JPS61273240A - Packed casting method - Google Patents

Packed casting method

Info

Publication number
JPS61273240A
JPS61273240A JP11606185A JP11606185A JPS61273240A JP S61273240 A JPS61273240 A JP S61273240A JP 11606185 A JP11606185 A JP 11606185A JP 11606185 A JP11606185 A JP 11606185A JP S61273240 A JPS61273240 A JP S61273240A
Authority
JP
Japan
Prior art keywords
flask
casting
hollow
heat
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11606185A
Other languages
Japanese (ja)
Other versions
JPH0636957B2 (en
Inventor
Norikazu Yoshinaka
好中 範和
Keiichiro Noguchi
野口 啓一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60116061A priority Critical patent/JPH0636957B2/en
Publication of JPS61273240A publication Critical patent/JPS61273240A/en
Publication of JPH0636957B2 publication Critical patent/JPH0636957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • B22C9/046Use of patterns which are eliminated by the liquid metal in the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Casting Devices For Molds (AREA)

Abstract

PURPOSE:To prevent the bend of a pattern and to obtain a slender hollow casting having high accuracy by inserting and fixing an expendable slender hollow pattern onto a vertically fixed mandrel member at the base of the molding flask, coating the fluid molding sand introduced into the outside circumference and hollow part of the pattern in the molding flask with a film and evacuating the sand to solidify the same. CONSTITUTION:The expendable slender hollow pattern 18 made of a polystyrene foam is inserted into the mandrel member 15 fixed vertically to the base of the air permeable molding flask 14 and is fixed at a root end 16. The fluid molding sand 13 is introduced into the outside circumference and hollow part 19 of the pattern 18 in the flask 4 and is oscillated so as to be uniformly paced into the flask 4. The expendable film 22 is coated to the upper aperture and is sucked 8 by the evacuation to solidify the molding sand. The slender pattern 18 is supported without being bent and the casting formed by pouring is the slender hollow casting having high accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ポリスチレン発泡体で目的とする鋳物形状に
成形した消失性模型を鋳枠内の耐熱性粒子(鋳物砂)に
埋設した後、溶湯を注湯して消失性模型を消失させなが
ら鋳物を鋳造する、いわゆるフルモールド鋳造法と呼ば
れる充填鋳造方法に関し、特に中空部を有する軸物製品
等を高精度に鋳造することができる方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention involves embedding a fugitive model made of polystyrene foam into a desired casting shape in heat-resistant particles (molding sand) in a casting flask. The present invention relates to a filling casting method called a so-called full mold casting method, in which a casting is cast while pouring molten metal and eliminating a fugitive model, and in particular relates to a method capable of casting shaft products having a hollow portion with high precision.

(従来の技術) 従来より、この種の充填鋳造方法として、例えば特開昭
59−191542号公報に開示されているように、目
的とする鋳物の肉厚部に相当する消失性模型の肉厚部に
固体冷却媒体〈鉄製冷し金)を装着し、この固体冷却媒
体を装着した消失性模型を鋳枠内の耐熱性粒子(鋳物砂
)に埋設した後、溶湯を注湯して該消失性模型を消失さ
せて、ひけ巣等の欠陥のない鋳物を鋳造する方法が知ら
れている。
(Prior art) Conventionally, as this type of filling casting method, as disclosed in Japanese Patent Application Laid-Open No. 59-191542, the thickness of a fugitive model corresponding to the thick part of the target casting is A solid cooling medium (iron cooling metal) is attached to the part, and the fugitive model with this solid cooling medium attached is buried in heat-resistant particles (casting sand) in the casting flask, and then molten metal is poured into the flask to cause the fugitive to disappear. A known method is to eliminate the mold and cast a casting without defects such as shrinkage cavities.

(充用が解決しようとする問題点) ところが、このような充填鋳造方法で例えば中空部を有
するカムシャフト等の軸物製品を鋳造する場合、消失性
模型はポリスチレン発泡体で中空鋳物形状に成形され、
しかも中空部が設けられているので曲げ強度が弱く、該
消失性模型が耐熱性粒子に埋設される過程で耐熱性粒子
抵抗によって変形した状態で鋳枠内に保持されることと
なる。
(Problems to be solved by filling) However, when casting a shaft product such as a camshaft having a hollow part using such a filling casting method, the fugitive model is formed into a hollow casting shape using polystyrene foam.
Moreover, since the hollow part is provided, the bending strength is low, and the fugitive model is held in the flask in a deformed state due to the resistance of the heat-resistant particles during the process of being embedded in the heat-resistant particles.

その結果、鋳造された中空鋳物に軸心ずれが生じたりし
て高精度に鋳造することができないという不具合が生じ
る。
As a result, there arises a problem in that the cast hollow casting is misaligned in its axis, making it impossible to cast with high precision.

本発明はかかる点に鑑みてなされたものであり、その目
的とするところは、中子を補強することにより、中空部
を有する消失性模型を変形することなく耐熱性粒子に埋
設するようにし、中空鋳物を高精度に鋳造できるように
することにある。
The present invention has been made in view of this point, and its purpose is to embed a fugitive model having a hollow part in heat-resistant particles without deforming it by reinforcing the core, The purpose is to enable highly accurate casting of hollow castings.

(問題点を解決するための手段) 上記の目的を達成するため、本発明の解決手段は、鋳枠
内に充填した耐熱性粒子を流動させた状態で中空部を有
する消失性模型を耐熱性粒子に埋設して鋳枠内にセット
し、その後溶湯により上記消失性模型を消失させながら
中空鋳物を鋳造する充填鋳造方法において、予め上記鋳
枠に芯金部材を固定しておく。そして、埋設時に該芯金
部材が上記消失性模型の中空部に挿入されるように耐熱
性粒子の流動状態で消失性模型を鋳枠内にセットする構
成としたものである。
(Means for Solving the Problems) In order to achieve the above object, the solution of the present invention is to heat-resistant a fugitive model having a hollow part while flowing heat-resistant particles filled in a casting flask. In a filling casting method in which a hollow casting is cast by embedding it in particles and setting it in a flask, and then eliminating the fugitive model with molten metal, a core metal member is fixed to the flask in advance. The fugitive model is set in the flask in a fluidized state of heat-resistant particles so that the core metal member is inserted into the hollow part of the fugitive model during embedding.

(作用) 上記の構成により、本発明では、鋳枠内に充填した耐熱
性粒子に消失性模型を埋設する過程において、消失性模
型は鋳枠に固定された芯金部材に案内されて鋳枠内の所
定位置にセットされるとともに、消失性模型の中空部に
耐熱性粒子が充填されて中子を形成する。そして、この
中子が上記芯金部材によって補強されていることから、
埋設過程で耐熱性粒子抵抗によって変形しようとする消
失性模型の変形が防止されるとともに、消失性模型が安
定して保持されることとなる。
(Function) With the above configuration, in the present invention, in the process of embedding the fugitive model in the heat-resistant particles filled in the flask, the fugitive model is guided by the core metal member fixed to the flask and The hollow part of the fugitive model is filled with heat-resistant particles to form a core. Since this core is reinforced by the core metal member,
During the embedding process, the heat-resistant particle resistance prevents the fugitive model from deforming, and the fugitive model is stably held.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

図面は本発明の実施例に係る充填vl造方法に使用する
鋳造装置Aを示し、該鋳造装!Aは、床面1上にマウン
トラバー2・・・を介して取り付けられた装置本体3と
、該装置本体3内に収納支持された上方開口状の有底鋳
枠4とを備えてなる。
The drawing shows a casting apparatus A used in a filling vl manufacturing method according to an embodiment of the present invention. A includes an apparatus main body 3 mounted on a floor surface 1 via mounting rubbers 2, and a bottomed casting flask 4 with an upward opening, which is housed and supported within the apparatus main body 3.

上記装置本体3は密閉箱状の上枠5と下枠6とからなり
、上枠5はその上面に開口部7が形成され、該開口部7
の周縁には上記鋳枠4の開口周縁部が固定されている。
The device main body 3 consists of an upper frame 5 and a lower frame 6 in the shape of a closed box, and the upper frame 5 has an opening 7 formed on its upper surface.
The opening periphery of the casting flask 4 is fixed to the periphery of the casting flask 4 .

また、下枠6内には配管8が配設され、該配管8の一端
は上枠5内に開口している一方、他端は図外のエア供給
源および負圧源に接続されている。また、下枠6の下面
には装置本体3を振動させる振動用モータ9が取り付け
られている。
Further, a pipe 8 is disposed within the lower frame 6, and one end of the pipe 8 is open into the upper frame 5, while the other end is connected to an air supply source and a negative pressure source (not shown). . Further, a vibration motor 9 for vibrating the device main body 3 is attached to the lower surface of the lower frame 6.

一方、上記鋳枠4は、全面に多数の孔部10゜10、・
・・を有する金属槽11と、その内側に重合され例えば
200メツシユに設定された金網12とからなり、内部
には耐熱性粒子(鋳造砂)13が充填されている。
On the other hand, the flask 4 has a large number of holes 10°10, .
It consists of a metal tank 11 having .

また、鋳枠4内にはその底面に支持具14を介して芯金
部材15が立設されている。この芯金部材15は細長い
棒状に形成されており、上記鋳枠4に固定される基端部
16には軸心方向に延びる複数の貫通細孔17.17.
・・・が穿設されている。
Further, a core member 15 is erected on the bottom surface of the flask 4 via a support 14 . This core metal member 15 is formed in the shape of an elongated rod, and a base end portion 16 fixed to the flask 4 has a plurality of through holes 17, 17, 17, 17, 17, 17, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17.
... has been drilled.

そして、該芯金部材15は中空部19を有する消失性模
型18を耐熱性粒子13に埋設した状態で衣装支持する
ものである。なお、消失性模型18はポリスチレン発泡
体で目的とする中空鋳物と同一形状寸法に成形されてお
り、図では中空鋳物がカムシャフトである場合を例示す
る。この消失性模型18の肉厚部20.20.・・・す
なわちカムシャフトのカム部にはそれぞれ固体冷却媒体
としての鉄製冷し金21が装着されて、ひけ巣等の鋳造
欠陥の発生を防止している。
The core member 15 supports the costume with a fugitive model 18 having a hollow portion 19 embedded in the heat-resistant particles 13. The fugitive model 18 is made of polystyrene foam and is molded to have the same shape and dimensions as the target hollow casting, and the figure illustrates a case where the hollow casting is a camshaft. Thick part 20.20 of this evanescent model 18. That is, iron chillers 21 as a solid cooling medium are attached to each cam portion of the camshaft to prevent casting defects such as shrinkage cavities from occurring.

22は耐熱性粒子13に消失性模型18を埋設した後上
記装置本体3(上枠5)の開口部7を覆うように張設さ
れるプラスチックシート、23は上記消失性模型18の
上端に対応するようにプラスチックシート22に載置さ
れる湯口である。
22 is a plastic sheet stretched to cover the opening 7 of the device main body 3 (upper frame 5) after the fugitive model 18 is embedded in the heat-resistant particles 13; 23 corresponds to the upper end of the fugitive model 18; This is a sprue that is placed on the plastic sheet 22 so that it will look like this.

そして、上記の如く構成された鋳造装置Aを使用してエ
ンジン用中空カムシャフトを鋳造する場合を説明するに
、まず、図外のエア供給源より配管8を介して装置本体
3(上枠5)内にエアを供給する。この供給されたエア
は実線矢印で示すように“金属槽11の孔部10.10
.・・・を通って鋳枠4内に供給され、上記耐熱性粒子
13を流動させる。この耐熱性粒子13の流動状態で消
失性模型18を鋳枠4(耐熱性粒子13)内に挿入し、
芯金部材15が上記消失性模型18の中空部19に挿入
位置するように消失性模型18を芯金部材15に嵌装す
る。この状態で図示のように消失性模型18が耐熱性粒
子13に埋設されるとともに、該消失性模型18の中空
部19内にも耐熱性粒子13が充填されて消失性模型1
8が鋳枠4内にセットされる。この中空部1つ内の耐熱
性粒子13が中子Cとしての役目をなし、該中子Cは芯
金部材15で補強されて、埋設過程で耐熱性粒子抵抗に
よって変形しようとする消失性模型18の変形を防止す
るとともに、消失性模型18を安定して保持している。
To explain the case of casting a hollow camshaft for an engine using the casting apparatus A configured as described above, first, an air supply source (not shown) is supplied to the apparatus main body 3 (the upper frame 5 ). This supplied air flows through the hole 10.10 of the metal tank 11 as shown by the solid line arrow.
.. ... is supplied into the flask 4 to cause the heat-resistant particles 13 to flow. Insert the fugitive model 18 into the flask 4 (heat-resistant particles 13) in a fluidized state of the heat-resistant particles 13,
The fugitive model 18 is fitted onto the core metal member 15 so that the core metal member 15 is inserted into the hollow portion 19 of the fugitive model 18. In this state, as shown in the figure, the fugitive model 18 is embedded in the heat-resistant particles 13, and the hollow part 19 of the fugitive model 18 is also filled with the heat-resistant particles 13, so that the fugitive model 1
8 is set in the flask 4. The heat-resistant particles 13 in one hollow part serve as a core C, and the core C is reinforced with a core member 15, and is a fugitive model that attempts to deform due to the resistance of the heat-resistant particles during the embedding process. This prevents deformation of the model 18 and stably holds the evanescent model 18.

次に、装置本体3内へのエア供給を停止した後、プラス
チックシート22を装置本体3の上面に開口部7を覆う
ように張設し、図外の負圧源を作動させて破線矢印で示
すようにエアを吸引排出させるとともに、撮動用モータ
9を作動させて耐熱性粒子13の集積密度を高める、い
わゆる砂締めを行う。この際、消失性模型18・の中空
部19内も芯金部材15の細孔17.17.・・・を介
してエアが吸引排出されることから、該中空部19内の
耐熱性粒子13の集積密度も高められる。すなわち、こ
の中空部19内の耐熱性粒子13が中子Cとして十分に
機能することとなる。
Next, after stopping the air supply into the device main body 3, the plastic sheet 22 is stretched over the top surface of the device main body 3 so as to cover the opening 7, and a negative pressure source (not shown) is activated, as indicated by the broken line arrow. As shown, air is sucked and discharged, and the imaging motor 9 is operated to increase the accumulation density of the heat-resistant particles 13, so-called sand tightening. At this time, the inside of the hollow part 19 of the fugitive model 18 also includes the pores 17, 17, and 17 of the core member 15. Since air is sucked and discharged through the hollow portion 19, the accumulation density of the heat-resistant particles 13 within the hollow portion 19 is also increased. That is, the heat-resistant particles 13 within this hollow portion 19 function fully as the core C.

その後、エアの吸引排出を続行しながら消失性模型18
の上端に対応して濃口23をプラスチックシート22に
載置し、該湯口23より溶S<図示せず)を注湯する。
After that, while continuing to suction and discharge air, the disappearing model 18
A dark spout 23 is placed on the plastic sheet 22 corresponding to the upper end of the sprue 23, and molten S (not shown) is poured from the sprue 23.

これにより該消失性模型18は溶湯の有する高熱を受け
て完全に熱分解し、一部すす状カーボンとなるほかは炭
酸ガスと水蒸気になり、耐熱性粒子13中で消失性模型
18が占めていた空間がそのまま中空鋳物に入れかわる
As a result, the fugitive model 18 is completely thermally decomposed by the high heat of the molten metal, and a part of the fugitive model 18 becomes soot-like carbon and becomes carbon dioxide gas and water vapor. The empty space is directly replaced by a hollow casting.

この消失性模型18の消失に伴って発生する炭酸ガスお
よび水蒸気は、鋳枠4の孔部10,10゜・・・および
貫通細孔17,17.・・・を介して装置本体3外部に
吸引排出され、その結果、ガス欠陥のない中空鋳物が得
られることとなる。そして、得られた中空鋳物の冷却を
持って鋳枠4内より取り出し、中子Cを取り外すことで
製品(中空カムシャフト)が出来上がる。
The carbon dioxide gas and water vapor generated with the disappearance of the fugitive model 18 are transmitted to the holes 10, 10° . . . and the through holes 17, 17 . ... is sucked and discharged to the outside of the apparatus main body 3, and as a result, a hollow casting without gas defects is obtained. Then, the obtained hollow casting is cooled and taken out from the flask 4, and the core C is removed to complete the product (hollow camshaft).

このようにして得られた製品は、消失性模型18の埋設
状態で該消失性模型18の中空部19に充填された耐熱
性粒子13が芯金部材15によって補強されて強固な中
子Cを形成するので、埋設時に加わる耐熱性粒子抵抗に
十分耐えることができて消失性模型18の変形を防止す
るとともに安定して保持することができることから、鋳
枠4に変形のない状態でセットされた消失性模型18と
溶湯との入替えを行うことができ、軸心ずれのない高精
度の中空鋳物を得ることができる。
In the product obtained in this way, the heat-resistant particles 13 filled in the hollow part 19 of the fugitive model 18 are reinforced by the core metal member 15 when the fugitive model 18 is buried, forming a strong core C. Since it is possible to sufficiently withstand the resistance of heat-resistant particles applied during embedding and to prevent deformation of the fugitive model 18 and to hold it stably, it is possible to set it in the flask 4 without deformation. The fugitive model 18 and the molten metal can be replaced, and a high-precision hollow casting without axial misalignment can be obtained.

なお、上記実施例では鋳物製品が中空カムシャフトであ
る場合を例示したが、これに限らず他の中空製品を得る
場合にも適用可能なことは勿論である。
In addition, although the case where the casting product is a hollow camshaft was illustrated in the above-mentioned Example, it is needless to say that it is applicable not only to this but also when obtaining other hollow products.

(発明の効果〉 以上説明したように、本発明の充填鋳造方法によれば、
耐熱性粒子に埋設された消失性模型の中空部に充填され
た耐熱性粒子を、該中空部に挿入される芯金部材によっ
て補強しているので、埋設時に加わる耐熱性粒子抵抗に
よる消失性模型の変形が防止されるとともに安定して保
持され、軸心ずれのない高精度の中空鋳物を鋳造するこ
とができる。
(Effects of the Invention) As explained above, according to the filling casting method of the present invention,
Since the heat-resistant particles filled in the hollow part of the fugitive model embedded in the heat-resistant particles are reinforced by the core metal member inserted into the hollow part, the fugitive model is made of heat-resistant particles due to the resistance of the heat-resistant particles applied during embedding. It is possible to prevent deformation of the material and to hold it stably, thereby making it possible to cast a high-precision hollow casting without axial misalignment.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に係る充填鋳造方法に使用する鋳
造装置の縦断面図である。 4・・・鋳枠、13・・・耐熱性粒子、15・・・芯金
部材、18・・・消失性模型、19・・・中空部。 特 許 出 願 人 マツダ株式会社 1 .1ニー:
 、、、 ;:  1
The drawing is a longitudinal sectional view of a casting apparatus used in a filling casting method according to an embodiment of the present invention. 4... Casting flask, 13... Heat resistant particles, 15... Core metal member, 18... Erasable model, 19... Hollow part. Patent applicant: Mazda Motor Corporation 1. 1 knee:
,,, ;: 1

Claims (1)

【特許請求の範囲】[Claims] (1)鋳枠内に充填した耐熱性粒子を流動させた状態で
中空部を有する消失性模型を耐熱性粒子に埋設して鋳枠
内にセットし、その後溶湯により上記消失性模型を消失
させながら中空鋳物を鋳造する充填鋳造方法であって、
予め上記鋳枠に芯金部材を固定しておき、埋設時に該芯
金部材が上記消失性模型の中空部に挿入されるように耐
熱性粒子の流動状態で消失性模型を鋳枠内にセットする
ことを特徴とする充填鋳造方法。
(1) With the heat-resistant particles filled in the flask flowing, a fugitive model with a hollow section is embedded in the heat-resistant particles and set in the flask, and then the fugitive model is made to disappear by molten metal. A filling casting method for casting hollow castings,
A core metal member is fixed to the flask in advance, and the fugitive model is set in the flask in a fluid state of heat-resistant particles so that the core metal member is inserted into the hollow part of the fugitive model when embedding. A filling casting method characterized by:
JP60116061A 1985-05-29 1985-05-29 Filling and casting method Expired - Lifetime JPH0636957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60116061A JPH0636957B2 (en) 1985-05-29 1985-05-29 Filling and casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60116061A JPH0636957B2 (en) 1985-05-29 1985-05-29 Filling and casting method

Publications (2)

Publication Number Publication Date
JPS61273240A true JPS61273240A (en) 1986-12-03
JPH0636957B2 JPH0636957B2 (en) 1994-05-18

Family

ID=14677739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60116061A Expired - Lifetime JPH0636957B2 (en) 1985-05-29 1985-05-29 Filling and casting method

Country Status (1)

Country Link
JP (1) JPH0636957B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839597B1 (en) 2007-03-06 2008-06-19 정태우 A vacuum casting apparatus which uses the vibration
CN102581220A (en) * 2011-01-04 2012-07-18 私立中原大学 Hollow wax blank forming method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124548A (en) * 1981-01-26 1982-08-03 Nippon Koki Kk Casting method
JPS57146448A (en) * 1981-03-05 1982-09-09 Nippon Koki Kk Casting method
JPS6076249A (en) * 1983-09-30 1985-04-30 Toyota Motor Corp Sand core

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124548A (en) * 1981-01-26 1982-08-03 Nippon Koki Kk Casting method
JPS57146448A (en) * 1981-03-05 1982-09-09 Nippon Koki Kk Casting method
JPS6076249A (en) * 1983-09-30 1985-04-30 Toyota Motor Corp Sand core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839597B1 (en) 2007-03-06 2008-06-19 정태우 A vacuum casting apparatus which uses the vibration
CN102581220A (en) * 2011-01-04 2012-07-18 私立中原大学 Hollow wax blank forming method and device

Also Published As

Publication number Publication date
JPH0636957B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
RU2278765C2 (en) Method of centrifugal contergravity casting
US6019927A (en) Method of casting a complex metal part
RU2108892C1 (en) Method of vacuum suction casting and plant for its embodiment
JPS61502245A (en) Casting of metal products
RU2039629C1 (en) Method of antigravity casting of molten metal and device for its carrying out
US5271451A (en) Metal casting using a mold having attached risers
US4674553A (en) Method for sand casting varying thickness articles
US4318437A (en) Metal casting system
JP2006175492A (en) Method for manufacturing casting with lost-foam pattern casting method
CA2103087C (en) Lost foam process for casting stainless steel
US4023268A (en) Method of producing vent holes in tire molds
JPS61273240A (en) Packed casting method
US4942915A (en) Process for production of a hollow casting
US3336970A (en) Methods of casting
JPH01237046A (en) Method for casting lost foam pattern
JP2934000B2 (en) Manufacturing method of manhole frame by loss casting method
JPH0557061B2 (en)
JPH01313130A (en) Casting method using lost foam pattern
JPH05277699A (en) Method for casting thin casting
US4027717A (en) Method for forming a casting mold and a flexible pattern to be used therefor
SU996089A1 (en) Method and apparatus for casting by vacuum suction into ceramic gas-permeable mould
JP2820882B2 (en) Vacuum suction casting apparatus and method
JPH01237045A (en) Method for casting lost foam pattern
SU854571A1 (en) Method of producing metal-sheel moulds
JPS6336864B2 (en)