JPS61272308A - Lance for top-blown refining - Google Patents

Lance for top-blown refining

Info

Publication number
JPS61272308A
JPS61272308A JP11383585A JP11383585A JPS61272308A JP S61272308 A JPS61272308 A JP S61272308A JP 11383585 A JP11383585 A JP 11383585A JP 11383585 A JP11383585 A JP 11383585A JP S61272308 A JPS61272308 A JP S61272308A
Authority
JP
Japan
Prior art keywords
tuyere
lance
oxygen
converter
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11383585A
Other languages
Japanese (ja)
Other versions
JPH0524963B2 (en
Inventor
Ryoji Tsujino
良二 辻野
Masazumi Hirai
平居 正純
Tatsuo Mukai
向井 達夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11383585A priority Critical patent/JPS61272308A/en
Publication of JPS61272308A publication Critical patent/JPS61272308A/en
Publication of JPH0524963B2 publication Critical patent/JPH0524963B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To increase the secondary combustion rate in a converter and to add sufficiently a heat source in converter refining by boring tuyeres while regulating the diameter of the throat part of a lance tuyere and the number of tuyeres with a specified equation. CONSTITUTION:The tuyere 2 of a Laval nozzle and its throat part 3, the tuyere 2' of a straight nozzle and its throat part 3', etc., are bored through a lance 1 to form a lance for top-blown refining. In the lance, the diameter dicm of the tuyere throat parts 3 and 3' and the number (n) of the tuyeres 2 and 2' are regulated by the equation so that the value (k) is controlled to 0.15-0.65. In the equation, (i) is the number of oxygen jets from each tuyere, Vk is 0.0475(x/di)<3>-0.0138(x/di+14.78)<3>+211.3, Vt is 0.0475(x/di)<3>+0.785(x/di), (x) is the length of the free jet equal to (L-Hc)cm. L is the height in cm of the lance from the melt surface in refining, Hc is the length in cm of a supersonic core equal to (4.12P-1.86)Xdi, P is the oxygen pressure in kg/cm<2> before the tuyere equal to 1.72X10<-2>XFO2i/A-1.033, FO2i is the amt. in Nm<3>/h of oxygen to be fed at each tuyere and A is the cross-sectional area in cm<3> of each tuyere.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は例えば上底吹転炉吹錬において、転炉内二次燃
焼率を大きくし、転炉内鋼浴に熱を付加する上吹2ンス
に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is a top-blowing method that increases the secondary combustion rate in the converter and adds heat to the steel bath in the converter, for example in top-bottom blowing converter blowing. This is related to the second chance.

(従来の技術) 近年、溶銑予備処理技術の進歩によシ、製鋼工程は、脱
St 、脱P、脱S、脱Cに機能分割され、精錬用副材
料の低減1歩留向上等の多大な利益を享受しているが、
一方、浴銑予備処理と転炉の工程分割に伴ない熱損失も
大きく、転炉精錬前の溶銑温度が低くなシさらに又浴銑
中(C)と共に重要な発熱源である浴銑中(81)が、
浴銑腕Sl 、脱Pの予備処理によシはぼトレースに近
く低濃度となるため、転炉吹錬時の熱源が不足し、高溶
銑比操  業を余儀なくされていた。又近年スク2ッグ
発生量は増加の一途にあシ、将来スクラップが重要な鉄
源となシ得るところから、転炉内での熱源付加技術を早
急に確立する必要にせまられている。
(Conventional technology) In recent years, due to advances in hot metal pretreatment technology, the steelmaking process has been functionally divided into removing St, removing P, removing S, and removing carbon. Although they are enjoying significant benefits,
On the other hand, heat loss is large due to the process division of bath pig iron pretreatment and converter, and the temperature of hot metal before converter refining is low. 81) but
Due to the preliminary treatment for removing P in the bath pig iron arm, the concentration of sl becomes low, close to the trace level, so there was a lack of a heat source during converter blowing, and operation with a high hot metal ratio was forced. In recent years, the amount of scrap generated has been increasing steadily, and since scrap may become an important source of iron in the future, there is an urgent need to establish a technology for adding a heat source within the converter.

これらに対するものとして、1つには安価な発熱源であ
るコークス又は石炭等を転炉内浴湯に添加する方法が用
いられているが、コークス中又は石炭中のS、Nが溶湯
中に捕捉され、高純度鋼の製造時障害となる。又1つに
は、転炉内で脱炭時発生する一酸化炭素をさらに二酸化
炭素に酸化する際に発生する二次燃焼熱を熱源として利
用するで定義)は高々7〜10%と低く、熱源としては
十分ではなかった。
One way to deal with these problems is to add coke or coal, which is an inexpensive heat source, to the bath water in the converter, but S and N in the coke or coal are trapped in the molten metal. This creates an obstacle in the production of high-purity steel. Another reason is that the secondary combustion heat generated when carbon monoxide generated during decarburization in a converter is further oxidized to carbon dioxide is used as a heat source), which is as low as 7 to 10%. It wasn't enough as a heat source.

(発明が解決しようとする問題点) 本発明は上記の如き欠点を克服しクリーンな熱源でおる
二次燃焼熱を十分獲得すべく転炉内の二次燃焼率が大き
くなる上吹吹錬用ランスを提供するものである。
(Problems to be Solved by the Invention) The present invention overcomes the above-mentioned drawbacks and is intended for use in top-blowing furnaces where the secondary combustion rate in the converter increases in order to obtain sufficient secondary combustion heat from a clean heat source. It provides a lance.

なおここでランスの要部は第1図に示す如くう/ス1に
おけるラバールノズルの羽口2、或はストレートノズル
の羽口2′とそれぞれの羽口スロート部3,3′からな
る。
As shown in FIG. 1, the main parts of the lance are composed of a tuyere 2 of a Laval nozzle or a tuyere 2' of a straight nozzle in a shaft 1, and respective tuyere throat parts 3, 3'.

(問題点を解決するための手段) 本発明者らは転炉内の二次燃焼機構の研究を行ない、二
次燃焼率が酸素噴流との反応によって支配されているこ
とを見出した。すなわち二次燃焼の機構をさらに詳しく
説明すると、転炉内で脱炭反応によって生成した一酸化
炭素が、上吹ランス羽口から噴出した酸素噴流の自由噴
流域に巻込まれ1反応し、二酸化炭素を生成する。さら
に生成した二酸化炭素のうち一部は噴流中から逸散し、
残シの二酸化炭素および未反応の酸素は鋼浴に衝突し鋼
浴中の炭素と反応して一酸化炭素を生成する。以上の如
く噴流中から逸散した二酸化炭素と脱炭反応によって生
成した一酸化炭素の比によって二次燃焼率が決まると考
えられ、ジェットから逸散する二酸化炭素はジェットに
大量に巻込まれる一酸化炭素と熱交換し、−酸化炭素の
鋼浴への衝突伝熱によって、二次燃焼熱が鋼浴に着熱さ
れると考えられる。さらに自由ajjN、は(1ン式で
示される速度分布をもっておシ、二酸化炭素が自由噴流
中から逸散する場合、ある限界速度以下の噴流域から逸
散すると考えられる。
(Means for Solving the Problems) The present inventors conducted research on the secondary combustion mechanism in the converter and found that the secondary combustion rate was controlled by the reaction with the oxygen jet. In other words, to explain the mechanism of secondary combustion in more detail, carbon monoxide generated by the decarburization reaction in the converter is drawn into the free jet area of the oxygen jet ejected from the top blowing lance tuyere and undergoes a reaction, producing carbon dioxide. generate. Furthermore, some of the generated carbon dioxide escapes from the jet stream,
The remaining carbon dioxide and unreacted oxygen impinge on the steel bath and react with carbon in the steel bath to produce carbon monoxide. As mentioned above, it is thought that the secondary combustion rate is determined by the ratio of carbon dioxide escaping from the jet to carbon monoxide generated by the decarburization reaction, and the carbon dioxide escaping from the jet is oxidized into monoxide, which is entrained in large quantities by the jet. It is thought that secondary combustion heat is transferred to the steel bath by heat exchange with carbon and impingement heat transfer of carbon oxide to the steel bath. Furthermore, the free ajjN has a velocity distribution expressed by the equation (1), and when carbon dioxide escapes from the free jet, it is considered to escape from the jet area below a certain critical velocity.

す。= e:cp (−87(r/x)2レイ0.16
x/+J 1.5)・・・(1) ここで、r:自由慣流半径方向距離、X:自由噴流口か
らの距離、dl:各羽口スロート部の直径、U:自由噴
流中(x、r)での速度、Uo:自由噴流入口での速度
である。
vinegar. = e: cp (-87(r/x)2 ray 0.16
x/+J 1.5)...(1) where, r: distance in the radial direction of free inertia, X: distance from the free jet opening, dl: diameter of each tuyere throat, U: during free jet ( x, r), Uo: velocity at the free jet inlet.

したがりて逸散する二酸化炭素の量が(自由噴流中の限
界速度以下の体積/自由噴流全体積)に比例するとする
と各羽口1本当シの二次燃焼率(αi)は(2)式で与
えられる。
Therefore, assuming that the amount of carbon dioxide escaping is proportional to (volume below the critical velocity in the free jet/total volume of the free jet), the secondary combustion rate (αi) of each tuyere is expressed by equation (2). is given by

”’ a (vk/vt) L +b        
    ++ (2゜ここでa、b:定数、l:各羽口
の酸素噴流番号、vk:自由噴流中の限界速度以下の体
積、vt:自由噴流全体積、FO2:送酸速度。
”' a (vk/vt) L +b
++ (2° where a, b: constant, l: oxygen jet number of each tuyere, vk: volume below the critical velocity in the free jet, vt: total free jet volume, FO2: oxygen delivery rate.

転炉全体の二次燃焼率(α)は、各羽口の噴流の二次燃
焼率(dl)を各羽口の送酸速度で加重平均することに
よって求められ、(3)式で表わされる。
The secondary combustion rate (α) of the entire converter is determined by weighted average of the secondary combustion rate (dl) of the jet of each tuyere by the oxygen feeding rate of each tuyere, and is expressed by equation (3). .

α=Σα1XFo /ΣF021 t     21t = aK+b (k=Σ(vk/Vt )lXFO2s
A FO2t )・・・(3) 本発明者らの実験データから二酸化炭素が逸散する噴流
の限界領域の速度は5m/Bee、aは0.537.b
は0.056と求められた。
α=Σα1XFo /ΣF021 t 21t = aK+b (k=Σ(vk/Vt)lXFO2s
A FO2t )...(3) According to the inventors' experimental data, the speed of the critical region of the jet where carbon dioxide escapes is 5 m/Bee, and a is 0.537. b
was determined to be 0.056.

さらに自由噴流全体パ体積(V、)は(4)式のように
求められた。
Furthermore, the entire free jet volume (V, ) was determined using equation (4).

Vt=0.0475(x/di)’+0.785(x/
di)  ・=14)また自由噴流入口の速度をマツハ
1=330fil / II @ eとして5m/se
eの限界速度領域は(5)式のように求められる。
Vt=0.0475(x/di)'+0.785(x/
di) ・=14) Also, the speed of the free jet inlet is 5 m/se with Matsuha 1 = 330fil / II @ e
The critical speed region of e is determined as in equation (5).

Vk= 0.0475(x/dt )3−0.0138
(x/d 1+14.78 )3+211.3・・・(
5) なお自由噴流域長さXは吹錬時の湯面からのランス高さ
から(6)式で計算される噴流の超音速コアー域の長さ
0re)を差し引いて求められる。
Vk=0.0475(x/dt)3-0.0138
(x/d 1+14.78)3+211.3...(
5) The length of the free jet region X is determined by subtracting the length of the supersonic core region of the jet (0re) calculated by equation (6) from the lance height from the hot water surface during blowing.

H1!= (4,12P −1,86)Xdl    
 ・・・(6)ここでHc:超音速コアー長さ、P:羽
口前酸素圧力、di:各羽口スロート部の直径である。
H1! = (4,12P -1,86)Xdl
... (6) where Hc: supersonic core length, P: oxygen pressure in front of the tuyere, di: diameter of each tuyere throat portion.

なお(5)式は自由噴流入口の流速をマツハ1としてい
るが羽口先端部が先細シしている収束ノズルまたはスト
レートノズルの場合酸素吐出速度として、音速以下にす
ると周辺の他羽口からの酸素噴流に同伴され、二次燃焼
率が低下するか、他羽口の酸素噴流に同伴されないよう
な条件ではm鋼への接触が減少し着熱効率が著しく低下
することがわかった。
Equation (5) assumes that the flow velocity at the free jet inlet is Matsuha 1, but in the case of a convergent nozzle with a tapered tuyere tip or a straight nozzle, if the oxygen discharge velocity is below the sonic speed, the flow rate from other tuyeres in the vicinity is It was found that under conditions where the secondary combustion rate is reduced due to being entrained in the oxygen jet, or where the oxygen is not entrained in the oxygen jets from other tuyeres, the contact with the m-steel is reduced and the heat transfer efficiency is significantly reduced.

又k)0.65の場合、転炉吹錬として極端なンフトプ
ローとなp、Feの酸化によるスラグフォーミングが激
しくなシ、7オーミングスラグが酸素噴流を遮蔽するこ
とによシー酸化炭素、の酸素噴流への巻込が減少し、さ
らに生成した二酸化炭素の噴流外への逸散も減少するた
め二次燃焼率は低下することがわかった。又、k)0.
65の場合、実操業において転炉耐火物の溶損が激しく
、この意味からもに≦0.65を確保する必要があるこ
とがわかった・ ランス羽口の設計に際し、まず一般に転炉吹錬において
は各転炉炉容に応じて脱炭速度及びP。
In addition, in the case of k) 0.65, the converter blowing results in extreme slag foaming due to oxidation of Fe, and 7 Ohming slag shields the oxygen jet, resulting in the formation of carbon oxide. It was found that the secondary combustion rate decreased because the entrainment of oxygen into the jet was reduced, and the escape of the generated carbon dioxide to the outside of the jet was also reduced. Also, k) 0.
In the case of 65, the converter refractories are severely eroded in actual operation, and from this point of view it was found that it is necessary to ensure ≦0.65.When designing a lance tuyere, generally the converter blowing is carried out first. The decarburization rate and P depend on the capacity of each converter.

S等の各不純物の精錬条件等から必然的にある範囲の送
酸速度及びランスギャッf(吹錬時の湯面からのランス
高さ)が決められるが、その定められた送酸速度及びラ
ンスギャップのもとにランス羽口の径は上記にの考え方
に基づいて決められ、一方羽口の個数は総送酸速度と圧
力の関係から求められる。すなわち(7ン式に基づいて
羽口前酸素圧力(P)がランス配管許容耐力から決まる
所定の圧力を超えない範囲で?;断面積を確保する必要
がある。
A certain range of oxygen delivery rate and lance gap f (lance height from the hot metal surface during blowing) are inevitably determined from the refining conditions of each impurity such as S, but the determined oxygen delivery rate and lance gap The diameter of the lance tuyere is determined based on the above concept, while the number of tuyeres is determined from the relationship between the total oxygen delivery rate and pressure. In other words, it is necessary to secure a cross-sectional area within a range in which the oxygen pressure (P) before the tuyere does not exceed a predetermined pressure determined from the allowable strength of the lance piping (based on the 7-ton formula).

P= 1.72x10−2xFO□l/A−1,033
・・・(7)ここでP:羽口前酸素圧力、FO21:各
羽口の送酸速度、A:羽口断面積である。
P= 1.72x10-2xFO□l/A-1,033
(7) where P: oxygen pressure in front of the tuyere, FO21: oxygen delivery rate of each tuyere, and A: tuyere cross-sectional area.

次に本発明を実施例に基づき説明する。Next, the present invention will be explained based on examples.

(実施例) 第1表に示すよりなA−Eの水準のランス羽口を設計し
、吹錬を行なりた結果B−Dについては、はぼ予想通り
高い二次燃焼率が得られた。なおり〜Dについては底吹
の攪拌力を確保しフォーミングの防止を同時に行なった
。Etcついては(2) (3) (4)(5)式から
は高い二次燃焼率が予想されるが、フォーミングを防止
できず実績の二次燃焼率は低い。
(Example) As a result of designing a lance tuyere of a level A-E shown in Table 1 and performing blowing, a high secondary combustion rate was obtained for B-D as expected. . For Naori to D, the stirring power of bottom blowing was ensured and foaming was prevented at the same time. Regarding Etc, a high secondary combustion rate is predicted from equations (2), (3), (4), and (5), but foaming cannot be prevented and the actual secondary combustion rate is low.

(発明の効果) 本発明てより、転炉耐火物を損傷することなく転炉内で
高い二次燃焼率が得られ、転炉吹錬での熱源を十分獲得
できた結果、高溶鉄比操業は必須でなくなり、又将来重
要な鉄源である安価なスクラップの多量消費に対処可能
となった。
(Effects of the invention) As a result of the present invention, a high secondary combustion rate can be obtained in the converter without damaging the converter refractories, and a sufficient heat source can be obtained for converter blowing, resulting in high molten iron ratio operation. is no longer essential, and it has become possible to cope with the large consumption of cheap scrap, which will be an important source of iron in the future.

なお上記説明では、上底吹転炉を例にとったが、本発明
は転炉、取鍋等容器形状にかかわらず有効であり、又脱
炭を主とした精錬の場合のみならず、Cを熱源とし之鉄
鉱石の溶融還元等にも同様の効果を持つことが明らかと
なった。
In the above explanation, a top-bottom blowing converter was taken as an example, but the present invention is effective regardless of the shape of the container such as a converter or a ladle, and is not limited to refining mainly for decarburization. It has become clear that the same effect can be obtained when melting and reducing iron ore using the heat source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aはランス羽口部の縦断面図、第1図すは第1図
、の下面図である。 1:ランス、2ニラパールノズルの羽口、2′ニストレ
ードノズルの羽口、3:羽口スロート部、3′二羽ロス
ロート部 つA□
FIG. 1a is a longitudinal sectional view of the lance tuyere, and FIG. 1a is a bottom view of FIG. 1. 1: Lance, 2 Nira pearl nozzle tuyere, 2' Nistrade nozzle tuyere, 3: Tuyere throat part, 3' Two-blade loss throat part A□

Claims (1)

【特許請求の範囲】 ランスの羽口スロート部の直径(d_i)および羽口数
(n)を、下記式のk値が0.15〜0.65となるよ
うに穿設したことを特徴とする上吹吹錬用ランス。 k=Σ^n_i_=_1{(V_k/V_t)_i×F
O_2_i}/Σ^n_1_=_1FO_2_i・・・
(式)但し i:ランスの各羽口からの酸素噴流番号 V_k:0.0475(x/d_i)^3−0.013
8(x/di+14.78)^3+211.3V_t:
0.0475(x/d_i)^3+0.785(x/d
_i)x:自由噴流長さ(=L−H_c)(cm)L:
吹錬時の湯面からのランス高さ(cm)H_c:超音速
コアー長さ(cm)=(4.12P−1.86)×d_
id_i:各羽口スロート部の直径(cm) n:羽口数(個) P:羽口前酸素圧力(kg/cm^2) =1.72×10^−^2×FO_2_i/A−1.0
33FO_2_i:各羽口ごとの送酸量(Nm^3/h
)A:各羽口の断面積(cm^2)
[Claims] The diameter (d_i) of the tuyere throat portion of the lance and the number of tuyere (n) are set so that the k value of the following formula is 0.15 to 0.65. Lance for upper blowing. k=Σ^n_i_=_1 {(V_k/V_t)_i×F
O_2_i}/Σ^n_1_=_1FO_2_i...
(Formula) where i: Oxygen jet number from each tuyere of the lance V_k: 0.0475 (x/d_i)^3-0.013
8(x/di+14.78)^3+211.3V_t:
0.0475(x/d_i)^3+0.785(x/d_i)
_i) x: Free jet length (=L-H_c) (cm) L:
Lance height from the hot water surface during blowing (cm) H_c: Supersonic core length (cm) = (4.12P-1.86) x d_
id_i: Diameter of each tuyere throat (cm) n: Number of tuyeres (pieces) P: Oxygen pressure in front of the tuyere (kg/cm^2) = 1.72 x 10^-^2 x FO_2_i/A-1. 0
33FO_2_i: Oxygen supply amount for each tuyere (Nm^3/h
) A: Cross-sectional area of each tuyere (cm^2)
JP11383585A 1985-05-27 1985-05-27 Lance for top-blown refining Granted JPS61272308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11383585A JPS61272308A (en) 1985-05-27 1985-05-27 Lance for top-blown refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11383585A JPS61272308A (en) 1985-05-27 1985-05-27 Lance for top-blown refining

Publications (2)

Publication Number Publication Date
JPS61272308A true JPS61272308A (en) 1986-12-02
JPH0524963B2 JPH0524963B2 (en) 1993-04-09

Family

ID=14622236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11383585A Granted JPS61272308A (en) 1985-05-27 1985-05-27 Lance for top-blown refining

Country Status (1)

Country Link
JP (1) JPS61272308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142441U (en) * 1988-03-25 1989-09-29

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792123A (en) * 1980-10-13 1982-06-08 Arbed Oxygen blowing nozzle
JPS58151412A (en) * 1982-03-03 1983-09-08 Sumitomo Metal Ind Ltd Method for operating converter
JPS58199810A (en) * 1982-05-18 1983-11-21 Sumitomo Metal Ind Ltd Operating method of converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792123A (en) * 1980-10-13 1982-06-08 Arbed Oxygen blowing nozzle
JPS58151412A (en) * 1982-03-03 1983-09-08 Sumitomo Metal Ind Ltd Method for operating converter
JPS58199810A (en) * 1982-05-18 1983-11-21 Sumitomo Metal Ind Ltd Operating method of converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142441U (en) * 1988-03-25 1989-09-29
JPH0512271Y2 (en) * 1988-03-25 1993-03-29

Also Published As

Publication number Publication date
JPH0524963B2 (en) 1993-04-09

Similar Documents

Publication Publication Date Title
KR100242565B1 (en) Process for production of iron
EP0384397B1 (en) Method for manufacturing molten metal containing ni and cr
JP4273688B2 (en) Converter blowing method
EP0020186A1 (en) Method of converting non-ferrous metal mattes to the metal or metal sulphide
JPS61272308A (en) Lance for top-blown refining
JP2011084789A (en) Converter blowing method
JP4419594B2 (en) Hot metal refining method
JP3752051B2 (en) Scrap melting method and scrap melting lance
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP3444046B2 (en) Chromium ore powder charging method in smelting reduction furnace
AU656228B2 (en) Process for production of iron
JP4686873B2 (en) Hot phosphorus dephosphorization method
JP2002069525A (en) Top-blown lance for dephosphorizing molten iron and method for dephosphorizing molten iron
AU708381B2 (en) Continuous smelting and refining of iron
JP3849571B2 (en) Converter blowing method
WO1997023656A1 (en) Continuous smelting and refining of iron
JP4862860B2 (en) Converter blowing method
JPH11293314A (en) Smelting reduction of iron raw material and smelting reduction furnace
JPH01191719A (en) Method for operating smelting reduction furnace
JPS6342687B2 (en)
JPH01172547A (en) Smelting reduction furnace for cr material
JP2596000B2 (en) Smelting reduction method
JPH08253805A (en) Method for refining stainless steel using decarburizing slag having high productivity
JPH01294818A (en) Method for vacuum-treating stainless steel
JPS60155612A (en) Refining method in converter