JPS61275524A - Auxiliary combustion chamber for diesel engine and manufacture thereof - Google Patents

Auxiliary combustion chamber for diesel engine and manufacture thereof

Info

Publication number
JPS61275524A
JPS61275524A JP60115334A JP11533485A JPS61275524A JP S61275524 A JPS61275524 A JP S61275524A JP 60115334 A JP60115334 A JP 60115334A JP 11533485 A JP11533485 A JP 11533485A JP S61275524 A JPS61275524 A JP S61275524A
Authority
JP
Japan
Prior art keywords
combustion chamber
heat resistance
acute angle
auxiliary combustion
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60115334A
Other languages
Japanese (ja)
Other versions
JP2529823B2 (en
Inventor
Tsutomu Hirawake
平訳 勉
Hiroshi Kawamoto
博 河本
Yoji Fukazawa
深沢 洋二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP60115334A priority Critical patent/JP2529823B2/en
Publication of JPS61275524A publication Critical patent/JPS61275524A/en
Application granted granted Critical
Publication of JP2529823B2 publication Critical patent/JP2529823B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To reduce a manufacturing cost and improve durability, by forming a body of an auxiliary combustion chamber with a material having a small coefficient of thermal expansion, a high-temperature strength and a heat resistance to some extent, and forming a peripheral edge of an acute angle portion at an injection port with a material having a high heat resistance. CONSTITUTION:In an auxiliary combustion chamber for a Diesel engine, a peripheral edge of acute angle portions having a small sectional area as formed at an injection port 2 by a bottom surface 4 of a swirl chamber 3 and a bottom surface 5 of a body 1 is formed of materials 6 and 7 having a high heat resistance. The other portion of the body 1 is formed of a material having a high- temperature strength and a heat resistance to some extent. In producing the auxiliary combustion chamber, recesses 8 and 9 corresponding to a thickness of the materials 6 and 7 are formed at the peripheral edge of the acute angle portions at the injection port 2. Then, the materials 6 and 7 are built in the recesses 8 and 9, and are worked to form the injection port 2 and the acute portions of the materials 6 and 7.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はディーゼルエンジン用副燃焼室チャンバーに関
し、詳しくは副燃焼室チャンバーの噴孔の鋭角部の周縁
部を、耐熱性の素材で構成した耐熱構造とすることによ
り耐久性の向上を図ったものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sub-combustion chamber for a diesel engine, and more specifically, a heat-resistant structure in which the peripheral edge of the acute-angled part of the nozzle hole of the sub-combustion chamber is made of a heat-resistant material. This is intended to improve durability.

従来の技術と問題点 ディーゼルエンジンにおいて、ピストンにより圧縮され
た高温、高圧の空気が渦流室に流入して渦流を生じ、こ
の渦流に噴射された燃料の大部分はjlIi1m焼室で
急激に燃焼し、燃焼した高温ガスは噴孔を通って主燃焼
室に噴射されると共に1着火遅れによる一部の未燃焼燃
料は噴孔を通って、主燃焼室に噴射して完全に燃焼され
燃焼状態の改善が図られている。
Conventional Technology and Problems In a diesel engine, high-temperature, high-pressure air compressed by a piston flows into a vortex chamber to create a vortex, and most of the fuel injected into this vortex rapidly burns in the combustion chamber. The combusted high-temperature gas is injected into the main combustion chamber through the nozzle hole, and some unburned fuel due to one ignition delay is injected through the nozzle hole into the main combustion chamber where it is completely combusted and brought to a state of combustion. Improvements are being made.

しかしながら、副燃焼室チャンバー本体に噴孔を形成す
ると、噴孔と渦流室の底面と副燃焼室チャンバー本体の
底面との間に、断面積の小さい鋭角部が形成されてしま
い、且っ噴孔部は高温ガスが通過することから、かなり
の高温に曝されるため噴孔の鋭角部に、熱が蓄積されて
異常に加熱されてしまい亀裂を生じ、亀裂が一旦生じる
と熱が遮断されて、局部加熱され亀裂が更に促進し温度
が上昇してその一部が焼損、−脱落したり、更に噴孔部
が高温に曝される反面燃焼室部はシリンダヘッドに接し
て冷却されているので、比較的低温に保たれるので、こ
の間に大きな温度差が生じ、副燃焼室チャンバーの外壁
には相当の内部応力が蓄積されて引張り応力が生じ、欠
けや亀裂が発生してエンジンの耐久性が劣るという問題
があった。
However, when a nozzle hole is formed in the main body of the sub-combustion chamber, an acute angle portion with a small cross-sectional area is formed between the nozzle hole and the bottom of the swirl chamber and the bottom of the main body of the sub-combustion chamber. As high-temperature gas passes through these parts, they are exposed to quite high temperatures, so heat accumulates at the sharp corners of the nozzle holes and causes them to become abnormally heated, causing cracks, and once cracks form, the heat is cut off. , the cracks are further promoted by local heating, and the temperature rises, causing some of them to burn out or fall off.Furthermore, the nozzle hole is exposed to high temperatures, while the combustion chamber is cooled by being in contact with the cylinder head. , and is kept at a relatively low temperature, a large temperature difference occurs during this time, and considerable internal stress accumulates on the outer wall of the sub-combustion chamber, creating tensile stress, causing chips and cracks, and reducing the durability of the engine. There was a problem that it was inferior.

このように副燃焼室チャンバーは断熱性、耐熱性、耐熱
衝撃性、耐熱疲労性等が要求されて従来副燃焼室チャン
バー材として、オーステナイト系で5CH12,5UH
310,5UH661、Nimocast 80、フェ
ライト系で5UH4,マルテンサイト系で5UH616
,5UH3などの耐熱鋼や耐熱合金が用いられていたが
、オーステナイト系は熱膨張係数が大きいため熱疲労に
よって割れやすい、フェライト系は高温強度がないため
脱落や変形がおきるaNx■ocast80は高価な金
属元素を多量に含有するため非常に高価である。
In this way, the sub-combustion chamber is required to have heat insulation, heat resistance, thermal shock resistance, thermal fatigue resistance, etc., and conventionally, the austenitic material for the sub-combustion chamber is 5CH12, 5UH.
310,5UH661, Nimocast 80, 5UH4 for ferrite type, 5UH616 for martensitic type
, 5UH3 and other heat-resistant steels and heat-resistant alloys were used, but austenitic steels have a large coefficient of thermal expansion and are susceptible to cracking due to thermal fatigue, while ferritic steels have no high-temperature strength and may fall off or deform. It is very expensive because it contains a large amount of metal elements.

マルテンサイト系は熱膨張率が小さく高温強度があるた
め女形が少なく副燃焼室チャンバーとしては最適である
が、耐酸化性がないため焼損する等耐熱疲労性、耐熱衝
撃性が不充分である等満足すべきものはなかった。
Martensitic materials have a low coefficient of thermal expansion and high temperature strength, so they have a small female shape and are ideal for use as a sub-combustion chamber, but they do not have oxidation resistance, so they can burn out, and their thermal fatigue resistance and thermal shock resistance are insufficient. There was nothing to be satisfied with.

又従来同一素材によりチャンバー本体が形成されている
ため、耐熱性は全面にわたり一様である。
Furthermore, since the chamber body is conventionally formed of the same material, the heat resistance is uniform over the entire surface.

しかしながら運転時におけるチャンバー本体の温度分布
は、第12図の一例に示すように鋭角部は1000℃前
後と高く他の部分は低いので、チャンバー本体として鋭
角部には耐熱性に優れたもので、他の部分は高温強度が
あり、且つある程度の耐熱性を有すれば足れる。
However, the temperature distribution of the chamber body during operation is high at around 1000°C at the acute angle part and low at other parts, as shown in an example in Fig. 12, so the temperature distribution at the acute angle part is low. It is sufficient that the other parts have high temperature strength and a certain degree of heat resistance.

従って噴孔部をセラミックス等の耐熱材料をコーテング
することによって或いは噴孔をセラミックス材にて噴孔
管を形成して、圧入することによって噴孔部の高温強度
を高める方法等が採られているが、いずれも加工が煩雑
となり製造コストが非常に高くなって、経済的の面から
も満足すべきものはなかった。
Therefore, methods have been adopted to increase the high-temperature strength of the nozzle hole by coating the nozzle hole with a heat-resistant material such as ceramics, or by forming a nozzle tube with a ceramic material and press-fitting the nozzle hole. However, in all cases, the processing was complicated and the manufacturing cost was extremely high, so none of them were satisfactory from an economical point of view.

問題点を解決するための手段 本発明は上述した副燃焼室チャンバーの特異性に着目し
、副燃焼室チャンバー本体を熱膨張率が小さく高温強度
があり、且つある程度の耐熱性を有する素材を用いて形
成し、異常に加熱される噴孔部の鋭角部の周縁部を耐熱
性に優れた素材にて構成することにより、耐熱性、耐熱
疲労性の劣化を防止し、安く耐久性の優れたディーゼル
エンジン用副燃焼室チャンバーを提供し所期の目的を達
成しようとするものである。
Means for Solving the Problems The present invention focuses on the above-mentioned peculiarities of the auxiliary combustion chamber, and the main body of the auxiliary combustion chamber is made of a material that has a small coefficient of thermal expansion, high temperature strength, and a certain degree of heat resistance. By constructing the periphery of the acute angle part of the nozzle hole, which is heated abnormally, from a material with excellent heat resistance, it prevents deterioration of heat resistance and heat fatigue resistance, and is inexpensive and highly durable. The purpose of this invention is to provide an auxiliary combustion chamber for diesel engines to achieve the intended purpose.

その製造方法として、従来の塑性加工工程の前方押出し
加工に於いて噴孔部の鋭角部の周縁部に。
The manufacturing method is to use the conventional forward extrusion process in the plastic working process to form the periphery of the acute angle part of the nozzle hole.

耐熱性に優れた素材の厚さに相当する分だけの凹みを同
時に付加成形しておき、当該凹み部分に耐熱性に優れた
素材を溶射等により肉盛りした後、次工程の圧印加工に
よって正規の形状1寸法に仕上られるもので、溶射の肉
盛り工程のみを従来の前方押出し加工と圧印加工との工
程の間に挿入するだけで、そのための前後の煩雑な加工
や処理は不要であり、簡潔容易で加工コストの安い製造
方法を提供するするものである。
At the same time, a recess corresponding to the thickness of the heat-resistant material is additionally molded, and after the recess is overlaid with heat-resistant material by thermal spraying, etc., it is made into a regular shape by the coining process in the next process. It can be finished in a single dimension shape, and only the thermal spray overlay process is inserted between the conventional forward extrusion process and coining process, and there is no need for complicated processing before and after that. The purpose is to provide a manufacturing method that is simple, easy, and has low processing costs.

実施例 以下本発明の実施例を図面に基づいて具体的に説明する
EXAMPLES Hereinafter, examples of the present invention will be explained in detail based on the drawings.

第1図ないし第3図に示すように副燃焼室チャンバー本
体1を第1表の(1)に示す化学成分からなる高温強度
があり、且つある程度の耐熱性のあるマルテンサイト組
織を有するRIK−MBの素材にて慣用の塑性加工によ
って■切断−■圧縮−〇後方押出し−■■前方押出一■
圧印と成形するに際し、第4図に示すように、■前方押
出し加工において噴孔部の鋭角部の周縁部に厚さ2mm
、横幅3m、縦幅2閣の耐熱性に優れた素材層が形成さ
れるように凹み8および9を同時に付加加工し。
As shown in FIGS. 1 to 3, the chamber main body 1 of the sub-combustion chamber is made of RIK-1, which has the chemical components shown in (1) in Table 1, has high temperature strength, and has a martensitic structure with a certain degree of heat resistance. ■ Cutting - ■ Compression - 〇 Backward extrusion - ■■ Forward extrusion - ■ Using conventional plastic processing with MB material
When coining and forming, as shown in Figure 4, ■ 2 mm thickness is added to the periphery of the acute angle part of the nozzle hole in the forward extrusion process.
, recesses 8 and 9 were added at the same time so that a material layer with excellent heat resistance was formed with a width of 3 m and a height of 2 m.

第5図に示すように該凹み8および9に溶射により第2
表に示すA或いはBの化学成分からなる素材を溶射して
、耐熱性に優れたオーステナイト組織を有する溶射層6
およびび7を形成し、■圧印加工にて平滑な仕上形状1
寸法に仕上げられた後。
As shown in FIG.
Thermal sprayed layer 6 has an austenitic structure with excellent heat resistance by thermally spraying a material consisting of chemical components A or B shown in the table.
7, and create a smooth finished shape 1 by coining.
After finished to dimensions.

第6図に示すように加工により噴孔2を形成することに
より、鋭角部10および11に耐熱性に優れた素材層6
および7が形成される。
As shown in FIG. 6, by forming the nozzle holes 2 by processing, a material layer 6 with excellent heat resistance is formed on the acute angle portions 10 and 11.
and 7 are formed.

第1表 第2表 上記方法により形成された副燃焼室チャンバーについて
耐熱疲労試験を行った。
Table 1 Table 2 A thermal fatigue test was conducted on the auxiliary combustion chamber formed by the above method.

比較材として第1表に示す化学成分からなる副燃焼室チ
ャンバーを用いた。
As a comparative material, a sub-combustion chamber having the chemical components shown in Table 1 was used.

(1)マルテンサイト組織のRIK−MB(H)オース
テナイト組織の5UH310(III’) Nimo 
c a s t 80本試験は第7図に示す試験装置1
2に取付けられた第8図に示す保持具13に試験片の副
燃焼室チャンバー本体1を固定し、ガ不バーナ14で下
面から約950℃に加熱した後、試験袋w12を回転さ
せ副燃焼室チャンバー本体1をスプレー15の上方に移
動させて水をスプレーして約40℃まで水冷した後空冷
する。第9図に示す加熱、冷却のサイクルを300回繰
り返したのち、第11図に示すように噴孔部2の底面周
縁に発生した亀裂16の長さを測定し、その長さの合計
によって耐熱疲労性を判定した。
(1) RIK-MB (H) with martensitic structure 5UH310 (III') with austenitic structure
c a s t 80 This test was performed using test equipment 1 shown in Fig. 7.
The sub-combustion chamber main body 1 of the test specimen is fixed to the holder 13 shown in FIG. The chamber main body 1 is moved above the sprayer 15, sprayed with water, cooled to about 40° C., and then air cooled. After repeating the heating and cooling cycle shown in FIG. 9 300 times, as shown in FIG. Fatigue properties were determined.

亀裂の長さの測定結果を第10図に示した。The measurement results of the crack length are shown in FIG.

耐酸化性の低い(I)RIK−MBは酸化により生じる
スケールがひどく、スケールの成長と剥離が繰り返され
ることにより、噴孔部の鋭角部は細り脱落し焼損を起こ
してしまったが、(n)SUH310や(III ) 
N imocast 80の亀裂の長さは夫々14.1
mm、10.5nnsであったのに比し、本発明の鋭角
部を耐熱材料にて構成した(IV)および(V)の亀裂
の長さは夫々3.4mm、4.1m+oと約174に大
巾に低減し、優れた耐酸化性が付与され耐熱疲労性が著
しく向上し改善されたことが認められた。
(I) RIK-MB, which has low oxidation resistance, has severe scale caused by oxidation, and due to repeated growth and peeling of scale, the sharp corner of the nozzle hole became thin and fell off, causing burnout. )SUH310 and (III)
The crack length of N imocast 80 is 14.1 respectively.
mm and 10.5 nns, whereas the lengths of the cracks in (IV) and (V), where the acute angle part was made of a heat-resistant material, were 3.4 mm and 4.1 m+o, respectively, about 174 mm. It was recognized that the thermal fatigue resistance was greatly reduced, excellent oxidation resistance was imparted, and thermal fatigue resistance was significantly improved.

効果 ディーゼルエンジン用副燃焼室チャンバー材として、安
価で熱膨張率が小さく高温強度があり変形の少ない且つ
ある程度の耐熱性をもつ素材に、本発明による噴孔部の
鋭角部の周縁部を耐熱性、耐酸化性に優れた素材を溶射
等で肉盛りすることにより、耐熱構造とし高温に曝され
ても亀裂や焼損が防止され、耐久性に優れたディーゼル
エンジン用副燃焼室チャンバーを安価に提供できる実用
的効果は顕著である。
Effects As a material for the auxiliary combustion chamber of a diesel engine, the peripheral edge of the acute angle part of the nozzle hole according to the present invention is made of a material that is inexpensive, has a low coefficient of thermal expansion, has high temperature strength, has little deformation, and has a certain degree of heat resistance. By overlaying materials with excellent oxidation resistance by thermal spraying, etc., we have created a heat-resistant structure that prevents cracking and burnout even when exposed to high temperatures, and provides a highly durable auxiliary combustion chamber for diesel engines at low cost. The possible practical effects are remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図 本発明に係わる副燃焼室チャンバーの一例を示
す断面図 第2図 第1図の平面図 第3図 第1図の底面図 第4図 本発明の前方神品し工程における加工状態を示
す副燃焼室チャンバーの断面図第5図 溶射後の状態を
示す副燃焼室チャンバーの断面図 第6図 圧印加工後の噴孔を加工した状態を示す副燃焼
室チャンバーの断面図 第7図 熱疲労試験装置の概要図 第8図 熱疲労試験装置の試験片保持具と試験方法を示
す概要図 第9図 熱疲労試験の加熱冷却サイクルを示すグラフ 第10図 亀裂の長さの測定結果を示すグラフ第11図
 亀裂の発生状況を示す平面図第12図 副燃焼室チャ
ンバー本体の温度分布を示す断面図 1:副燃焼室チャンバー本体 2:噴孔  3:渦流室  4:渦流室底面5:チャン
バー本体の底面 6.7:耐熱性に優れた素材層 8.9:溶射等による肉盛り部の凹み 10.11:鋭角部 12:熱疲労試験装置  13:保持具14:バーナ 
 15ニスプレー 16:亀裂
Fig. 1 is a sectional view showing an example of the auxiliary combustion chamber according to the present invention. Fig. 2 is a plan view of Fig. 1. Fig. 3 is a bottom view of Fig. 1. A sectional view of the auxiliary combustion chamber shown in FIG. 5. A sectional view of the auxiliary combustion chamber shown after thermal spraying. Figure 8 is a schematic diagram of the fatigue test equipment Figure 9 is a diagram showing the test piece holder of the thermal fatigue test equipment and the test method Figure 10 is a graph showing the heating and cooling cycle of the thermal fatigue test Figure 10 is a diagram showing the measurement results of crack length Graph Fig. 11 Plan view showing the occurrence of cracks Fig. 12 Cross-sectional view showing the temperature distribution of the sub-combustion chamber chamber body 1: Sub-combustion chamber Chamber main body 2: Nozzle hole 3: Swirl chamber 4: Swirl chamber bottom 5: Chamber Bottom surface of main body 6.7: Material layer with excellent heat resistance 8.9: Concave build-up part due to thermal spraying etc. 10.11: Acute corner 12: Thermal fatigue test device 13: Holder 14: Burner
15 Nispray 16: Crack

Claims (2)

【特許請求の範囲】[Claims] (1)ディーゼルエンジン用副燃焼室チャンバー本体1
の噴孔2が渦流室3の底面4及び副燃焼室チャンバー本
体1の底面5とによって、夫々形成される断面積の小さ
い鋭角部10および11の周縁の部分を、夫々耐熱性に
優れた素材6および7にて形成し、それ以外の部分を高
温強度があり、且つある程度の耐熱性を有する素材で形
成したことを特徴とするディーゼルエンジン用副燃焼室
チャンバー。
(1) Sub-combustion chamber main body 1 for diesel engines
The periphery of the acute angle parts 10 and 11 with a small cross-sectional area formed by the bottom surface 4 of the swirl chamber 3 and the bottom surface 5 of the sub-combustion chamber main body 1, respectively, is made of a material with excellent heat resistance. 6 and 7, and the other parts are made of a material having high temperature strength and a certain degree of heat resistance.
(2)ディーゼルエンジン用副燃焼室チャンバーを高温
強度があり、且つある程度の耐熱性を有する素材から塑
性加工によって成形する際に、噴孔2の鋭角部10およ
び11の周縁部に耐熱性に優れた素材の厚さに相当する
分の凹み8および9を同時に成形し、該凹みに耐熱性に
優れた素材を溶射等により肉盛りした後、圧印加工によ
り所定の寸法に仕上げた後、噴孔2を加工することによ
り鋭角部10および11が夫々耐熱性に優れた素材6お
よび7で形成されることを特徴とするディーゼルエンジ
ン用副燃焼室チャンバーの製造方法。
(2) When forming the auxiliary combustion chamber for a diesel engine by plastic working from a material that has high temperature strength and a certain degree of heat resistance, the peripheral edges of the acute angle parts 10 and 11 of the nozzle hole 2 have excellent heat resistance. Simultaneously form recesses 8 and 9 corresponding to the thickness of the material, fill the recesses with a material with excellent heat resistance by thermal spraying, etc., finish to the specified dimensions by coining, and then insert the nozzle hole. 2. A method for manufacturing a sub-combustion chamber for a diesel engine, characterized in that the acute angle portions 10 and 11 are formed from materials 6 and 7, respectively, which have excellent heat resistance by processing 2.
JP60115334A 1985-05-30 1985-05-30 Diesel engine auxiliary combustion chamber chamber and method for manufacturing the same Expired - Lifetime JP2529823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60115334A JP2529823B2 (en) 1985-05-30 1985-05-30 Diesel engine auxiliary combustion chamber chamber and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60115334A JP2529823B2 (en) 1985-05-30 1985-05-30 Diesel engine auxiliary combustion chamber chamber and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPS61275524A true JPS61275524A (en) 1986-12-05
JP2529823B2 JP2529823B2 (en) 1996-09-04

Family

ID=14659979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60115334A Expired - Lifetime JP2529823B2 (en) 1985-05-30 1985-05-30 Diesel engine auxiliary combustion chamber chamber and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2529823B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984233A (en) * 2010-11-10 2011-03-09 东风朝阳柴油机有限责任公司 Turbulence auxiliary combustion chamber with secondary orifice pre-combustion
WO2016095157A1 (en) * 2014-12-18 2016-06-23 深圳智慧能源技术有限公司 Combustion chamber having porous flame tube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285802U (en) * 1975-12-22 1977-06-27
JPS5575529A (en) * 1978-11-29 1980-06-06 Ngk Spark Plug Co Ltd Combustion chamber for internal combustion engine
JPS58102718U (en) * 1981-12-29 1983-07-13 三菱自動車工業株式会社 Side chamber type diesel engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285802U (en) * 1975-12-22 1977-06-27
JPS5575529A (en) * 1978-11-29 1980-06-06 Ngk Spark Plug Co Ltd Combustion chamber for internal combustion engine
JPS58102718U (en) * 1981-12-29 1983-07-13 三菱自動車工業株式会社 Side chamber type diesel engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984233A (en) * 2010-11-10 2011-03-09 东风朝阳柴油机有限责任公司 Turbulence auxiliary combustion chamber with secondary orifice pre-combustion
WO2016095157A1 (en) * 2014-12-18 2016-06-23 深圳智慧能源技术有限公司 Combustion chamber having porous flame tube

Also Published As

Publication number Publication date
JP2529823B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
US5465572A (en) Multi-hole film cooled afterburner cumbustor liner
DE3877652T2 (en) COMBUSTION CHAMBER FOR DIESEL INTERNAL COMBUSTION ENGINES.
WO2020059003A1 (en) Film formation method
JPS61275524A (en) Auxiliary combustion chamber for diesel engine and manufacture thereof
JPH11193721A (en) Direct injection type spark-ignition engine
JPH07269353A (en) Combustion chamber structure for diesel engine
JPS61123714A (en) Subchamber structure for internal-combustion engine
US6422487B1 (en) Deposit resistant material for a fuel injection seat and method of manufacturing
JP3019529B2 (en) Piston with combustion chamber
CN114029508A (en) Additive manufacturing method of integrated injector
JPS59155529A (en) Pilot injection device of direct injection type diesel engine
KR0178949B1 (en) Prototype aluminius cylinder head manufacturing method by bonding of the low melting aluminium alloy coat
JPS61126360A (en) Forming method of flame sprayed film on piston
EP0780554B1 (en) Piston structure with heat insulated combustion chamber
JPH0219654A (en) Fuel injection nozzle and manufacture thereof
JPH108970A (en) Direct cylinder injection type spark ignition engine
JPH094455A (en) Indirect injection diesel engine insert and its manufacture
JPH04128512A (en) Insert for eddy current chamber type diesel engine and manufacture thereof
JPH02185617A (en) Manufacture of subsidiary combustion chamber insert
JPS6158967A (en) Manufacture of ceramic fuel injection nozzle
JPS61261661A (en) Double structure-type fuel injection valve
JPS61258917A (en) Auxiliary combustion chamber for diesel engine
JPS5877116A (en) Manufacture of valve seat
JPS61281863A (en) Member coated with ceramic by thermal spraying
JPH0481570A (en) Manufacture of fuel injection nozzle