JPS61272562A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS61272562A
JPS61272562A JP11402285A JP11402285A JPS61272562A JP S61272562 A JPS61272562 A JP S61272562A JP 11402285 A JP11402285 A JP 11402285A JP 11402285 A JP11402285 A JP 11402285A JP S61272562 A JPS61272562 A JP S61272562A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
outdoor heat
air conditioner
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11402285A
Other languages
Japanese (ja)
Other versions
JPH0648125B2 (en
Inventor
弘章 松嶋
坂爪 秋郎
博樹 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60114022A priority Critical patent/JPH0648125B2/en
Publication of JPS61272562A publication Critical patent/JPS61272562A/en
Publication of JPH0648125B2 publication Critical patent/JPH0648125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ヒートポンプ式空気調和機に係り特に、除霜
時間の短縮に好適なヒートポンプ式空気調和機に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a heat pump type air conditioner, and particularly to a heat pump type air conditioner suitable for shortening defrosting time.

〔発明の背景〕[Background of the invention]

ヒートポンプ式空気調和機では、外気温度が特に低い状
態で暖房運転を行つと、室外IF+!I熱交換器に4が
付着して、室外1!++熱父換器の熱父換能力が低下し
、室内側での暖房能力も=r分に機能を発揮できなくな
る。このため、−走風上に霜が付着すると除霜する必要
がある。
With a heat pump type air conditioner, if you perform heating operation when the outside air temperature is particularly low, the outdoor IF+! 4 is attached to the I heat exchanger and 1 is outside! ++ The heat exchange capacity of the heat exchanger decreases, and the indoor heating capacity is no longer able to perform its function by =r minutes. For this reason, if frost adheres to the wind travel, it is necessary to defrost it.

除霜運転中の室外側熱交換器における冷媒の流れは1例
えば実公昭53−29566号公報に記載されているよ
うに、室外側熱交換器下方からホットガスを入れるもの
が知られている。
Regarding the flow of refrigerant in the outdoor heat exchanger during defrosting operation, it is known that hot gas is introduced from below the outdoor heat exchanger, as described in Japanese Utility Model Publication No. 53-29566, for example.

これによれば、室外側熱交換器の下端が加熱されるため
に、融解して上から下へ流れてきた除霜水はさらに加熱
され、除霜水の再凍結は完全に防止できる利点がある。
According to this, since the lower end of the outdoor heat exchanger is heated, the defrost water that has melted and flowed from the top to the bottom is further heated, and the advantage is that refreezing of the defrost water can be completely prevented. be.

しかし、除霜水が室外側熱交換器入口のホットガス温度
近くまで加熱され、除霜に必要な熱量も霜を融解させる
熱量の他に、除霜水をホットガス温度まで加熱させる熱
量が必要となることについて十分配慮されていなかった
However, the defrosting water is heated to a temperature close to the hot gas temperature at the outdoor heat exchanger inlet, and the amount of heat required for defrosting is not only to melt the frost, but also to heat the defrosting water to the hot gas temperature. Not enough consideration was given to this.

〔発明の目的〕[Purpose of the invention]

本発明によれば、前述の従来技術の問題点を解決し、除
霜に必要な熱量を小さくでき、短時間で除霜ができる快
適なヒートポンプ式空気調和機の提供を、その目的とし
ている。
According to the present invention, it is an object of the present invention to provide a comfortable heat pump type air conditioner that solves the problems of the prior art described above, can reduce the amount of heat required for defrosting, and can defrost in a short time.

〔発明の概要〕[Summary of the invention]

本発明に係るヒートポンプ式空気調和機の構成は、圧縮
機、四方切換弁、室内側熱交換器、冷媒減圧手波、室外
側熱交換器を配管接続し。
The structure of the heat pump type air conditioner according to the present invention includes a compressor, a four-way switching valve, an indoor heat exchanger, a refrigerant pressure reduction hand wave, and an outdoor heat exchanger connected through piping.

前記圧縮機の吐出側配管と、前記冷媒減圧手波、前記室
外側熱交換器間を結ぶ配管とを連通するバイパス管路を
備え、このバイパス管路を開閉する制御弁を設けてなる
ヒートポンプ式空気調和機において、除霜運転時に、前
記バイパス管路の制御弁を開いて前記バイパス管路から
前記室外側熱交換器にホットガスを導くようにした当該
室外側熱交換器の冷媒入口を、当該室外側熱交換器の下
部に設けた冷媒出口より上方に位置するように構成した
ものである。
A heat pump type comprising: a bypass pipe that communicates the discharge side pipe of the compressor with a pipe connecting the refrigerant pressure reduction hand wave and the outdoor heat exchanger, and a control valve that opens and closes the bypass pipe. In the air conditioner, the refrigerant inlet of the outdoor heat exchanger is configured to open the control valve of the bypass pipe to guide hot gas from the bypass pipe to the outdoor heat exchanger during defrosting operation; It is configured to be located above the refrigerant outlet provided at the bottom of the outdoor heat exchanger.

なお1本発明を開発した考え方を付記すると次のとおり
である。
Note that the idea behind developing the present invention is as follows.

除霜運転時に、室外側熱交換器の下側が冷媒出口となり
、その上部に冷媒に係るホットガスが導入される入口と
なるように構成し、融解した除霜水の不必要な加熱をな
くシ、除霜に必要な熱量を小さくてる。
During defrosting operation, the lower side of the outdoor heat exchanger serves as a refrigerant outlet, and the upper part serves as an inlet into which hot gas related to the refrigerant is introduced, thereby eliminating unnecessary heating of molten defrosting water. , reducing the amount of heat required for defrosting.

さらに、冷房運転時に負荷が小さくなり、冷媒循環量を
小さくした場合でも、室外側熱交換器内に液溜りを生じ
ないように、冷媒のかわき度が大きい範囲で下部から上
部に光し、か・わき度が小さくなると上部から下部に流
れるようにすることを考えたものである。
Furthermore, even when the load is small during cooling operation and the amount of refrigerant circulated is reduced, the light is illuminated from the bottom to the top in the range where the refrigerant is highly concentrated, to prevent liquid accumulation in the outdoor heat exchanger.・The idea was to allow water to flow from the top to the bottom as the sideness decreases.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の各実施例を第1図ないし第7図を参照し
て説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 7.

まず、第1図は本発明の一実施例に係るヒートポンプ式
空気調和機の冷凍サイクルの系統図、第2図は、第1図
の室外側熱交換器の側面図、第3図は、その室外側熱交
換器の正面図であろう第1図において、1は圧縮機、2
は冷房運転時と暖房運転時で冷媒の流れ方向を切換える
四方切換弁、3は室外側熱交換器(詳細後述)、4は冷
媒減圧手波に係る膨張弁、5は室内外熱交換器、6は圧
縮機1の吐出側配管と前記膨張弁4、前記室外側熱交換
器3間を結ぶ配管とを連通するバイパス管路、7はその
バイパス管路6を開閉する制御弁に係る二方弁、13は
室外側熱交換器3の出口に設けた冷媒温度測定用のサー
ミスタである。
First, Fig. 1 is a system diagram of the refrigeration cycle of a heat pump type air conditioner according to an embodiment of the present invention, Fig. 2 is a side view of the outdoor heat exchanger of Fig. 1, and Fig. 3 is its diagram. In Figure 1, which is probably a front view of the outdoor heat exchanger, 1 is a compressor, 2
is a four-way switching valve that switches the flow direction of refrigerant between cooling and heating operations, 3 is an outdoor heat exchanger (details will be described later), 4 is an expansion valve related to refrigerant pressure reduction hand waves, 5 is an indoor/outdoor heat exchanger, Reference numeral 6 denotes a bypass pipe connecting the discharge side pipe of the compressor 1 with the pipe connecting the expansion valve 4 and the outdoor heat exchanger 3, and 7 refers to a control valve that opens and closes the bypass pipe 6. A valve 13 is a thermistor provided at the outlet of the outdoor heat exchanger 3 for measuring the temperature of the refrigerant.

室外側熱交換器3の詳細を第2図、第3図を参照して説
明する。
Details of the outdoor heat exchanger 3 will be explained with reference to FIGS. 2 and 3.

第2図、第3図において、8は室外側熱交換器3の中間
部に設けた分岐口で、この分岐口8は、暖房、除霜運転
時に冷媒入口(冷房運転時に冷媒出口)となるものであ
る。9は室外側熱交換器3の下部に設けた分岐口で、こ
の分岐口9は、暖房、除霜運転時に冷媒出口(冷房運転
時は冷媒入口)となるものである。10は第1の配管、
11は第2の配管を示す。
In FIGS. 2 and 3, 8 is a branch port provided in the middle of the outdoor heat exchanger 3, and this branch port 8 serves as a refrigerant inlet during heating and defrosting operation (refrigerant outlet during cooling operation). It is something. Reference numeral 9 denotes a branch port provided at the bottom of the outdoor heat exchanger 3, and this branch port 9 serves as a refrigerant outlet during heating and defrosting operations (refrigerant inlet during cooling operation). 10 is the first pipe;
11 indicates the second pipe.

このように構成したヒートポンプ式空気調和機の動作に
ついて説明する。
The operation of the heat pump air conditioner configured in this way will be explained.

まず、冷房運転時には、四方切換弁2は第1図に破線で
示すように冷房側に切換え、二方弁7は閉にするつ 圧縮機1で高温高圧となったカス冷媒は5四方切換弁2
を経て室外側熱交換器(凝縮器として作用)3へ送られ
、この室外側熱交換器3で外気に放熱、凝5縮して高圧
の液冷媒となる。この液冷媒は、膨張弁4で減圧され、
室内側熱交換器(蒸発器として作用)5で室内空気から
吸熱して室内を冷房し、冷媒量らは蒸発する。低温低圧
となった冷媒ガスは、四方切換弁2から圧縮機1に戻り
、以下同じサイクルを繰返す。
First, during cooling operation, the four-way switching valve 2 is switched to the cooling side as shown by the broken line in Fig. 1, and the two-way valve 7 is closed. 2
The refrigerant is then sent to the outdoor heat exchanger 3 (acting as a condenser), where it radiates heat to the outside air and condenses to become a high-pressure liquid refrigerant. This liquid refrigerant is depressurized by the expansion valve 4,
The indoor heat exchanger (acting as an evaporator) 5 absorbs heat from the indoor air to cool the room, and the amount of refrigerant evaporates. The refrigerant gas, which has become low temperature and low pressure, returns to the compressor 1 from the four-way switching valve 2, and the same cycle is repeated thereafter.

ここで、室外側熱交換器3内の冷媒の流れは。Here, the flow of refrigerant inside the outdoor heat exchanger 3 is as follows.

まず、室外側熱交換器3の下部に設けた冷房運転時に入
口となる分岐口9から2経路に分かれて熱交換器内に入
り、一定高さまで下部から上部にmしれたのち第1の配
管10.第2の配管11で室外側熱交換器3の上部に導
ひかれ、経路の前後を変えるクロス部12を通り、上部
から下部へ流通し、冷房運転時に川口となる分岐口8で
合流して1経路となって出ていく。
First, it enters the heat exchanger through two routes from the branch port 9 that is provided at the bottom of the outdoor heat exchanger 3 and serves as an inlet during cooling operation, and after passing from the bottom to the top to a certain height, the first pipe 10. The second pipe 11 leads to the upper part of the outdoor heat exchanger 3, passes through the cross part 12 that changes the route forward and backward, flows from the upper part to the lower part, and merges at the branch port 8 which becomes the river mouth during cooling operation. It becomes a route and goes out.

冷媒が、室外側熱交換器3の下部から上部に流れる高さ
が高く、冷媒配管の断面を琳位時間に通過する冷媒量、
Tなわち冷媒循環量が小さくなると、液溜りを生じてサ
ブクールが小さくなり、極端な場合にはサブクールがと
れなくなり、冷凍サイクル内の有効冷媒量が不足して効
率が著しく低下する。
The height at which the refrigerant flows from the lower part to the upper part of the outdoor heat exchanger 3 is high, and the amount of refrigerant that passes through the cross section of the refrigerant piping during the refrigerant time,
When T, that is, the amount of refrigerant circulation becomes small, a liquid pool occurs and the subcooling becomes small, and in extreme cases, the subcooling becomes impossible, and the effective amount of refrigerant in the refrigeration cycle becomes insufficient, resulting in a significant drop in efficiency.

第4図に、サブクールがとれなくなる耐媒循壌量と、下
部から上部に冷媒が流れる高さの割合との件係な示す。
FIG. 4 shows the relationship between the amount of medium circulation at which subcooling cannot be achieved and the ratio of the height at which the refrigerant flows from the bottom to the top.

第4図は、横軸に冷媒循環t(kg/h)、縦軸に下か
ら上の高さ割合をとり、図中の実線から下がサブクール
のとれる範囲、実線から上がサブクールのとれない範囲
を示すものである。図から明らかなように、冷媒が下部
から上部に流れる高さの割合いが室外側熱交換器全体の
1 / 3以下であればよいことがわかるう 換言すると、冷房運転時に負荷が小さくなり冷媒循猿敏
を小さくする場合でも、室内側熱交換器3内に液溜りが
生じないように、冷媒のかわき度が大きい範囲で下部か
ら上部へ流し、かわきσ[が小さくなると上部から下部
へ流れるようにてるためには、第2図に示す分岐口80
位置を、分岐口9の位置を基準にして、室外側熱交換器
3の1/3以下の高さに設けることが好ましいのである
In Figure 4, the horizontal axis is the refrigerant circulation t (kg/h), and the vertical axis is the height ratio from bottom to top. Below the solid line in the figure is the range where subcooling can be achieved, and above the solid line is the range where subcooling cannot be achieved. It indicates the range. As is clear from the figure, it is sufficient that the height ratio of the refrigerant flowing from the bottom to the top is 1/3 or less of the entire outdoor heat exchanger.In other words, the load becomes smaller during cooling operation, and the refrigerant Even when reducing the circulation rate, the refrigerant flows from the bottom to the top in a range where the degree of dryness is large, and flows from the top to the bottom when the degree of dryness σ becomes small, so as not to cause liquid accumulation in the indoor heat exchanger 3. In order to do so, the branch port 80 shown in FIG.
It is preferable to set the position at a height of ⅓ or less of the outdoor heat exchanger 3 with respect to the position of the branch port 9.

次に、暖房運転時には、四方切換弁2を暖房側に切換え
、二方弁7は閉にする。
Next, during heating operation, the four-way switching valve 2 is switched to the heating side, and the two-way valve 7 is closed.

圧縮機lで高温高圧となったガス冷媒は、四方切換弁2
を経て室内側熱交換器(凝縮器として作用)5へ送られ
、この室内側熱交換器5で室内に放熱して室内を暖房し
、冷媒量らは凝縮して高圧の液冷媒となるっこの液冷媒
は、膨張弁4で減圧され、室外側熱交換器(蒸発器とし
て作用)3で外気から吸熱、蒸発し、低温低圧となった
冷媒カスは、四方切換弁2から圧縮機1に戻り、以下同
じサイクルを繰返す。
The gas refrigerant that has become high temperature and high pressure in the compressor 1 is transferred to the four-way switching valve 2.
The refrigerant is then sent to the indoor heat exchanger 5 (which acts as a condenser), where it radiates heat into the room to heat the room, and the refrigerant is condensed and becomes a high-pressure liquid refrigerant. This liquid refrigerant is depressurized by the expansion valve 4, absorbs heat from the outside air and evaporates in the outdoor heat exchanger (acting as an evaporator) 3, and the refrigerant residue, which has become low temperature and low pressure, is transferred from the four-way switching valve 2 to the compressor 1. Go back and repeat the same cycle.

ここで、室外側熱交換器3内の冷媒の流れは、冷房運転
時とは逆に、まず、室外側熱交換器3の中間部に設けた
暖房運転時に入口となる分岐口8から2経路に分かれて
熱交換器内に入り、上部に流れて室外側熱交換器3の最
上部から第1の配管10、第2の配管11を通り下部へ
流れ。
Here, the flow of the refrigerant in the outdoor heat exchanger 3 is reversed to that during the cooling operation. First, the flow of the refrigerant in the outdoor heat exchanger 3 begins in two routes from the branch port 8 that is provided in the middle of the outdoor heat exchanger 3 and serves as an inlet during the heating operation. The water is divided into two parts, enters the heat exchanger, flows to the upper part, and flows from the top of the outdoor heat exchanger 3 through the first pipe 10 and the second pipe 11 to the lower part.

分岐口9で合流して1経路となって出ていく。They merge at branch 9 and exit on one route.

したがって、下部から上部に流れる範囲は冷房運転のと
きよりも大きくなるが、暖房運転時の室外側熱交換器3
は蒸発器として作用しているものであり、液冷媒量が少
なく、また、低圧であるため、ガスの流速が大きく液溜
りにはならない。
Therefore, the range of flow from the bottom to the top is larger than during cooling operation, but the outdoor heat exchanger 3 during heating operation
Acts as an evaporator, and since the amount of liquid refrigerant is small and the pressure is low, the gas flow rate is high and does not form a liquid pool.

暖房運転時に、室外側の空気温度が低下し、室外側熱交
換器3に着霜が生じた場合、室外での熱交換が不充分に
なるため室内側での暖房能力が低下する。着霜が進みサ
ーミスタ13で検出される温度が一定温度以下になると
除霜運転に入る。
During heating operation, when the outdoor air temperature decreases and frost forms on the outdoor heat exchanger 3, the heating capacity indoors decreases because heat exchange outdoors becomes insufficient. When frost formation progresses and the temperature detected by the thermistor 13 falls below a certain temperature, defrosting operation begins.

除霜運転時には、四方切換弁2は暖房側、二方弁7は開
にする。
During defrosting operation, the four-way switching valve 2 is on the heating side and the two-way valve 7 is open.

圧縮機1から吐出される高温高圧のガス冷媒(いわゆる
ホットガス、以下ホットガスという)はバイパス管路6
から室外側熱交換器3へ流入する。ポットガスは、室外
側熱交換器3の中間部にある分岐口8から2経路に分か
れて熱交換器内に入り、上部に流れてその最上部から第
1の配管10、第2の配管11を通り下部へ流れ1分岐
口9で合流して1経路となって出ていく。この間、ホッ
トガスは室外側熱交換器3で放熱して付着している霜を
除霜する。低温となった冷媒ガスは、四方切換弁2を経
て圧縮機1に戻る。
A high-temperature, high-pressure gas refrigerant (so-called hot gas, hereinafter referred to as hot gas) discharged from the compressor 1 is passed through a bypass pipe 6.
and flows into the outdoor heat exchanger 3. The pot gas enters the heat exchanger through two routes from the branch port 8 located in the middle of the outdoor heat exchanger 3, flows to the upper part, and flows from the top to the first pipe 10 and the second pipe 11. It flows to the lower part through 1, joins at branch 9, and exits as 1 route. During this time, the hot gas radiates heat in the outdoor heat exchanger 3 to defrost the adhering frost. The cooled refrigerant gas returns to the compressor 1 via the four-way switching valve 2.

そして、サーミスタ13で検出する温度が一定以上にな
ると再び暖房運転に復帰する。
Then, when the temperature detected by the thermistor 13 reaches a certain level or higher, the heating operation is resumed.

第5図は、除霜運転中の室外側熱交換器3の温度分布を
示す線図であり、横軸に温度(℃)縦軸に室外側熱交換
器高さを示している。
FIG. 5 is a diagram showing the temperature distribution of the outdoor heat exchanger 3 during defrosting operation, in which the horizontal axis shows the temperature (° C.) and the vertical axis shows the height of the outdoor heat exchanger.

図から明らかなように、室外側熱交換器3の゛除霜運転
時入口となる分岐口8付近が最も温度が高く、除霜運転
時出口となる分岐口9付近が最も温度が低くなっている
。このため、霜は分岐口8付近から上に向って溶は始め
、最後に分岐口9付近の霜が溶ける。この結果、上部で
溶けた水は下部に流れ1分岐口8付近でいったん加熱さ
れるが、この加熱によって得られた熱量は、さらに下部
の霜を溶かすのに用いられ、はぼ0℃の水となって排出
される。また、サーミスタ13で検出される復帰温度を
適当に選ぶことにより、霜を効率よく完全に溶かすこと
ができる。
As is clear from the figure, the temperature is highest near branch port 8, which is the inlet during defrosting operation, of the outdoor heat exchanger 3, and the lowest temperature is near branch port 9, which is the outlet during defrosting operation. There is. Therefore, the frost begins to melt upward from the vicinity of the branch port 8, and finally the frost near the branch port 9 melts. As a result, the water that melts at the top flows to the bottom and is once heated near branch port 8, but the heat obtained by this heating is further used to melt the frost at the bottom, and the water at approximately 0°C flows to the bottom. and is discharged. Moreover, by appropriately selecting the return temperature detected by the thermistor 13, frost can be efficiently and completely melted.

なお、本実施例では、室外側熱交換器3における冷媒経
路が2経路のものについて説明したが、1経路あるいは
3経路以上のものでも同様の効果が得られる。
In this embodiment, the outdoor heat exchanger 3 has two refrigerant paths, but the same effect can be obtained even if the refrigerant path is one path or three or more paths.

次に、第6図は、本発明の他の実施例に係るヒートポン
プ式空気調和機の室外側熱交換器に。
Next, FIG. 6 shows an outdoor heat exchanger of a heat pump type air conditioner according to another embodiment of the present invention.

おける冷媒経路を示す略示構成図である。FIG.

第1図に示した冷凍サイクルにおいて、膨張弁4と室外
側熱交換器3とを結ぶ配管が長くなる場合には、第6図
に示すように、除霜運転時にホットガスを室外側熱交換
器入口から一端下方に流したのち、上方に流すようにす
ればホットガスによる除霜を効果的にし、かつ、冷媒配
管長を適正にすることができる。
In the refrigeration cycle shown in Fig. 1, if the piping connecting the expansion valve 4 and the outdoor heat exchanger 3 is long, hot gas is transferred to the outdoor heat exchanger during defrosting operation, as shown in Fig. 6. If the refrigerant is allowed to flow downward at one end from the vessel inlet and then upward, defrosting by hot gas can be made effective and the length of the refrigerant piping can be made appropriate.

また、第7図は本発明のさらに他の実施例に係るヒート
ポンプ式空気調和機の室外熱交換器における冷媒経路を
示す略示構成図である。
Moreover, FIG. 7 is a schematic configuration diagram showing a refrigerant path in an outdoor heat exchanger of a heat pump type air conditioner according to still another embodiment of the present invention.

第1図に示した冷凍サイクルにおいて、四方切換弁2と
室外側熱交換器3とを結ぶ配管が長くなる場合には、第
7図に示すように、除霜運転時の出口を蔓外側熱交換器
の最下端より上部になるように丁れば、冷媒配管長の短
縮をはかることができ、かつ、ホットガスによる除霜を
先の実施例と同様に効果的に行うことができる。
In the refrigeration cycle shown in Fig. 1, if the piping connecting the four-way switching valve 2 and the outdoor heat exchanger 3 is long, the outlet during defrosting operation should be connected to the outside heat exchanger as shown in Fig. 7. If the exchanger is installed above the lowest end, the length of the refrigerant piping can be shortened, and defrosting using hot gas can be performed effectively as in the previous embodiment.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、除霜に必要な熱量
を小さくでき、短時間で除霜することによって快適な空
調をなしうるヒートポンプ式空気調和機を提供すること
ができる。
As described above, according to the present invention, it is possible to provide a heat pump type air conditioner that can reduce the amount of heat required for defrosting and can achieve comfortable air conditioning by defrosting in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一芙施例に係るヒートポンプ式空気調
和機の冷凍サイクルの系統図、第2図は第1図の室外側
熱交換器の側面図、第3図はその室外側熱交換器の正面
図、第4図はサフクールがとれなくなる冷媒循環量と下
部から上部に冷媒が流れる高さの割合との関係を示す線
図、第5図は除霜運転中の室外側熱交換器3の温度分布
を示す線図、第6図は本発明の他の実施例に係るヒート
ポンプ式空気調和機の室外側熱交換器における冷媒経路
を示す略示構成図。 第7図は本発明のさらに他の実施例に係るヒートポンプ
式空気調和機の室外側熱交換器における冷媒経路を示す
略示構成図である。 1・・・圧縮機     2・・・四方切換弁3・・・
室外側熱交換器 4・・・膨張弁5・・・室内側熱交換
器 6・・・バイパス管路7・・・二方弁     8
,9・・・分岐口10・・・第1の配管   11・・
・第2の配管代理人弁理士 小 川 勝 男゛″″−第
 イ 図 第2図       第 3 図 第 4− 図 パ→展塊力【量(にg/ん) 茅 、S 図 tL度 (′Q)
Fig. 1 is a system diagram of a refrigeration cycle of a heat pump air conditioner according to an embodiment of the present invention, Fig. 2 is a side view of the outdoor heat exchanger shown in Fig. 1, and Fig. 3 is a diagram of the outdoor heat exchanger. The front view of the exchanger, Figure 4 is a diagram showing the relationship between the amount of refrigerant circulation at which safe cooling cannot be achieved and the height of the refrigerant flowing from the bottom to the top, and Figure 5 is the outdoor heat exchange during defrosting operation. FIG. 6 is a schematic diagram showing a refrigerant path in an outdoor heat exchanger of a heat pump air conditioner according to another embodiment of the present invention. FIG. 7 is a schematic configuration diagram showing a refrigerant path in an outdoor heat exchanger of a heat pump type air conditioner according to still another embodiment of the present invention. 1... Compressor 2... Four-way switching valve 3...
Outdoor heat exchanger 4... Expansion valve 5... Indoor heat exchanger 6... Bypass pipe line 7... Two-way valve 8
, 9... Branch port 10... First piping 11...
・Second Plumbing Agent Patent Attorney Katsuo Ogawa ゛'''' - Figure A Figure 2 Figure 3 Figure 4- Figure 4 - Figure 4- Figure 4- Figure 4- Figure 4- Figure 4 - Quantity (g/n) 茅 , S Figure t L degree ( 'Q)

Claims (3)

【特許請求の範囲】[Claims] 1.圧縮機、四方切換弁、室内側熱交換器、冷媒減圧手
波、室外側熱交換器を配管接続し、前記圧縮機の吐出側
配管と、前記冷媒減圧手段、前記室外側熱交換器間を結
ぶ配管とを連通するバイパス管路を備え、このバイパス
管路を開閉する制御弁を設けてなるヒートポンプ式空気
調和機において、除霜運転時に、前記バイパス管路の制
御弁を開いて前記バイパス管路から前記室外側熱交換器
にホットガスを導くようにした当該室外側熱交換器の冷
媒入口を、当該室外側熱交換器の下部に設けた冷媒出口
より上方に位置するように構成したことを特徴とするヒ
ートポンプ式空気調和機。
1. A compressor, a four-way switching valve, an indoor heat exchanger, a refrigerant pressure reducing hand wave, and an outdoor heat exchanger are connected by piping, and a connection is made between the discharge side piping of the compressor, the refrigerant pressure reduction means, and the outdoor heat exchanger. In a heat pump air conditioner that is equipped with a bypass pipe that communicates with a connecting pipe and a control valve that opens and closes this bypass pipe, during defrosting operation, the control valve of the bypass pipe is opened and the bypass pipe is opened. The refrigerant inlet of the outdoor heat exchanger that guides hot gas from the airway to the outdoor heat exchanger is configured to be located above the refrigerant outlet provided at the lower part of the outdoor heat exchanger. A heat pump air conditioner featuring:
2.特許請求の範囲第1項記載のものにおいて、室外側
熱交換器における冷媒経路を、除霜運転時にホットガス
を当該室外側熱交換器の中間部に設けた冷媒入口から当
該熱交換器の上方に導びいたのち、前記冷媒入口の下部
に流通させるように構成したものであるヒートポンプ式
空気調和機。
2. In the item described in claim 1, the refrigerant path in the outdoor heat exchanger is routed from the refrigerant inlet provided in the intermediate part of the outdoor heat exchanger to the upper part of the heat exchanger during the defrosting operation. The heat pump type air conditioner is configured such that the refrigerant is introduced into the refrigerant and then flows to the lower part of the refrigerant inlet.
3.特許請求の範囲第1項および第2項記載のもののい
ずれかにおいて、除霜運転時における室外側熱交換器の
ホットガス入口部を、当該室外側熱交換器の高さの1/
3以下の高さに位置するように構成したものであるヒー
トポンプ式空気調和機。
3. In either of claims 1 and 2, the hot gas inlet of the outdoor heat exchanger during defrosting operation is set to 1/1 of the height of the outdoor heat exchanger.
A heat pump type air conditioner that is configured to be located at a height of 3 or less.
JP60114022A 1985-05-29 1985-05-29 Heat pump type air conditioner Expired - Lifetime JPH0648125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60114022A JPH0648125B2 (en) 1985-05-29 1985-05-29 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60114022A JPH0648125B2 (en) 1985-05-29 1985-05-29 Heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS61272562A true JPS61272562A (en) 1986-12-02
JPH0648125B2 JPH0648125B2 (en) 1994-06-22

Family

ID=14627082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60114022A Expired - Lifetime JPH0648125B2 (en) 1985-05-29 1985-05-29 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPH0648125B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175410A (en) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp Heat source-side unit and air conditioning system
WO2009103471A2 (en) * 2008-02-21 2009-08-27 Carrier Corporation Refrigerating circuit and method of selectively cooling or defrosting an evaporator thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096550U (en) * 1983-12-05 1985-07-01 三菱電機株式会社 Refrigeration equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096550U (en) * 1983-12-05 1985-07-01 三菱電機株式会社 Refrigeration equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175410A (en) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp Heat source-side unit and air conditioning system
WO2009103471A2 (en) * 2008-02-21 2009-08-27 Carrier Corporation Refrigerating circuit and method of selectively cooling or defrosting an evaporator thereof
WO2009103471A3 (en) * 2008-02-21 2009-10-29 Carrier Corporation Refrigerating circuit and method of selectively cooling or defrosting an evaporator thereof
US20100300122A1 (en) * 2008-02-21 2010-12-02 Carrier Corporation Refrigerating Circuit And Method Of Selectively Cooling Or Defrosting An Evaporator Thereof

Also Published As

Publication number Publication date
JPH0648125B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
CN101592414A (en) Air conditioner
CN108224840A (en) Heat pump air conditioning system and control method
CN109751751A (en) A kind of heat exchanger and air conditioner
JPS61272562A (en) Heat pump type air conditioner
JPS63169457A (en) Heat pump type air conditioner
CN109751753A (en) A kind of heat exchanger and air conditioner
JPH08219599A (en) Refrigerating plant
CN208998375U (en) A kind of cold-hot combined supply system
CN206160576U (en) Air conditioning system
JP2727754B2 (en) Ice making equipment
JPH09264632A (en) Heat pump for supplying hot-water
JP4664530B2 (en) Ice thermal storage air conditioner
JP2000009370A (en) Air conditioner
JP4479833B2 (en) Hot water system
JPH061134B2 (en) Heat pump water heater
JP2827078B2 (en) Ice water cooling system
JP3051555B2 (en) Air conditioner
JP2806155B2 (en) Ice making equipment
JP2003130496A (en) Air conditioner
JP3361144B2 (en) Multi-room air conditioner with mixed cooling and heating
JPS61256156A (en) Heat pump type air conditioner
JP3252209B2 (en) Ice storage type cooling equipment
JPH049559A (en) Heat pump system and defrosting method of heat pump system
JPS6149585B2 (en)
JPH10205914A (en) Separated type heat pump

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term