and the amount of processing inevitably becomes large. This increases the occurrence of machining distortion,
In addition, processing time is delayed, which causes a decrease in magnetic performance and cost (productivity).

本発明は以上の問題点を解決するもので、その目的とす
るところは、希土類焼結磁石の寸法、形状精度を高め複
雑異形状まで焼結法で製造できる上、加工変質層を極力
少く出来るので、磁気性能の劣化を防止することにある
The present invention is intended to solve the above-mentioned problems, and its purpose is to improve the dimensional and shape accuracy of rare earth sintered magnets, to enable production of complex irregular shapes by the sintering method, and to minimize the number of damaged layers due to processing. Therefore, the purpose is to prevent deterioration of magnetic performance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は希土類磁石に係り特に、Y、am。 The present invention relates to rare earth magnets, particularly Y, am.

0・、Ha、Gd、Tb、Dy、などの希土類金属と遷
移金属、半金属等から構成された合金組成物である。具
体的には、8m0o11.O’eOol 、 !Ima
llpro、5oos 、などの1:5系希土類金属間
化合物磁石e 5ln(00baxou(LO8y@a
ts Zrαoss)y、a8 m (Oo ’ha1
 a u (L O8’1!Lm a五II   ’l
’1(L6!   )y、8 8mas  YILI”
’bal  0ull  y@axs) チーB   
@   sm(cobsLl 0u(LX  1/@I
LXmNicLoz)y、a 、などの2:17系希土
類金属間化合物磁石、および、HAM 7elaB 、
 MdPa Co Bなどの正方晶系希土類金属化合物
が対象となる。これら組成物は、目的とする成分で溶解
され合金をつくり、次に微粉末となす。あるいは、合金
塊は溶体化処理、時効処理などを行って、磁気的硬化処
理を終了してから微粉末となす場合がある。前記磁石粉
末は、その粒度は概ね2μm〜100μ溝の範囲が好ま
しい。100μ溝をこえてくると磁場押出成形で寸法精
度が悪くなり、又外観が荒れてくるからである。2μ鴇
以下になると粉末が酸化し易くなり工業的に製造するこ
とがむずかしくなるからである。次に結合材は、主に有
機物樹脂、油脂、ワックスなどを用いる。有機物樹脂は
、熱可履性樹脂を用い、例えばナイロン、塩化ビニール
、ゴム、mva、pvA、などである。これらは50℃
〜500℃に加熱すると、可塑性を呈し、流動状となる
。磁石粉末と結合剤の配合比率は次のようになる。磁石
粉末は、50 ’Vot%〜70 VoA外が好ましい
。これ以下では、流動性は良いが、焼結時の収縮率が大
となり、またそのため寸法。
It is an alloy composition composed of rare earth metals such as 0.0, Ha, Gd, Tb, and Dy, and transition metals, semimetals, and the like. Specifically, 8m0o11. O'eOol,! Ima
1:5 rare earth intermetallic compound magnets such as llpro, 5oos, etc.
ts Zrαoss)y, a8 m (Oo 'ha1
a u (L O8'1! Lm a5 II 'l
'1 (L6!)y, 8 8mas YILI'
'bal 0ull y@axs) Chi B
@sm(cobsLl 0u(LX 1/@I
2:17 rare earth intermetallic compound magnets such as LXmNicLoz)y, a, and HAM 7elaB,
Tetragonal rare earth metal compounds such as MdPa Co B are targeted. These compositions are melted with the desired components to form an alloy, and then made into a fine powder. Alternatively, the alloy ingot may be subjected to solution treatment, aging treatment, etc., and then turned into fine powder after completing the magnetic hardening treatment. The particle size of the magnetic powder is preferably in the range of approximately 2 μm to 100 μm. This is because when the groove exceeds 100μ, the dimensional accuracy deteriorates due to magnetic field extrusion molding, and the appearance becomes rough. This is because if the particle size is less than 2μ, the powder becomes easily oxidized, making it difficult to produce it industrially. Next, as the binding material, organic resin, oil, wax, etc. are mainly used. The organic resin used is a thermoplastic resin such as nylon, vinyl chloride, rubber, mva, pvA, etc. These are 50℃
When heated to ~500°C, it becomes plastic and fluid. The blending ratio of magnet powder and binder is as follows. The magnet powder preferably has an outside of 50' Vot% to 70 VoA. Below this, the fluidity is good, but the shrinkage rate during sintering becomes large, and the dimensions are affected accordingly.

形状精度が低下するので50 VoL%が好ましい。Since the shape accuracy decreases, 50 VoL% is preferable.

また70VoL% をこえると、押出成形しにくくなり
、所望の形状を製造しにくくなるのでこれまでとした。
Moreover, if it exceeds 70 VoL%, it becomes difficult to extrude and manufacture a desired shape, so this is the limit.

また磁場配向度が悪くなり磁気性能低下の因でもあるの
でy o vot%までが好ましい。
Further, since the degree of magnetic field orientation deteriorates and is a cause of deterioration of magnetic performance, it is preferable that the amount is up to yo vot%.

こうしてつくられた磁石混合物は、第1図に示す磁場押
出成形法により、グリ−ボディ(仮成形体)をつくる。
The magnetic mixture thus produced is used to form a green body (temporary molded body) by the magnetic field extrusion method shown in FIG.

4つ6石原料フンパウンドは、2のバレル内に装入され
、ヒーター3により外部から加熱し、1のプランジャー
にて4の流動状コンパウンドは前方に押され5の電磁石
コイルにはさまれたギャップ部6に8KO6以上の磁場
を発生させた領域を通過させ、且つそのエアーで空冷固
化させて成形体をつくることを特徴とする。この仮成形
体8は、電気炉に装入し、50℃〜500℃に除熱結合
材を蒸発揮散させ次に1000℃〜1250℃に加熱焼
結させたことを特徴とする。
The 4 and 6 raw material powder compounds are charged into the barrel 2 and heated from the outside by the heater 3, and the fluid compound 4 is pushed forward by the plunger 1 and sandwiched between the electromagnetic coils 5. The molded body is produced by passing through a region in which a magnetic field of 8KO6 or more is generated through the gap 6, and cooling and solidifying with the air. This temporary molded body 8 is characterized in that it is charged into an electric furnace, the heat removal binding material is evaporated and diffused to 50°C to 500°C, and then heated and sintered to 1000°C to 1250°C.

〔実施例〕〔Example〕

組成が原子比で(OOa! N+to、ll Praり
1879g70016B8  の希土類磁石合金109
を高周波溶解炉で溶製した。溶解合金は、ボールミルに
て粒度2μ溝〜5μ溝の微粉とし第1表に示す条件で結
合剤を混合し原料コンパウンドをつくった。
Rare earth magnet alloy 109 with a composition in atomic ratio (OOa! N+to, 1879g70016B8)
was melted in a high-frequency melting furnace. The molten alloy was milled into fine powder with a grain size of 2 to 5 microns using a ball mill, and a binder was mixed under the conditions shown in Table 1 to prepare a raw material compound.

第  1  表 なお磁石粉末は微粉末のため空気中における酸化発生熱
を防止するため、混線は、窒素ガス中で行った。次に混
練したコンパウンドは、本発明法は第1図に示す磁場押
出成形法で成形し同様従来法は第2図に示した磁場圧縮
成形法でつくった。
Table 1 Note that since the magnet powder is a fine powder, crosstalk was performed in nitrogen gas to prevent heat generated by oxidation in the air. Next, the kneaded compound was molded by the magnetic field extrusion molding method shown in FIG. 1 in the method of the present invention, and similarly by the magnetic field compression molding method shown in FIG. 2 in the conventional method.

本発明方法は、原料コンパウンド4は、2のバレル内で
ヒーター5により加熱されなから1のピストンラムによ
り常に加圧(約500〜5oar、/−)されている。
In the method of the present invention, the raw material compound 4 is not heated by a heater 5 in two barrels, but is constantly pressurized (approximately 500 to 5 oar, /-) by one piston ram.

バレル内は、所望の温度に加熱され磁石と結合材のコン
パウンドは、流動状となリ、6の空間で、コイル5によ
り約axo e〜15KOeに磁場印加され配向処理を
終え、次に7のノズルより空気又は、N2.ムrガスあ
るいは、00.ガスなどを吹き付けながら冷却固化する
のである。結合材は、熱可履性有機物樹脂を用いれば良
い。理由は混合物をシャプシャプ(流動状)とできるの
で、磁場配向し易いこと並びに複雑形状、薄肉形状に極
めて有利になるからである。−方比較例は、第2図に圧
縮成形装置の一断面図を示す。磁石粉末15は、磁場中
におかれ、上パンチ14.下パンチ13.を介して磁場
を加えながら1m/d〜5 ta /−で成形される。
The inside of the barrel is heated to a desired temperature, and the magnet and binder compound are in a fluid state.In the space of 6, a magnetic field of about axo e to 15 KOe is applied by a coil 5 to complete the orientation process, and then in the space of 7. Air or N2 from the nozzle. Murgas or 00. It is cooled and solidified while being blown with gas. As the binding material, a thermoplastic organic resin may be used. The reason is that since the mixture can be made sharp (fluid), it is easy to orient in a magnetic field, and it is extremely advantageous for complex shapes and thin shapes. FIG. 2 shows a sectional view of a compression molding apparatus for the comparative example. The magnet powder 15 is placed in a magnetic field and the upper punch 14. Lower punch 13. The molding is performed at 1 m/d to 5 ta/- while applying a magnetic field through the .

圧力発生手段は、はとんど油圧により行われる。The pressure generating means is mostly hydraulic.

本実施例で得られた素成形品の寸法形状は、410%で
、長さ1.000%に切断した。生産スピードは、5=
ooo■/時間という速さでありた。
The dimensions and shape of the raw molded product obtained in this example were 410%, and the length was cut to 1.000%. The production speed is 5=
It was as fast as ooo■/hour.

、なお比較例は、φ10X15t%を、60秒で成形で
きた。従ってその生産スピードは、900” / 時間
(60)7時間)で、本発、明方法に比べ極めて遅いも
のであった。次に試料は、φ10××10t%に切断し
、第2表に示す条件で脱バインダー処理を、続いて焼結
を行った。各々の熱処理パターンを第3図−α、bに示
す。第2表に製造条件を示す。
In addition, in the comparative example, φ10×15t% could be molded in 60 seconds. Therefore, the production speed was 900"/hour (60) 7 hours), which was extremely slow compared to the method of the present invention and the invention. Next, the sample was cut into φ10×10t%, and the results are shown in Table 2. Binder removal treatment and subsequent sintering were performed under the conditions shown.The respective heat treatment patterns are shown in Figure 3-α and b.Table 2 shows the manufacturing conditions.

第  2  表 なお脱バインダーは、真空炉中減圧下で行い、焼結はA
rガス雰囲気下で行りた。次に各試料の緒特性を第5表
に示した。
Table 2 The binder removal was carried out under reduced pressure in a vacuum furnace, and the sintering was carried out in A.
The test was carried out under an r gas atmosphere. Next, Table 5 shows the properties of each sample.

第  3  表 寸法変化については、第4wJに示す外観形状を焼結上
りのままについて、”ls”!外径をマイクロメーター
にて測定した。それによれば、本発明法は、極めて寸法
形状歪のないことがわかりた。理由は、流動状となりた
コンパウンドを加圧押出ながら成形するので均等加圧(
アイソスタティック成形)による、内部歪の発生が極め
て少いことが考えられる。一方比較例は一軸加圧成形の
ため、また固体状分散混合粉末の成形であるからどうし
でも内部歪の発生がある。このため収縮率に差異を生じ
、変形するのである。また磁気特性についても収縮率が
一定なので配向度を乱すことが少くなるためBr(残留
磁束密度)を高められた〔実施例2〕 実施例1で用いたのと同じ磁石合金を用いて、結合材に
ナイロン12を約s s vot(容量)%加え予備混
練した試料を第5図に示す装置で円筒−状磁石をつくっ
た。原料コンパウンド20はバレル19内でヒーター2
1により約200〜260℃に加熱され、スフ!j &
−18で前方へ押出される。ここで加熱により可塑化さ
れたコンパウンドは、磁場コイル23に50A〜100
入電流を加工磁場を25の目−りにて導き25の外型と
、コア26間のギャップに約8〜15KOeのラジアル
配向磁場を発生させる。可塑化され流動状となったコン
パウンド21は、ラジアル配向された加工物27は捜2
5から外へ出ると、即28のノズルより空冷され固化さ
れる。成形された円筒状磁石の寸法形状は、φ20×φ
1ax2ot%であった。円筒状磁石は真空炉中に投入
し次の条件で脱バインダー処理を行った。α5℃/分で
400℃まで加熱 約5時間キープして結合バインダー
を除去してから、10℃/分で常温まで急冷した。焼結
はArガス雰囲気炉中で行りた。
Regarding the dimensional changes in Table 3, regarding the external shape shown in No. 4 wJ as it is after sintering, "ls"! The outer diameter was measured with a micrometer. According to the results, it was found that the method of the present invention is extremely free from dimensional and shape distortion. The reason is that the fluidized compound is molded while being extruded under pressure, so even pressure is applied (
It is thought that the occurrence of internal strain is extremely small due to isostatic molding. On the other hand, since the comparative example is uniaxially pressed and molded from a solid dispersed mixed powder, internal strain occurs in both cases. This causes a difference in shrinkage rate and deformation. Regarding magnetic properties, since the contraction rate is constant, the degree of orientation is less disturbed, so Br (residual magnetic flux density) can be increased. [Example 2] Using the same magnetic alloy as used in Example 1, About ss vot (volume) % of nylon 12 was added to the material and a sample was pre-kneaded to make a cylindrical magnet using the apparatus shown in FIG. The raw material compound 20 is heated to the heater 2 in the barrel 19.
1, it is heated to about 200-260°C and it's hot! j&
Pushed forward at -18. Here, the compound plasticized by heating is applied to the magnetic field coil 23 at 50A to 100A.
The input current is applied to a machining magnetic field at 25 points to generate a radial orientation magnetic field of about 8 to 15 KOe in the gap between the outer mold 25 and the core 26. The plasticized and fluidized compound 21 is transferred to the radially oriented workpiece 27.
When it comes out from the nozzle 5, it is immediately air-cooled and solidified by the nozzle 28. The dimensions and shape of the molded cylindrical magnet are φ20×φ
It was 1ax2ot%. The cylindrical magnet was placed in a vacuum furnace and subjected to binder removal treatment under the following conditions. α Heated to 400°C at 5°C/min and held for about 5 hours to remove the binding binder, then rapidly cooled to room temperature at 10°C/min. Sintering was performed in an Ar gas atmosphere furnace.

焼結した円筒状磁石は、第6図に示すように、外径部測
定を行った。Daは端部で、Dbは長さの1/2部を測
ったものである。値は5=10コの平均値およびR(M
ax −Min )を示す。
The outer diameter of the sintered cylindrical magnet was measured as shown in FIG. Da is the end and Db is the measurement of 1/2 part of the length. The value is the average value of 5=10 and R(M
ax-Min).

一方従来法についても同様合金粉末を用いバインダーに
パラフィンを使用して圧縮成形法でφ20×φ1 B×
4t%の円筒状試料を成形した。なおtが4%というの
は、圧縮成形法では、ラジアル磁場配向できないからで
ある。次に本発明法と同一ノ条件で脱バインダー処理お
よび焼結を行った。その結果変形と割れi生じ、大変歩
留りが悪く実用上問題の多いことがわかった。
On the other hand, regarding the conventional method, using the same alloy powder and using paraffin as a binder, compression molding was performed to form φ20×φ1 B×
A 4t% cylindrical sample was molded. Note that t is 4% because radial magnetic field orientation cannot be achieved in the compression molding method. Next, binder removal treatment and sintering were performed under the same conditions as in the method of the present invention. As a result, deformation and cracking occurred, resulting in a very poor yield and many practical problems.

寸法の、s::10個のデータは次の通りであった。The data for s::10 dimensions were as follows.

Da・・・・・・’E’1&5%  B=(1,5%D
 b ・−・−x I EL Oy  R= l 55
 #このようにバラツキが大きく、所望寸法に仕上げる
ためには、加工時間が大となり、コストアップ、生産性
も低下するなどの欠点がある。
Da...'E'1&5% B=(1,5%D
b ・−・−x I EL Oy R= l 55
#There are such large variations, and there are disadvantages such as a long processing time, increased cost, and decreased productivity in order to finish to the desired dimensions.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば希土類磁石粉末と結合
剤からなる原料コンパウンドを磁場中押出成形法により
成形し、次に脱バインダー処理、続いて焼結してつくら
れる永久磁石の製造法に関し次のような効果を得られる
ことを特長とする。
As described above, the present invention relates to a method for manufacturing a permanent magnet in which a raw material compound consisting of rare earth magnet powder and a binder is molded by extrusion molding in a magnetic field, then subjected to binder removal treatment, and then sintered. It is characterized by the following effects.

内部歪のない均質加圧成形物品ができるので、焼結に−
して変形9割れの発生を防止する効果は極めて大である
。従って2次加工は、いらないか、又は、若干の加工が
最終製品とすることができる利点がある。もちろんコス
ト低減、生産性の向上も達成できる。また、今まで長さ
の制限がありた、ものが全くなくなるので形状の自由度
を高められる。特にラジアル異方性希土類焼結磁石は、
薄肉のt : 1.5%以下0.2%程度の寸法が要求
されるが従来は、圧縮成形法で製造できなかりたが、本
願では量産対応出来るようになった。このため、PMス
テップモーターの高性能化、マグロールの小型化、磁気
センサー、磁気カップリングなどの高パワー化などに特
徴を発揮できる。
A homogeneous press-formed article with no internal distortion can be produced, making it suitable for sintering.
This is extremely effective in preventing the occurrence of deformation cracks. Therefore, there is an advantage that secondary processing is not required or only a slight amount of processing is required to produce the final product. Of course, cost reduction and productivity improvement can also be achieved. Additionally, there are no longer any restrictions on length, which increases the degree of freedom in shape. In particular, radial anisotropic rare earth sintered magnets
Thin wall t: 1.5% or less, about 0.2%, is required, but conventionally this could not be manufactured by compression molding, but with the present application, it has become possible to mass produce. Therefore, it can be used to improve the performance of PM step motors, miniaturize mag rolls, and increase the power of magnetic sensors, magnetic couplings, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明にかかる磁場押出成形法の断面図、第
2図は従来法の磁場圧縮成形法の断面図第5図(α1(
A)は実施例1の脱バインダーおよび焼結条件の加熱、
保持、冷却パターン図第4図は焼結磁石の概観図、第5
図は、本発明性実施例2に係る円筒状磁石の磁場押出成
形断面図、第6[は、焼結上り円筒状磁石の概観図を示
す。 以上 xh4.饗ツシ、以モク鳳−曲世ロ4 第1図 )1!、J、−4ンτ−Digl−ン@       
   末を番素−一さ夕ひ窺ノ?クー〉ル]′::τ3
図(久)   第3図(り 辻錦鳳石、水札口
FIG. 1 is a cross-sectional view of the magnetic field extrusion molding method according to the present invention, and FIG. 2 is a cross-sectional view of the conventional magnetic field compression molding method.
A) is the debinding and heating of the sintering conditions of Example 1;
Holding and cooling pattern diagram Figure 4 is an overview of the sintered magnet, Figure 5
The figure shows a cross-sectional view of a cylindrical magnet formed by magnetic field extrusion according to Example 2 of the present invention, and the sixth figure shows an overview of a sintered cylindrical magnet. That's all xh4. 1! , J, -4nτ-Digl-n@
End of the story - Is it Yuhikino? Cool]'::τ3
Figure (Kyu) Figure 3 (Ritsuji Nishikihoseki, Mizufudaguchi

Claims (1)

【特許請求の範囲】[Claims]  希土類金属と、遷移金属からなる希土類磁石を製造す
るに当り希土類磁石合金粉末と結合剤からなる混合物を
、常温以上の温度に加熱しながら磁場配向して成形後、
焼結してつくられたことを特徴とする希土類永久磁石の
製造方法。
In order to produce rare earth magnets made of rare earth metals and transition metals, a mixture of rare earth magnet alloy powder and a binder is heated to a temperature above room temperature and oriented in a magnetic field, and then shaped.
A method for producing a rare earth permanent magnet characterized by being made by sintering.
JP60118515A 1985-05-31 1985-05-31 Manufacture of rare earths permanent magnet Pending JPS61276303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60118515A JPS61276303A (en) 1985-05-31 1985-05-31 Manufacture of rare earths permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60118515A JPS61276303A (en) 1985-05-31 1985-05-31 Manufacture of rare earths permanent magnet

Publications (1)

Publication Number Publication Date
JPS61276303A true JPS61276303A (en) 1986-12-06

Family

ID=14738535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60118515A Pending JPS61276303A (en) 1985-05-31 1985-05-31 Manufacture of rare earths permanent magnet

Country Status (1)

Country Link
JP (1) JPS61276303A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0318252A2 (en) * 1987-11-27 1989-05-31 Imperial Chemical Industries Plc Process for the production of a bonded magnet
WO1991016717A1 (en) * 1990-04-23 1991-10-31 Eastman Kodak Company Method of manufacturing high energy rare earth alloy magnets
JP2011135041A (en) * 2009-11-25 2011-07-07 Tdk Corp Method for producing rare earth sintered magnet
JP2013191609A (en) * 2012-03-12 2013-09-26 Nitto Denko Corp Rare earth permanent magnet and method for producing rare earth permanent magnet
EP2827347A4 (en) * 2012-03-12 2016-01-20 Nitto Denko Corp Rare earth permanent magnet and rare earth permanent magnet production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0318252A2 (en) * 1987-11-27 1989-05-31 Imperial Chemical Industries Plc Process for the production of a bonded magnet
WO1991016717A1 (en) * 1990-04-23 1991-10-31 Eastman Kodak Company Method of manufacturing high energy rare earth alloy magnets
JP2011135041A (en) * 2009-11-25 2011-07-07 Tdk Corp Method for producing rare earth sintered magnet
JP2013191609A (en) * 2012-03-12 2013-09-26 Nitto Denko Corp Rare earth permanent magnet and method for producing rare earth permanent magnet
EP2827347A4 (en) * 2012-03-12 2016-01-20 Nitto Denko Corp Rare earth permanent magnet and rare earth permanent magnet production method

Similar Documents

Publication Publication Date Title
CN105702444B (en) The complex sintered magnet of anisotropy comprising MnBi, its preparation method and the product containing it
Kolb et al. Laser Beam Melting of NdFeB for the production of rare-earth magnets
JP6613730B2 (en) Rare earth magnet manufacturing method
JPH0353506A (en) Manufacture of softly magnetic sintered body of fe-p alloy
KR101261099B1 (en) method for manufacturing rare earth sintering magnets
JPS61276303A (en) Manufacture of rare earths permanent magnet
US20100321139A1 (en) Permanent magnet and method of producing permanent magnet
JPS61268006A (en) Anisotropic magnet
JPH07120576B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2005171264A (en) Method of manufacturing isotropic magnet and the magnet
JPS6144942B2 (en)
JP4315340B2 (en) Magnetic field forming method, radial anisotropic ring magnet manufacturing method, magnetic field forming apparatus and radial anisotropic ring magnet
JPH07211566A (en) Manufacture of anisotropic magnet
JPS6181604A (en) Preparation of rare earth magnet
JP2020092167A (en) Arc-shaped permanent magnet and manufacturing method thereof
JPH0616447B2 (en) Method for manufacturing composite permanent magnet
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JP3138927B2 (en) Rare earth magnet manufacturing method
JPH01169910A (en) Manufacture of anisotropical nd-fe-b base magnet
JP2006019386A (en) Compacting method in magnetic field, method for manufacturing radial anisotropic ring magnet, and compacting apparatus in magnetic field
US10629370B2 (en) Production method of compact
JPS63289905A (en) Manufacture of rare earth-fe-b magnet
JP3182979B2 (en) Anisotropic magnet, manufacturing method and manufacturing apparatus
JPH04218903A (en) Manufacture of anisotropic rare earth magnet or anisotropic rare earth magnet powder
WO2004013873A1 (en) Process for producing rare earth-iron-boron magnet