JPS61272373A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPS61272373A
JPS61272373A JP11410385A JP11410385A JPS61272373A JP S61272373 A JPS61272373 A JP S61272373A JP 11410385 A JP11410385 A JP 11410385A JP 11410385 A JP11410385 A JP 11410385A JP S61272373 A JPS61272373 A JP S61272373A
Authority
JP
Japan
Prior art keywords
substrate
target
magnetic
magnetic field
magnetron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11410385A
Other languages
Japanese (ja)
Inventor
Yoichi Oshita
陽一 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11410385A priority Critical patent/JPS61272373A/en
Publication of JPS61272373A publication Critical patent/JPS61272373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To reduce the effect of a magnetron magnetic filed on a substrate and to obtain a magnetic substance film having excellent uniaxial anisotropy by providing a thin grooved part on the surface of a target. CONSTITUTION:A magnetron magnetic filed is generated by a magnet 8 on the front surface of a target 7 to obtain locally high-density plasma and the particles sputtered by the plasma are deposited on a substrate 14 to form a thin film. At this time, a thin grooved part 17 is provided on the inside of the magnet 8 of the target 7. Consequently, the part is saturated with magnetic flux, a part of a clockwise magnetic line of force 16 is leaked into the space, a counterclockwise magnetic line of force 16' is pushed to the left in the figure and the effect of the magnetron magnetic field on the substrate 14 is reduced as shown by the chain line. By this constitution, a magnetic field having excellent parallelism can be impressed on the substrate 14 and a magnetic substance film having excellent uniaxial anisotropy can be obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はスパッタ装置に関するものである。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a sputtering apparatus.

[発明の背景] 各種材料の薄膜化手法の1つとしてスパッタ法は知られ
ている。特に膜作成の高速化、あるいは高真空化による
作成膜の高品質化を狙った、ターゲット背後に永久磁石
あるいは電磁石を配し、プラズマ閉じ込め磁界を生成す
るブレーナ形マグネロトン式スパッタ装置は衆知である
(例えば特開昭58−199861等)、一方、磁性体
をスパッタする際、作成した膜に一軸異方性を付与する
目的で。
[Background of the Invention] Sputtering is known as one of the methods for thinning various materials. In particular, Brehner-type magnetroton sputtering equipment, which uses a permanent magnet or electromagnet behind the target to generate a plasma confinement magnetic field, is well known, with the aim of increasing the speed of film production or improving the quality of the produced film by increasing the vacuum. For example, JP-A-58-199861), on the other hand, for the purpose of imparting uniaxial anisotropy to the produced film when sputtering a magnetic material.

成膜基板に磁場を印加する方法も特開昭58−2547
5等で公知である。しかし、これら方法によれば。
A method of applying a magnetic field to a film-forming substrate is also disclosed in Japanese Patent Application Laid-Open No. 58-2547.
It is known as 5th grade. However, according to these methods.

放射状の磁場が印加され、等方的に一軸異方性を得るこ
とが出来ない、基板両端に平行に永久磁石を配置する。
A radial magnetic field is applied, and permanent magnets are placed parallel to both ends of the substrate, which makes it impossible to obtain isotropic uniaxial anisotropy.

又は大口径の磁場発生用コイル又は電磁石等の磁場発生
手段を用いること等により、この点は回避できるが、下
記の問題が新たに生ずる。すなわち、ターゲット前面に
生ずるマグネトロン磁場は一般に数百ガウスの程度であ
るのに対し、基板上に与える磁場は数十ガウスの程度で
ある。このため、ターゲット磁場の基板側磁場へ与える
影響が大きく、付与した磁場の平行性を荒す乱すことに
なる。基板側磁場の強度を増し、ターゲット磁場の与え
る影響の程度を軽減することも考えられるが、これでは
逆にターゲット磁場強度を乱すことになり、プラズマ密
度分布に偏よりを生ずる。
Alternatively, this problem can be avoided by using a magnetic field generating means such as a large-diameter magnetic field generating coil or an electromagnet, but the following new problem arises. That is, the magnetron magnetic field generated in front of the target is generally on the order of several hundred Gauss, whereas the magnetic field applied to the substrate is on the order of several tens of Gauss. Therefore, the influence of the target magnetic field on the substrate-side magnetic field is large, and the parallelism of the applied magnetic field is disturbed. Although it is possible to reduce the influence of the target magnetic field by increasing the strength of the substrate-side magnetic field, this would conversely disturb the target magnetic field strength, causing a bias in the plasma density distribution.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、マグネトロン方式のスパッタ装置にお
いて、マグネトロン磁場の影響が少なく基板上に平行性
の良い磁場を印加できる構造を提供するにある。
An object of the present invention is to provide a structure in a magnetron type sputtering apparatus that can apply a highly parallel magnetic field onto a substrate with less influence of the magnetron magnetic field.

(発明の概要〕 本発明は上記目的を達成するため、ターゲットの二ロー
ション部より内側に、厚みを薄くし基板側へのマグネト
ロン磁場の影響を低く抑えたものである。
(Summary of the Invention) In order to achieve the above object, the present invention reduces the thickness of the inner part of the target than the second lotion part to suppress the influence of the magnetron magnetic field on the substrate side.

〔発明の実施例〕[Embodiments of the invention]

以下に1本発明の実施例を用いて説明する。第1図の断
面図において、真空容器1内に、ターゲット部2及び基
板部3が配置されている。真空容器1内は排気口5より
図示しない排気装置により。
An embodiment of the present invention will be explained below. In the cross-sectional view of FIG. 1, a target section 2 and a substrate section 3 are arranged within a vacuum vessel 1. The inside of the vacuum container 1 is exhausted from an exhaust port 5 by an exhaust device (not shown).

通常10″’ Torr程度の超高真空に排気した後、
給気口4より図示しないガス供給系により所望の例えば
Arガス等を流量制御しながら供給し、真空容器1の中
を一定の雰囲気ガス圧に保つ、ターゲット部2は、絶縁
物6により真空容器1より絶縁保持されたターゲット7
、永久磁石8、永久磁石8から出る磁束の帰路を与える
鉄心9、及びそれらを収納する容器10と、真空容器1
と同電位のアースシールド11からなる。
After evacuating to an ultra-high vacuum of usually around 10'' Torr,
A desired gas, such as Ar gas, is supplied through the air supply port 4 through a gas supply system (not shown) while controlling the flow rate to maintain a constant atmospheric gas pressure inside the vacuum vessel 1. Target 7 kept insulated from 1
, a permanent magnet 8, an iron core 9 that provides a return path for the magnetic flux emitted from the permanent magnet 8, a container 10 that houses them, and a vacuum container 1.
It consists of an earth shield 11 having the same potential as .

基板部3は、−繊物により真空真器1から絶縁保持され
た基板ホルダー13と、基板14と、基板14に平行磁
場を与える磁石15からなる。電−気的には、真空容I
IIは通常接地電位とし、ターゲットにはグロー放電を
維持できる電力を供給する負電位の電源を接続する。目
的によっては高周波電源も多用される。基板部3は、こ
こでは接地電位としているが、バイアススパッタ等の目
的で数十V程度の負電位又は高周波電圧を接続する場合
もある。
The substrate section 3 includes a substrate holder 13 held insulated from the vacuum device 1 by a fiber, a substrate 14, and a magnet 15 that applies a parallel magnetic field to the substrate 14. Electrically, vacuum capacity I
II is normally set at ground potential, and a negative potential power source is connected to the target to supply power capable of maintaining glow discharge. High frequency power sources are also often used depending on the purpose. Although the substrate portion 3 is at ground potential here, it may be connected to a negative potential of several tens of volts or a high frequency voltage for purposes such as bias sputtering.

この結果、ターゲット部2と基板部3の間にグロー放電
が生じプラズマが生成される。このときターゲットの前
面にはここでは永久磁石8によリマグネトロン磁場が発
生しており、局部的に高密度のプラズマが生ずる。永久
磁石に変って電磁石を用いる場合も多い、これによりス
パッタされた粒子は、基板14上に付着して薄膜を形成
する。
As a result, glow discharge occurs between the target section 2 and the substrate section 3, and plasma is generated. At this time, a remagnetron magnetic field is generated in front of the target by the permanent magnet 8, and high-density plasma is generated locally. Electromagnets are often used instead of permanent magnets, and the sputtered particles adhere to the substrate 14 to form a thin film.

ここで、−軸異方性を有する磁性薄膜を形成する場合、
その磁気異方性をそろえるため、あらかじめ磁石15を
配置し、基板面に平行な方向の揃った磁場を印加してお
く必要がある。このとき先に述べたように、ターゲット
7前面に発生しているプラズマ閉じ込め磁界の影響の排
除が設計のポイ′ントとなる。これを第2ri!Iに示
す従来技術と第3図に示す本発明による例の磁場のマツ
ピング結果を較し、この効果を説明する。
Here, when forming a magnetic thin film having -axis anisotropy,
In order to make the magnetic anisotropy uniform, it is necessary to arrange the magnets 15 in advance and apply a uniform magnetic field parallel to the substrate surface. At this time, as mentioned earlier, the key point in the design is to eliminate the influence of the plasma confinement magnetic field generated in front of the target 7. This is the second ri! This effect will be explained by comparing the magnetic field mapping results of the prior art shown in I and the example according to the present invention shown in FIG.

一般にターゲット形状は円形又は長方形等の対称形状で
用いられる場合が多い、この場合はマツピング結果も対
象であるので図では半分のみ示す。
Generally, the target shape is often used as a symmetrical shape such as a circle or a rectangle. In this case, only half of the target shape is shown in the figure because the mapping result is also the target.

ここでは軸対称の円形ターゲットの場合について示すが
、ここでの結果は長方形等のターゲットでも定性的には
同様の傾向となる。第3図において、本発明のポイント
は、ターゲット7の磁石8′の内側に相当する部分に薄
肉部17を設けこの部分で磁束の飽和を起こし1時計廻
りの磁力線が一部空間に漏れるようにしたものである。
Although the case of an axially symmetrical circular target is shown here, the results here have a qualitatively similar tendency for targets such as rectangles. In FIG. 3, the key point of the present invention is that a thin wall portion 17 is provided in a portion of the target 7 corresponding to the inside of the magnet 8', so that the magnetic flux is saturated in this portion so that the clockwise magnetic lines of force partially leak into the space. This is what I did.

この結果。As a result.

反時計廻すりの磁力線16′が第2図との比較からもわ
かるように左の方へ押しやられ、鎖線で示・す基板14
部への影響が小さくできている。中央部の切削形状17
は第4図の如く、真空側に設けても効果は同一であり、
バッキングプレートに張り付けて用いている場合にはこ
の方が適している。
The counterclockwise magnetic field lines 16' are pushed to the left, as can be seen from the comparison with FIG.
The effect on the parts is small. Cutting shape in the center 17
As shown in Figure 4, the effect is the same even if it is installed on the vacuum side.
This is more suitable when used by pasting it on a backing plate.

第5図の如く、溝形状17の加工でも同様の効果が得ら
れ、中央部に、固定用のネジ加工をする場合等に都合が
良い、第6図は、ターゲット7を平)板部7′と周辺の
二ローション部7′の二律構造としたものである。この
結果、消耗の激しい周辺のエロージョン部71のみ交換
可能になるので、ターゲット7の消耗に対する保守の経
済性が増す。
As shown in FIG. 5, the same effect can be obtained by machining the groove shape 17, which is convenient when machining a fixing screw in the center part. ' and two surrounding lotion parts 7'. As a result, only the peripheral erosion part 71 that is subject to severe wear can be replaced, which increases the economic efficiency of maintenance with respect to the wear and tear of the target 7.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く本発明によれば、マグネトロン磁場の基
板への影響を少なくできることにより、基板へ平行性の
良い磁場を印加することが可能となり、−軸異方性の良
い磁性体膜を得ることができる効果がある。
As described above, according to the present invention, since the influence of the magnetron magnetic field on the substrate can be reduced, it is possible to apply a magnetic field with good parallelism to the substrate, and - to obtain a magnetic film with good axial anisotropy. There is an effect that can be done.

図面の単な説明 第1図は本発明のスパッタ装置の実施例の断面図、第2
図は従来技術による構成の磁場分布を表わす要部断面図
、第3図は第1図の構成の磁場分を表わす要部断面図、
第4図、第5図、第6図はそれぞれ本発明のスパッタ装
置の他の実施例の真空容器内のターゲット部断面図であ
る。
Brief Description of the Drawings FIG. 1 is a sectional view of an embodiment of the sputtering apparatus of the present invention, and FIG.
The figure is a cross-sectional view of the main part showing the magnetic field distribution of the configuration according to the conventional technology, FIG. 3 is a cross-sectional view of the main part showing the magnetic field component of the structure of FIG.
FIG. 4, FIG. 5, and FIG. 6 are sectional views of the target portion inside the vacuum chamber of other embodiments of the sputtering apparatus of the present invention.

1・・・容器、7・・・ターゲット、14・・・基板。1... Container, 7... Target, 14... Substrate.

Claims (1)

【特許請求の範囲】[Claims] 1、少なくとも、気密を保持された容器と、該容器に保
持された一対の成膜材料からなるターゲットと、成膜す
べき基板とを有し、前記ターゲットはその前面に磁束を
発生する手段をもち、前記基板面に略平行な磁場を印加
できる手段をもつものにおいて前記ターゲット面上は前
記磁束を発生する手段の内側に溝形状の薄肉部を設けた
ことを特徴とするスパッタ装置。
1. At least a container kept airtight, a target made of a pair of film forming materials held in the container, and a substrate on which a film is to be formed, the target having means for generating magnetic flux on its front surface. 1. A sputtering apparatus comprising means capable of applying a magnetic field substantially parallel to the substrate surface, wherein a groove-shaped thin section is provided on the target surface inside the magnetic flux generating means.
JP11410385A 1985-05-29 1985-05-29 Sputtering device Pending JPS61272373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11410385A JPS61272373A (en) 1985-05-29 1985-05-29 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11410385A JPS61272373A (en) 1985-05-29 1985-05-29 Sputtering device

Publications (1)

Publication Number Publication Date
JPS61272373A true JPS61272373A (en) 1986-12-02

Family

ID=14629192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11410385A Pending JPS61272373A (en) 1985-05-29 1985-05-29 Sputtering device

Country Status (1)

Country Link
JP (1) JPS61272373A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4865708A (en) * 1988-11-14 1989-09-12 Vac-Tec Systems, Inc. Magnetron sputtering cathode
US4892633A (en) * 1988-11-14 1990-01-09 Vac-Tec Systems, Inc. Magnetron sputtering cathode
US6579421B1 (en) 1999-01-07 2003-06-17 Applied Materials, Inc. Transverse magnetic field for ionized sputter deposition
US9062372B2 (en) 2002-08-01 2015-06-23 Applied Materials, Inc. Self-ionized and capacitively-coupled plasma for sputtering and resputtering
US10047430B2 (en) 1999-10-08 2018-08-14 Applied Materials, Inc. Self-ionized and inductively-coupled plasma for sputtering and resputtering

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4865708A (en) * 1988-11-14 1989-09-12 Vac-Tec Systems, Inc. Magnetron sputtering cathode
US4892633A (en) * 1988-11-14 1990-01-09 Vac-Tec Systems, Inc. Magnetron sputtering cathode
US6579421B1 (en) 1999-01-07 2003-06-17 Applied Materials, Inc. Transverse magnetic field for ionized sputter deposition
US10047430B2 (en) 1999-10-08 2018-08-14 Applied Materials, Inc. Self-ionized and inductively-coupled plasma for sputtering and resputtering
US9062372B2 (en) 2002-08-01 2015-06-23 Applied Materials, Inc. Self-ionized and capacitively-coupled plasma for sputtering and resputtering

Similar Documents

Publication Publication Date Title
US6214183B1 (en) Combined ion-source and target-sputtering magnetron and a method for sputtering conductive and nonconductive materials
US5558749A (en) Magnetron sputtering apparatus and method
US5865961A (en) Magnetron sputtering apparatus and method
CA2326202C (en) Method and apparatus for deposition of biaxially textured coatings
JPH02217467A (en) Opposite target type sputtering device
US3282815A (en) Magnetic control of film deposition
US3325394A (en) Magnetic control of film deposition
US5397448A (en) Device for generating a plasma by means of cathode sputtering and microwave-irradiation
JPS61272373A (en) Sputtering device
JP3944946B2 (en) Thin film forming equipment
JP2674995B2 (en) Substrate processing method and apparatus
US5149415A (en) Film forming apparatus
JPS63247366A (en) Magnetron sputtering device
JP2835462B2 (en) Sputtering equipment
JPH05339726A (en) Magnetron sputtering device
JP2789251B2 (en) Sputtering equipment using dipole ring type magnetic circuit
JPH0774441B2 (en) Ion beam spreader device
KR102617710B1 (en) Substrate treatment apparatus
JP2580149B2 (en) Spatter equipment
JPH06316779A (en) Etching device
JPH02294476A (en) Cathode for magnetron sputtering
JP3414667B2 (en) Magnetron sputtering method
JP2952147B2 (en) Magnetic field generator for magnetron plasma
JPH0313575A (en) Opposed targets sputtering device
JP2756911B2 (en) Magnetic field generator for magnetron plasma