JPS61274811A - Electric discharge machining method - Google Patents

Electric discharge machining method

Info

Publication number
JPS61274811A
JPS61274811A JP11521785A JP11521785A JPS61274811A JP S61274811 A JPS61274811 A JP S61274811A JP 11521785 A JP11521785 A JP 11521785A JP 11521785 A JP11521785 A JP 11521785A JP S61274811 A JPS61274811 A JP S61274811A
Authority
JP
Japan
Prior art keywords
voltage
electrode
workpiece
reverse polarity
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11521785A
Other languages
Japanese (ja)
Other versions
JPH0474128B2 (en
Inventor
Haruki Obara
小原 治樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP11521785A priority Critical patent/JPS61274811A/en
Publication of JPS61274811A publication Critical patent/JPS61274811A/en
Publication of JPH0474128B2 publication Critical patent/JPH0474128B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To obtain good roughness of a machined surface further stably perform electric discharge machining, by applying voltage of reverse polarity across an electrode and a work, when a machine performs finishing, and controlling the electric discharge machining so as to generate its average machining voltage in a direction of the voltage of reverse polarity while decrease power for an electric discharge of positive polarity. CONSTITUTION:If a pulse is introduced to a base G1 of a transistor T1, a machine, turning on the transistor T1 and applying voltage of positive polarity between an electrode P and a work W by a DC power supply E1, generates an electric discharge. Thereafter, the machine, turning off the transistor T1 and electrifying a transistor T2, applies voltage of reverse polarity between the electrode P and the work W from a power supply E2. Here the machine, changing output voltage VL of a smoothing circuit 1 by changing a value of variable resistance RV1, changes a time for applying the voltage of reverse polarity. In this way, the machine, setting a pulse width for applying the voltage of reverse polarity so that average machining voltage becomes the voltage of reverse polarity, performs finishing and obtains stable machining.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ワークと電極間に正、逆極性の電圧を印加し
て放電加工を行う放電加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electric discharge machining method for performing electric discharge machining by applying voltages of positive and reverse polarity between a workpiece and an electrode.

従来の技術 通常、放電加工においては、荒加工、中加工。Conventional technology Generally, electrical discharge machining involves rough machining and semi-machining.

仕上加工等を数回繰り返して加工を行うが、仕上げ加工
においては、放電電流のピーク値及び放電電流の時間幅
、即ち一発の放電のパワーを小さくして放電を行い、こ
の放電パワーの小さいほどワークの加工面の粗さは良く
なる。しかし、このパワーを小さくすると放電が非常に
不安定となりやすく、加工が安定しない。特に、この傾
向は加工液に水を用いた水中での加工の場合に著しい。
Machining is performed by repeating finishing machining several times, but in finishing machining, discharge is performed by reducing the peak value of the discharge current and the time width of the discharge current, that is, the power of one discharge. The roughness of the machined surface of the workpiece becomes better. However, if this power is reduced, the discharge tends to become very unstable, making machining unstable. In particular, this tendency is remarkable in the case of underwater machining using water as the machining fluid.

これは、水中での加工ではもれ電流が生じ、印加電圧が
小さくなり、変動することや放電後の消イオンが急速で
放電が継続しないため等が考えられる。
This is thought to be due to the fact that leakage current occurs during machining in water, the applied voltage decreases and fluctuates, and ion deionization after discharge is rapid and the discharge does not continue.

ところで、加工中のワーク表面の電食防止のためワーク
と電極間に逆極性電圧を印加し、平均加工電圧を零にす
る方法が開発されているが(特願昭59−35990号
、特願昭59−56135号等)、この方法では放電パ
ワーを小さくしても比較的加工が安定することが発見で
きた。これは、逆極性電圧の印加によって放電すると、
ワークの加工にはほとんど寄与しないが、ワークと電極
間のギャップ中にイオンを多くして放電し易い状態を作
ること、又、ワイヤカット放電加工の場合、ワイヤを振
動させて放電し易くすること、さらには、逆極性電圧の
印加によりワークの加工面に電極のくずが付着し、さび
を防止して放電をし易くする等の理由が考えられる。し
かし、従来の逆極性電圧印加方式では、逆極性電圧放電
は電極を消耗させるため、むしろ逆極性電圧をおさえ放
電しないように制限し、少なくとも正極性電圧と同じか
それ以下にしていた。
By the way, in order to prevent electrolytic corrosion on the surface of the workpiece during machining, a method has been developed in which a reverse polarity voltage is applied between the workpiece and the electrode to reduce the average machining voltage to zero (Japanese Patent Application No. 59-35990, No. 59-56135, etc.), it was discovered that with this method, machining is relatively stable even if the discharge power is reduced. When this is discharged by applying a reverse polarity voltage,
Although it hardly contributes to machining the workpiece, it increases the number of ions in the gap between the workpiece and the electrode to create a condition that facilitates electrical discharge, and in the case of wire-cut electrical discharge machining, vibrates the wire to facilitate electrical discharge. Another possible reason is that electrode debris adheres to the machined surface of the workpiece due to the application of the reverse polarity voltage, which prevents rust and facilitates discharge. However, in the conventional reverse polarity voltage application method, since reverse polarity voltage discharge wears out the electrode, the reverse polarity voltage is rather suppressed so as not to be discharged, and is at least equal to or lower than the positive polarity voltage.

発明が解決しようとする問題点 本発明の目的は、放電パワーを小さくしてワークの加工
面の粗さを良くすると共に、放電パワーを小さくしても
放電加工が安定して行えるようにしたものである。
Problems to be Solved by the Invention The purpose of the present invention is to reduce the electrical discharge power to improve the roughness of the machined surface of the workpiece, and to enable stable electrical discharge machining even when the electrical discharge power is reduced. It is.

問題点を解決するための手段 本発明は、上記問題点を解決するために逆極性電圧印加
手段を設けて、仕上げ加工時においては、非加工時に電
極とワーク間のギャップに加工時とは逆に逆極性電圧を
印加して、平均加工電圧が逆極性電圧方向になるように
した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides means for applying a reverse polarity voltage, so that during finishing machining, the gap between the electrode and the workpiece is applied in the opposite direction to that during machining. A reverse polarity voltage was applied to so that the average machining voltage was in the direction of the reverse polarity voltage.

作  用 非加工時に電極とワーク間のギャップに加工時とは逆の
逆極性電圧を印加し、加工時の正極性電圧における放電
パワーより大きい逆極性電圧の放電パワーを与えると、
加工は安定して行うことができる。これにより正極性電
圧による放電パワーを小さくすることができ、それによ
り加工面の面粗さを良くすることができる。正極性放電
パワーより逆極性放電パワーを大きくすることによって
、加工が安定して行えるという理由は明らかではないが
、逆極性電圧ではワーク表面゛はほとんど加工されず、
むしろ電極側を消耗させ、ワイヤカットの場合はワーク
表面にワイヤくずが付着させ良くなかった(従来はこの
電極側を消耗させるという理由から、逆極性電圧はおさ
えて逆極性放電を行なわないようにしていた)。しかし
、仕上加工においてはパワーが小さいので、電極の消耗
は小さく、電極の消耗を問題にするほどでもない。そし
て、前述したように、ワイヤのくずがワーク表面に付着
してワーク表面のさびを防止し、それにより小さなパワ
ーでも放電を生じやすくしている要因になっているもの
とも考えられる。
When a reverse polarity voltage opposite to that during machining is applied to the gap between the electrode and the workpiece when not machining, and a discharge power of the reverse polarity voltage that is greater than the discharge power at the positive polarity voltage during machining is applied,
Processing can be performed stably. Thereby, the discharge power due to the positive polarity voltage can be reduced, and thereby the surface roughness of the machined surface can be improved. It is not clear why machining can be performed more stably by increasing the reverse polarity discharge power than the positive discharge power, but with the reverse polarity voltage, the work surface is hardly machined.
Rather, it wears out the electrode side, and in the case of wire cutting, it causes wire scraps to adhere to the workpiece surface, which is not good. ). However, since the power is low in finishing processing, the wear of the electrodes is small, and the wear of the electrodes is not a problem. As mentioned above, wire scraps adhere to the workpiece surface and prevent the workpiece surface from rusting, which is considered to be a factor that makes it easy to generate electric discharge even with a small power.

実施例 第1図〜第3図は、本発明の第1の実施例を示すもので
、第1図は、本発明の第1の実施例における放電加工電
源の基本回路を示す。Pは電極、Wはワーク、Elは直
流電源で、電流制限抵抗R1を介してスイッチング素子
のトランジスタ■1がオンになったとき、ワークWと電
極Pに電圧を印加して放電加工を行わせるものであり、
この点、従来のトランジスタにより制御する放電回路と
同じである。また、第1図において、端子a、b間にコ
ンデンサを接続し、このコンデンサを充放電させて放電
加工を行う放電回路であってもよい。
Embodiment FIGS. 1 to 3 show a first embodiment of the present invention, and FIG. 1 shows a basic circuit of an electric discharge machining power supply in the first embodiment of the present invention. P is an electrode, W is a workpiece, El is a DC power supply, and when switching element transistor ■1 is turned on via a current limiting resistor R1, a voltage is applied to the workpiece W and the electrode P to perform electrical discharge machining. It is a thing,
In this respect, it is the same as a conventional discharge circuit controlled by transistors. Further, in FIG. 1, a discharge circuit may be used in which a capacitor is connected between terminals a and b, and this capacitor is charged and discharged to perform discharge machining.

E2はワークWと電極8間へ逆極性電圧を印加するため
の電源で、スイッチング素子としてのトランジスタT2
及び電流制限抵抗R2を介して逆極性電圧が印加される
ものである。そして、上記トランジスタT1.I2は、
第2図に示す制御回路によって制御されるもので、該制
御回路は、第1図における点a、b間、すなわち電極P
、ワークW間の電圧を抵抗R3,R4で分圧し、その電
圧と可変抵抗Rv1で設定した一定電圧を加算し平滑す
る平滑回路1.コンパレータ2、上記トランジスタT1
を導通させるための信号がベースG3に入力されて導通
するトランジスタT3、該トランジスタT3と並列に接
続されたコンデンサC2゜ナントゲートN1.インバー
タ11.I2等で構成され、インバータ■2の出力は上
記トランジスタT2のベースG2へ入力されている。
E2 is a power supply for applying a reverse polarity voltage between the workpiece W and the electrode 8, and a transistor T2 is used as a switching element.
and a reverse polarity voltage is applied via the current limiting resistor R2. The transistor T1. I2 is
It is controlled by the control circuit shown in FIG. 2, and the control circuit operates between points a and b in FIG.
, a smoothing circuit 1 that divides the voltage between the workpieces W by resistors R3 and R4, and adds and smoothes the voltage and a constant voltage set by variable resistor Rv1. Comparator 2, the above transistor T1
A transistor T3 is turned on when a signal for making it conductive is input to the base G3, a capacitor C2 connected in parallel with the transistor T3, and a gate N1. Inverter 11. The output of the inverter 2 is input to the base G2 of the transistor T2.

次に、本実施例の動作を第3図のタイミングチャートを
参照しながら説明する。
Next, the operation of this embodiment will be explained with reference to the timing chart of FIG.

まず、第1図の基本回路において、トランジスタT1の
ベースG1に第3図(イ)に示すようなパルスが導入さ
れ、該トランジスタT1はオンし、直流電源E1より電
極PとワークW間に正極性電圧を印加し放電を生ぜしめ
る。その後、トランジスタT1をオフにして、トランジ
スタT2を導通させて、電極PとワークW間に逆極性電
圧を電源E2から印加している。この動作を繰返し行っ
ているが、電極PとワークW間のギャップ電圧は、第2
図に示すように、抵抗R3,R4で分圧して制御回路に
入力されており、このギャップ電圧に可変抵抗Rv1で
設定した一定電圧を加算して平滑回路1で平滑され、該
平滑回路1の出力は、電極PとワークW間に印加される
電圧の平均加工電圧に可変抵抗RV1で設定した一定電
圧を加算した値が出力されることとなる。
First, in the basic circuit shown in FIG. 1, a pulse as shown in FIG. A voltage is applied to generate a discharge. Thereafter, the transistor T1 is turned off, the transistor T2 is made conductive, and a reverse polarity voltage is applied between the electrode P and the workpiece W from the power source E2. This operation is repeated, but the gap voltage between the electrode P and the workpiece W is
As shown in the figure, the voltage is divided by resistors R3 and R4 and input to the control circuit, and a constant voltage set by variable resistor Rv1 is added to this gap voltage and smoothed by smoothing circuit 1. The output is a value obtained by adding the constant voltage set by the variable resistor RV1 to the average machining voltage of the voltage applied between the electrode P and the workpiece W.

この平滑回路1から出力される電圧を、第2図。FIG. 2 shows the voltage output from this smoothing circuit 1.

第3図に示すようにVLとする。そして、この加工電圧
VLは、コンパレータ7の一方の端子に入力されている
。一方、トランジスタT3のベースG3にもトランジス
タT1をオンにする設定されたオンタイムのパルスが入
力されているから、トランジスタT1と共にトランジス
タT3も導通し、その結果、コンパレータ7の他方の端
子に入力される電圧VCは、第3図(ロ)に示すように
バイヤス電圧■2からOvに低下する。そして、オンタ
イムが切れ、トランジスタT3がオフになると、第3図
(ロ)に示すように、コンデンサC2が充電され、この
充電電圧VCがコンパレータ2の他方の入力端子に入力
されることとなる。そして、コンパレタ2は2つの入力
電圧VLとVCを比較し、コンデンサC2の充電電圧V
Cが電圧VLより低い期間、すなわち、第3図(ハ)に
示すような出力を出すこととなる。そして、このコンパ
レータ2の出力と設定されたオンタイムのパルスを、イ
ンバータエ1で反転させた信号がナントゲートN1に入
力され、かつインバータI2で反転される結果、インバ
ータ■2からは第3図(ニ)に示すようなパルスが出力
されることとなる。そして、この出力パルスは上記トラ
ンジスタT2のゲートG2に入力され、該トランジスタ
T2を導通させ、電極PとワークW間に逆極性電圧E2
を印加することとなる。その結果、第3図(ホ)に示す
ように、電極PとワークW間には正、逆の極性の電圧が
印加される。そして、可変抵抗RVIの値を変えること
によって平滑回路1の出力電圧VLを変えること、によ
り、逆極性電圧を印加する時間が変動できるから、これ
により平均加工電圧か逆極性電圧になるように逆極性電
圧印加のパルス幅を設定し仕上加工を行えば安定した加
工が得られる。
As shown in FIG. 3, it is assumed to be VL. This machining voltage VL is input to one terminal of the comparator 7. On the other hand, since the set on-time pulse that turns on the transistor T1 is also input to the base G3 of the transistor T3, the transistor T3 becomes conductive along with the transistor T1, and as a result, a pulse is input to the other terminal of the comparator 7. The voltage VC decreases from the bias voltage 2 to Ov as shown in FIG. 3(b). Then, when the on-time expires and the transistor T3 is turned off, the capacitor C2 is charged as shown in FIG. 3 (b), and this charging voltage VC is input to the other input terminal of the comparator 2. . Then, the comparator 2 compares the two input voltages VL and VC, and calculates the charging voltage V of the capacitor C2.
During the period when C is lower than the voltage VL, an output as shown in FIG. 3(C) is produced. Then, a signal obtained by inverting the output of comparator 2 and the set on-time pulse by inverter E1 is input to Nandt gate N1, and is inverted by inverter I2. A pulse as shown in (d) will be output. Then, this output pulse is input to the gate G2 of the transistor T2, making the transistor T2 conductive, and creating a reverse polarity voltage E2 between the electrode P and the workpiece W.
will be applied. As a result, as shown in FIG. 3(e), voltages of positive and opposite polarities are applied between the electrode P and the workpiece W. By changing the output voltage VL of the smoothing circuit 1 by changing the value of the variable resistor RVI, the time for applying the reverse polarity voltage can be varied. Stable machining can be obtained by setting the pulse width of polar voltage application and performing finishing machining.

そして、正極性電圧用の電源E1より逆極性電圧用の電
圧E2を大きくして、正極性電圧によるパワー小さくし
、逆極性電圧のパワーを大きくすれば、より安定した加
工及びより良好な加工面を得ることができる。
If the voltage E2 for the reverse polarity voltage is made larger than the power supply E1 for the positive polarity voltage, the power of the positive voltage is reduced, and the power of the reverse polarity voltage is increased, more stable machining and a better machined surface can be achieved. can be obtained.

第4図、第5図は本発明の第2の実施例を示すもので、
第4図において、E3は直流電源、I4はスイッチング
素子としてのトランジスタ、G4はそのベース、G3は
コンデンサ、R11〜R12は抵抗、RV2は可変抵抗
、Dlはダイオード、Pは電極、Wはワークである。
4 and 5 show a second embodiment of the present invention,
In Figure 4, E3 is a DC power supply, I4 is a transistor as a switching element, G4 is its base, G3 is a capacitor, R11 to R12 are resistors, RV2 is a variable resistor, Dl is a diode, P is an electrode, and W is a workpiece. be.

そこで、本実施例の動作を第5図のタイミング及び各波
形を示す図と共に説明する。
Therefore, the operation of this embodiment will be explained with reference to FIG. 5 which shows the timing and each waveform.

第5図(イ)は、トランジスタT4のベースG4へ印加
されるパルス、同(ロ)はコンデンサC3の充電電圧V
O2同(ハ)は可変抵抗RV2を無限大にしたと仮定し
たときのワークWと電極1間のギヤツブ電圧VG1同(
ニ)は可変抵抗Rv2の値を小さくしたときのワークW
と電極1間のギャップ電圧VGを各々示す。
FIG. 5(A) shows the pulse applied to the base G4 of the transistor T4, and FIG. 5(B) shows the charging voltage V of the capacitor C3.
O2 (c) is the gear voltage VG1 (
d) is the workpiece W when the value of variable resistor Rv2 is decreased.
and the gap voltage VG between electrode 1 and electrode 1, respectively.

まず、可変抵抗RV2の値を無限大にしたと仮定して動
作を説明する。
First, the operation will be described assuming that the value of the variable resistor RV2 is set to infinity.

トランジスタT4のベースG4に第4図(イ)に示すよ
うなパルスを入力し、該トランジスタT4をオンにする
と、ワークWと電極1間には第4図(ハ)に示すように
ギャップ電圧VGが生じる。
When a pulse as shown in FIG. 4(A) is input to the base G4 of the transistor T4 and the transistor T4 is turned on, a gap voltage VG is generated between the workpiece W and the electrode 1 as shown in FIG. 4(C). occurs.

その後、放電が発生し、放電電流がワークW、電極Pを
通ってコンデンサC3を第4図(ロ)に示すように充電
する。この際、この放電電流1によって加工が行われる
。そして、放電終了後、第4図(イ)に示すように、ト
ランジスタTをオフにすると、充電されたコンデンサC
3の電荷は電極P、ワークW、抵抗R12を介して流れ
、該コンデンサC4の充電電圧VC(第4図(ロ)参照
)が電極PとワークW間のギャップを第4図(ハ)に示
すように加工時とは逆の極性の電圧VGを印加し逆極性
放電を行うこととなる。この際、正極性放電によって電
極PとワークW間に印加されたエネルギーはコンデンサ
C3に蓄えられ、それが逆極性電圧として電極Pとワー
クW間に加えられるので、電極PとワークW間に印加さ
れる平均加工電圧はほぼ零に均しいものとなる。
Thereafter, discharge occurs, and the discharge current passes through the workpiece W and the electrode P and charges the capacitor C3 as shown in FIG. 4(b). At this time, machining is performed using this discharge current 1. After the discharge is finished, as shown in Figure 4 (a), when the transistor T is turned off, the charged capacitor C
3 flows through the electrode P, the work W, and the resistor R12, and the charging voltage VC of the capacitor C4 (see Fig. 4 (b)) increases the gap between the electrode P and the work W as shown in Fig. 4 (c). As shown, a voltage VG with a polarity opposite to that used during machining is applied to generate a reverse polarity discharge. At this time, the energy applied between the electrode P and the workpiece W by the positive polarity discharge is stored in the capacitor C3, and is applied between the electrode P and the workpiece W as a reverse polarity voltage, so that the energy applied between the electrode P and the workpiece W is The average machining voltage applied is approximately equal to zero.

上記の例は可変抵抗RV2の値を無限大として説明した
が、該可変抵抗Rv2の値を小さくすると、トランジス
タT4をONにしたとき、ダイオードD1.可変抵抗R
V2を介してコンデンサC3を充電する電流が流れ、電
極PとワークW間に印加される電圧は第4図(ニ)に示
すように小さくなる。
The above example has been explained assuming that the value of the variable resistor RV2 is infinite, but if the value of the variable resistor RV2 is made small, when the transistor T4 is turned on, the diode D1. variable resistance R
A current flows through V2 to charge the capacitor C3, and the voltage applied between the electrode P and the work W becomes small as shown in FIG. 4(d).

そのため、正極性放電は小さなパワーとなる。又、上記
トランジスタT4がOFFとなり、コンデンサC3に蓄
えられたエネルギーが前述同様電極P。
Therefore, the power of positive discharge is small. Further, the transistor T4 is turned off, and the energy stored in the capacitor C3 is transferred to the electrode P as described above.

ワークW間に印加されるが、このときの流れる電流の向
きは電極PからワークWの方向であるため、可変抵抗R
v2を介して流れようとする電流はダイオードD1によ
って阻止されるため、コンデンサC3の充ill圧VC
はすべて電極PとワークW間に印加されることとなる。
The current is applied between the workpieces W, but since the direction of the current flowing at this time is from the electrode P to the workpiece W, the variable resistor R
Since the current that attempts to flow through v2 is blocked by diode D1, the fill voltage of capacitor C3 VC
are all applied between the electrode P and the workpiece W.

その結果、大きなパワーの逆極性放電を生じせしめる結
果となる。このように、本実施例では正極性放電時には
ダイオードD1.可変抵抗Rv2を介して電流を分流す
るから、電極PとワークW間には小さな電圧しか印加さ
れず、正極性放電のパワーは小さくなる。一方、逆極性
放電時にはダイオードD1によって分流が阻止されるた
め、電極PとワークW間には、コンデンサC3の大きな
充電電圧が印加され、大きなパワーの逆極性放電を生じ
せしめることとなる。
As a result, a large power reverse polarity discharge is generated. In this way, in this embodiment, the diode D1. Since the current is divided through the variable resistor Rv2, only a small voltage is applied between the electrode P and the workpiece W, and the power of the positive discharge becomes small. On the other hand, during reverse polarity discharge, the diode D1 prevents the current from being shunted, so a large charging voltage of the capacitor C3 is applied between the electrode P and the workpiece W, resulting in a high power reverse polarity discharge.

以上のように、本実施例では、可変抵抗RV2の値を変
えることによって、正極性放電のパワー。
As described above, in this embodiment, the power of positive polarity discharge can be adjusted by changing the value of variable resistor RV2.

逆極性放電のパワーを変動せしめ、平均加工電圧を逆極
性放電側にして、正極性放電のパワーを小さくし、逆極
性放電のはパワーを大きくすることができるように制御
することができる。
Control can be performed such that the power of the reverse polarity discharge is varied and the average machining voltage is set to the reverse polarity discharge side, thereby reducing the power of the positive polarity discharge and increasing the power of the reverse polarity discharge.

第6図、第7図は、本発明の第3の実施例で、E4は直
流電源、R12は抵抗、T5はスイッチング素子として
のトランジスタ、G5は該トランジスタのベース、C4
はコンデンサ、Rv3は可変抵抗、D2はダイオード、
Pは電極、Wはワークである。
6 and 7 show a third embodiment of the present invention, where E4 is a DC power supply, R12 is a resistor, T5 is a transistor as a switching element, G5 is the base of the transistor, and C4
is a capacitor, Rv3 is a variable resistor, D2 is a diode,
P is an electrode and W is a workpiece.

そこで、この実施例の動作を第7図と共に説明するが、
この動作は上記第2実施例とほぼ同時動作を行うもので
、まず可変抵抗Rv3を無限大にしたと仮定して説明す
る。今、コンデンサC3は充電されている状態で、トラ
ンジスタT4のベースG5に第7図(イ)に示すように
、パルスを入力しトランジスタT5をONにすると、コ
ンデンサC4の充電電圧VCが該トランジスタT5を介
して第7図(ハ)に示すように電極P、ワークW間のギ
ャップに印加され、その後、正極性放電が発生し、この
ギャップ電圧VG及びコンデンサの充電電圧VCは低下
する。そして、上記トランジスタがOFFになると電源
電圧E4が電極PとワーりW間に印加され、これにより
逆極性放電が発生し、コンデンサC4は再び充電される
こととなる。
Therefore, the operation of this embodiment will be explained with reference to FIG.
This operation is performed almost simultaneously with the second embodiment, and will first be described assuming that the variable resistor Rv3 is set to infinity. Now, when the capacitor C3 is in a charged state, when a pulse is input to the base G5 of the transistor T4 to turn on the transistor T5 as shown in FIG. As shown in FIG. 7(c), the voltage is applied to the gap between the electrode P and the workpiece W through the voltage VG, and then a positive discharge occurs, and the gap voltage VG and the capacitor charging voltage VC decrease. Then, when the transistor is turned off, the power supply voltage E4 is applied between the electrode P and the warp W, thereby causing a reverse polarity discharge, and the capacitor C4 is charged again.

そして、再びトランジスタT5がONになると先に述べ
たような動作を繰り返すこととなる。このように、可変
抵抗RV3を無限大と仮定すると、コンデンサC4を充
電するときに電極P、ワークW間に印加される逆極性電
圧及びコンデンサc4の放電によって印加される正極性
電圧はほぼ等しくなり、電極PとワークW間に印加され
る平均加工電圧はほぼ零となるが、可変抵抗を小さくす
るとコンデンサC4を充電する方向、即ち、電極Pとワ
ークW間に逆極性電圧がかかる方向に対してはダイオー
ドD2により電流の流れが阻止されるため、電源Pとワ
ークW間には第7図(ニ)に示すように大きな逆極性電
圧が印加されることとなる。
Then, when the transistor T5 is turned on again, the above-described operation is repeated. As described above, assuming that the variable resistor RV3 is infinite, the reverse polarity voltage applied between the electrode P and the workpiece W when charging the capacitor C4 and the positive polarity voltage applied by discharging the capacitor c4 are approximately equal. , the average machining voltage applied between the electrode P and the workpiece W becomes almost zero, but when the variable resistance is made smaller, the voltage increases in the direction in which the capacitor C4 is charged, that is, in the direction in which a reverse polarity voltage is applied between the electrode P and the workpiece W. Since the current flow is blocked by the diode D2, a large reverse polarity voltage is applied between the power source P and the workpiece W as shown in FIG. 7(d).

しかし、トランジスタT5がONとなりコンデンサC4
が放電し、電極PとワークW間に正極性電圧を印加し放
電させるときは、ダイオード02゜可変抵抗RV3を介
して放電電流が流れ電流が分流されるため、電極Pとワ
ークW間には小さな電圧しか印加されないこととなる。
However, transistor T5 turns on and capacitor C4
is discharged, and when a positive polarity voltage is applied between the electrode P and the workpiece W to cause the discharge, the discharge current flows through the diode 02° variable resistor RV3 and the current is shunted, so there is a voltage between the electrode P and the workpiece W. Only a small voltage will be applied.

その結果、第7図(ニ)に示すように、正極性放電時に
は小さなパワーの放電しか生ぜず、逆極性放電時には大
きなパワーの放電が生じることとなる。そして、正極性
放電時の放電パワーは可変抵抗RV3の値によって任意
に設定することができる。
As a result, as shown in FIG. 7(d), only a small power discharge occurs during positive polarity discharge, and a large power discharge occurs during reverse polarity discharge. The discharge power during positive discharge can be arbitrarily set by the value of the variable resistor RV3.

第8図、第9図は本発明の第4の実施例を示すもので、
E5は直流電源、T6はスイッチング素子としてのトラ
ンジスタ、G6は該トランジスタのベース、D3.D4
はダイオードで、D3はフライホイールダイオードとし
て機能する。Trはトランス、RV4は可変抵抗、Pは
電極、Wはワークである。
8 and 9 show a fourth embodiment of the present invention,
E5 is a DC power supply, T6 is a transistor as a switching element, G6 is the base of the transistor, D3. D4
is a diode, and D3 functions as a flywheel diode. Tr is a transformer, RV4 is a variable resistor, P is an electrode, and W is a workpiece.

先の例と同様、可変抵抗RV4を無限大と仮定して動作
を説明する。
As in the previous example, the operation will be described assuming that the variable resistor RV4 is infinite.

今、トランジスタT6のベースG6に第9図(イ)に示
すようなパルスを入力し、該トランジスタT6をONさ
せると、直流N源E5よりトランスTr、トランジスタ
T6を通って電流は漸増しながら増加する。その結果は
、トランスTrの2次側に誘導起電力が生じ、第9図(
ロ)に示すように誘導された電圧VGが電極Pとワーク
W間のギャップに印加され、それにより正極性放電を生
じせしめ加工を行うこととなる(第9図においては、簡
単にするため電圧VGの印加状態を示し、放電が生じた
状態は示していない)。一方、上記トランジスタT6を
OFFにすると、トランスTrの一次側に蓄えられたエ
ネルギーはフライホイールダイオードD3を介して漸減
しながら流れ、これにより2次側には逆の電圧が発生し
、電極PとワークW間のギャップ電圧VGは第3図(ロ
)に示すように逆極性電圧が印加され、逆極性放電を生
じせしめることとなる。
Now, when a pulse as shown in FIG. 9(A) is input to the base G6 of the transistor T6 and the transistor T6 is turned on, the current gradually increases from the DC N source E5 through the transformer Tr and the transistor T6. do. As a result, an induced electromotive force is generated on the secondary side of the transformer Tr, as shown in Fig. 9 (
As shown in Figure 9, the induced voltage VG is applied to the gap between the electrode P and the workpiece W, thereby causing a positive discharge and machining. (The figure shows the state in which VG is applied, but does not show the state in which discharge occurs.) On the other hand, when the transistor T6 is turned off, the energy stored in the primary side of the transformer Tr flows through the flywheel diode D3 while gradually decreasing, and as a result, an opposite voltage is generated on the secondary side, and the voltage between the electrode P and As shown in FIG. 3(B), a reverse polarity voltage is applied to the gap voltage VG between the works W, causing a reverse polarity discharge.

上記説明では可変抵抗RV4を無限大としたがら、電極
PとワークWMに印加される平均加工電圧はほぼ零に等
しくなるが、可変抵抗RV4の値を小さくして、電極P
とワークW間に正極性放電方向の電圧を印加したとき、
即ち、ワークW側が高く電極P側が低い電圧を印加した
とき、可変抵抗RV4、ダイオードD4を通して電流を
流すようにすると一1電極PとワークwI!fIに印加
される電圧は第9図(ハ)に示すように低下することと
なる。一方、逆方向の電圧が印加されたときは、ダイオ
ードD4によってその流れが阻止されるため、そのまま
電圧が印加され、第9図(ハ)に示すように大きな電圧
が逆極性電圧として印加されることとなる。
In the above explanation, the variable resistor RV4 is set to infinity, and the average machining voltage applied to the electrode P and the workpiece WM becomes almost equal to zero. However, by reducing the value of the variable resistor RV4, the electrode P
When a voltage in the positive discharge direction is applied between and the workpiece W,
That is, when a high voltage is applied to the workpiece W side and a low voltage is applied to the electrode P side, if a current is caused to flow through the variable resistor RV4 and the diode D4, the electrode P and the workpiece wI! The voltage applied to fI will drop as shown in FIG. 9(c). On the other hand, when a reverse voltage is applied, the flow is blocked by the diode D4, so the voltage is applied as is, and a large voltage is applied as a reverse polarity voltage as shown in Figure 9 (c). That will happen.

そのため、可変抵抗を調節することによって、平均加工
電圧を逆極性電圧側にして正極性放電のパワーを小さく
し、逆極性電圧のパワーを大きくすることができる。
Therefore, by adjusting the variable resistance, it is possible to set the average machining voltage to the reverse polarity voltage side, thereby reducing the power of the positive polarity discharge and increasing the power of the reverse polarity voltage.

以上、第1〜第4の実施例で述べたように、平均加工電
圧を逆極性電圧側にして正極性放電のパワーを小さくし
逆極性放電のパワーを大きくすることにより、仕上げ加
工時には、パワーの小さな放電(正極性放電)によって
安定した加工を行うことができる。
As described above in the first to fourth embodiments, by setting the average machining voltage to the reverse polarity voltage side to decrease the power of positive polarity discharge and increase the power of reverse polarity discharge, power can be increased during finishing machining. Stable machining can be performed with a small discharge (positive discharge).

発明の効果 以上述べたように、仕上げ加工時に平均加工電圧を逆極
性電圧側にして正極性放電時の放電パワーを小さくして
放電加工を行うから、加工部の面粗さは向上し、良好な
加工面を得ることができると共に平均加工電圧が逆極性
電圧側になっていることから安定した加工をも得ること
ができる。また、逆極性電圧のパワーが大きいことから
電極の消耗を起こすが、仕上げ加工時は全体的パワーが
小さいから、電極の消耗も少なく格別問題にする程でも
ない。むしろ水中での加工においては加工面に電極のく
ずが付着し、加工面のサビ阻止に役立つ。又、逆極性電
圧の値を大きくすることから、平均加工電圧を一定(逆
極性電圧側)に保ちながら加工をする場合、逆極性電圧
印加時間が短くなり、放電繰り返し数を大きくできると
いう効果もある。
Effects of the Invention As mentioned above, since electrical discharge machining is performed by setting the average machining voltage to the opposite polarity voltage side during finishing machining and reducing the discharge power during positive polarity discharge, the surface roughness of the machined part is improved and is good. Not only can a machined surface be obtained, but also stable machining can be obtained because the average machining voltage is on the opposite polarity voltage side. Further, the high power of the reverse polarity voltage causes wear on the electrodes, but since the overall power is low during finishing, the wear on the electrodes is small and does not cause any particular problem. Rather, when machining underwater, electrode debris adheres to the machining surface, which helps prevent rust on the machining surface. In addition, since the value of the reverse polarity voltage is increased, when machining is performed while keeping the average machining voltage constant (on the reverse polarity voltage side), the reverse polarity voltage application time is shortened and the number of discharge repetitions can be increased. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1の実施例の放電加工電源の基本
回路、第2図は、同実施例の制御回路、第3図は、動作
タイミングチャート、第4図は、本発明の第2の実施例
の回路図、第5図は、同第2の実施例の動作タイミング
チャート、第6図は、本発明の第3の実施例の回路図、
第7図は、同第3の実施例の動作タイミングチャート、
第8図は、本発明の第4の実施例の回路図、第9図は、
同第4の実施例の動作タイミングチャートである。 P・・・電極、W・・・ワーク、E1〜E5・・・直流
電源、■1〜T6・・・トランジスタ、1・・・平滑回
路、2・・・コンパレータ、RVI〜RV4・・・可変
抵抗、C1〜C4・・・コンデンサ、D1〜D3・・・
ダイオード、Tr・・・トランス。
Fig. 1 shows the basic circuit of the electric discharge machining power supply according to the first embodiment of the present invention, Fig. 2 shows the control circuit of the same embodiment, Fig. 3 shows the operation timing chart, and Fig. 4 shows the basic circuit of the electric discharge machining power supply according to the first embodiment of the present invention. A circuit diagram of the second embodiment, FIG. 5 is an operation timing chart of the second embodiment, and FIG. 6 is a circuit diagram of the third embodiment of the present invention.
FIG. 7 is an operation timing chart of the third embodiment;
FIG. 8 is a circuit diagram of a fourth embodiment of the present invention, and FIG. 9 is a circuit diagram of a fourth embodiment of the present invention.
It is an operation timing chart of the same 4th Example. P...electrode, W...work, E1-E5...DC power supply, ■1-T6...transistor, 1...smoothing circuit, 2...comparator, RVI-RV4...variable Resistor, C1-C4...Capacitor, D1-D3...
Diode, Tr...Transformer.

Claims (7)

【特許請求の範囲】[Claims] (1)放電加工において、仕上げ加工時に電極とワーク
間に印加される平均加工電圧を逆極性電圧側にして、正
極性放電のパワーを小さくして加工を行うようにした放
電加工方法。
(1) In electric discharge machining, an electric discharge machining method in which the average machining voltage applied between the electrode and the workpiece during finishing machining is set to the opposite polarity voltage side, and machining is performed by reducing the power of positive polarity electric discharge.
(2)平均加工電圧が逆極性電圧側になるよう電極とワ
ーク間に印加される逆極性電圧の時間を長くした特許請
求の範囲第1項記載の放電加工方法。
(2) The electrical discharge machining method according to claim 1, wherein the duration of the reverse polarity voltage applied between the electrode and the workpiece is increased so that the average machining voltage is on the reverse polarity voltage side.
(3)電極とワーク間に印加する逆極性電圧を正電圧よ
りも高くし平均加工電圧を逆極性電圧側にした特許請求
の範囲第1項又は第2項記載の放電加工方法。
(3) The electric discharge machining method according to claim 1 or 2, wherein the reverse polarity voltage applied between the electrode and the workpiece is higher than the positive voltage so that the average machining voltage is on the reverse polarity voltage side.
(4)コンデンサへの充電時及び放電時に電極とワーク
間に正、逆極性の電圧を印加し、正極性電圧の印加時に
は電極とワーク間に設けたダイオード及び抵抗を介して
電流を流し電極とワーク間に印加される正極性電圧を逆
極性電圧より小さくして正極性放電のパワーを小さくし
た特許請求の範囲第1項記載の放電加工方法。
(4) When charging and discharging the capacitor, voltages of positive and reverse polarity are applied between the electrode and the workpiece, and when a positive voltage is applied, a current is passed through the diode and resistor installed between the electrode and the workpiece, and the electrode and the workpiece are connected to each other. 2. The electrical discharge machining method according to claim 1, wherein the positive polarity voltage applied between the workpieces is made smaller than the reverse polarity voltage to reduce the power of the positive polarity discharge.
(5)上記抵抗は可変抵抗として電極とワーク間に印加
される正極性電圧の値を調整するようにした特許請求の
範囲第4項記載の放電加工方法。
(5) The electrical discharge machining method according to claim 4, wherein the resistor is a variable resistor that adjusts the value of the positive polarity voltage applied between the electrode and the workpiece.
(6)電源からトランスとフライホイールダイオードを
介して電極とワーク間に正、逆極性の電圧を印加し、正
極性電圧の印加時には電極とワーク間に設けたダイオー
ド及び抵抗を介して電流を流し、電極とワーク間に印加
される正極性電圧を逆極性電圧より小さくして正極性放
電のパワーを小さくして正極性放電のパワーを小さくし
た特許請求の範囲第1項記載の放電加工方法。
(6) Positive and reverse polarity voltages are applied between the electrode and the workpiece from the power source via the transformer and flywheel diode, and when a positive voltage is applied, a current is passed through the diode and resistor installed between the electrode and the workpiece. 2. The electric discharge machining method according to claim 1, wherein the power of the positive discharge is reduced by making the positive voltage applied between the electrode and the workpiece smaller than the reverse voltage.
(7)上記抵抗は可変抵抗として電極とワーク間に印加
される正極性電圧の値を調整するようにした特許請求の
範囲第6項記載の放電加工方法。
(7) The electrical discharge machining method according to claim 6, wherein the resistor is a variable resistor that adjusts the value of the positive polarity voltage applied between the electrode and the workpiece.
JP11521785A 1985-05-30 1985-05-30 Electric discharge machining method Granted JPS61274811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11521785A JPS61274811A (en) 1985-05-30 1985-05-30 Electric discharge machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11521785A JPS61274811A (en) 1985-05-30 1985-05-30 Electric discharge machining method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP31016490A Division JPH03228521A (en) 1990-11-17 1990-11-17 Electric discharge machining method

Publications (2)

Publication Number Publication Date
JPS61274811A true JPS61274811A (en) 1986-12-05
JPH0474128B2 JPH0474128B2 (en) 1992-11-25

Family

ID=14657260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11521785A Granted JPS61274811A (en) 1985-05-30 1985-05-30 Electric discharge machining method

Country Status (1)

Country Link
JP (1) JPS61274811A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316133A (en) * 1988-06-15 1989-12-21 Matsushita Electric Ind Co Ltd Minute shaft electric discharge machining method
JPH0419016A (en) * 1990-05-09 1992-01-23 Takahisa Masuzawa Method and device for electrolytic processing using pulsated current
WO2009096025A1 (en) * 2008-01-31 2009-08-06 Mitsubishi Electric Corporation Electric discharge device and electric discharge method
JP2011240486A (en) * 2011-09-05 2011-12-01 Mitsubishi Electric Corp Electric discharge machining device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070996A (en) * 1973-10-24 1975-06-12
JPS563143A (en) * 1979-06-20 1981-01-13 Mitsubishi Electric Corp Power source device for wirecut type electrospark machining

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070996A (en) * 1973-10-24 1975-06-12
JPS563143A (en) * 1979-06-20 1981-01-13 Mitsubishi Electric Corp Power source device for wirecut type electrospark machining

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316133A (en) * 1988-06-15 1989-12-21 Matsushita Electric Ind Co Ltd Minute shaft electric discharge machining method
JPH0419016A (en) * 1990-05-09 1992-01-23 Takahisa Masuzawa Method and device for electrolytic processing using pulsated current
WO2009096025A1 (en) * 2008-01-31 2009-08-06 Mitsubishi Electric Corporation Electric discharge device and electric discharge method
US8309876B2 (en) 2008-01-31 2012-11-13 Mitsubishi Electric Corporation Electric discharge machining apparatus and electric discarge machining method
JP5127843B2 (en) * 2008-01-31 2013-01-23 三菱電機株式会社 Electric discharge machining apparatus and electric discharge machining method
JP2011240486A (en) * 2011-09-05 2011-12-01 Mitsubishi Electric Corp Electric discharge machining device

Also Published As

Publication number Publication date
JPH0474128B2 (en) 1992-11-25

Similar Documents

Publication Publication Date Title
US3330933A (en) Controlled rectifier welding power source
EP0178330B1 (en) Power source for wire cut electrospark machining
US5903067A (en) Power supply apparatus for electric discharge machine
US4459460A (en) Generator of high current pulses
JPS61274811A (en) Electric discharge machining method
JPH0355251B2 (en)
RU2635057C2 (en) Plant for electroerosion machining
JPS61274812A (en) Rust preventive machining method of machined surface in electric discharge machining under water
JPH0532168B2 (en)
JPS60123218A (en) Power source for electric discharge machining
JPH03228521A (en) Electric discharge machining method
JPS61260923A (en) Power source for electric discharge machining
JPH059209B2 (en)
JPS632611A (en) Electric discharge machining power source
US3329866A (en) Electrical discharge machining power supply apparatus and method
JP2547365B2 (en) EDM power supply
JPH0230426A (en) Electric power supply device for electrolytic finish machining
JPS60180720A (en) Discharge machining power supply
JPS5973226A (en) Machining power supply of electric discharge machining device
JPS59134621A (en) Electric discharge machine
SU1337212A1 (en) Welding current pulse generator
JPH0355253B2 (en)
JP3381359B2 (en) Power supply unit for electric discharge machine
SU1682076A1 (en) Power supply for pulse arc welding
JPS60180721A (en) Discharge machining power supply

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees