JPS61271274A - Production of 2-and/or 6-methylpyridine base - Google Patents

Production of 2-and/or 6-methylpyridine base

Info

Publication number
JPS61271274A
JPS61271274A JP60114456A JP11445685A JPS61271274A JP S61271274 A JPS61271274 A JP S61271274A JP 60114456 A JP60114456 A JP 60114456A JP 11445685 A JP11445685 A JP 11445685A JP S61271274 A JPS61271274 A JP S61271274A
Authority
JP
Japan
Prior art keywords
reaction
pyridine
cobalt catalyst
lutidine
methylpyridine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60114456A
Other languages
Japanese (ja)
Other versions
JPH06745B2 (en
Inventor
Katsutoshi Harada
勝利 原田
Shinichi Igarashi
五十嵐 真一
Mitsuharu Yamaji
山路 満春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Chemical Co Ltd
Original Assignee
Koei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Chemical Co Ltd filed Critical Koei Chemical Co Ltd
Priority to JP60114456A priority Critical patent/JPH06745B2/en
Publication of JPS61271274A publication Critical patent/JPS61271274A/en
Publication of JPH06745B2 publication Critical patent/JPH06745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyridine Compounds (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as an intermediate for pharmaceuticals and other chemicals, economically on an industrial scale, by reacting a pyridine base free of substituent group at 2- and/or 6-site with a 1-4C aliphatic alcohol at a specific temperature in the presence of a cobalt catalyst. CONSTITUTION:A 2- and/or 6-methylpyridine base excluding 2,3,5-collidine and 2,3,5,6-tetramethylpyridine can be produced economically, in high efficiency and quality, from a raw material which is available easily on an industrial scale, by reacting (A) a pyridine base free of 2- and/or 6-substituent group with (B) a 1-4C aliphatic alcohol in the presence of (C) a cobalt catalyst, preferably a Raney cobalt catalyst at >=180 deg.C, preferably extracting the produced decomposition gas from the reaction system, more preferably pressing said alcohol into the reactor while discharging the produced decomposition gas from the reaction system, thereby selectively methylating the 2- and/or 6-site of the pyridine uncleus.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は2位および/または6位に置換基のないピリジ
ン塩基類を低級脂肪族アルコール類と反応させて、ピリ
ジン核の2位および/または6位をメチル化して、2お
よび/または6−メチルピリジン塩基類を製造する方法
に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention involves reacting pyridine bases with no substituents at the 2-position and/or 6-position with lower aliphatic alcohols to form a pyridine base at the 2-position and/or 6-position of the pyridine nucleus. Alternatively, the present invention relates to a method for producing 2- and/or 6-methylpyridine bases by methylating the 6-position.

これらのメチル化ピリジン塩基類は医薬品やその他の中
間体として産業上極めて有用な物質である。
These methylated pyridine bases are extremely useful substances industrially as pharmaceuticals and other intermediates.

(従来技術を本発明が解決しようとする問題点)2位お
よび/または6位に置換基のないピリジン塩基類をメチ
ル化する方法としては、従来より各種の方法が提案され
ている。例えば、(1)酸化ニッケルの存在下、反応温
度150〜400”Cにて一酸化炭素及び水素をピリジ
ンに接触させてa−ピコリンを得る方法(米国特許第8
854165号)、(2)ニッケル又は酸化ニッケルの
存在下、反応温度295℃にてピリジンとメタノールを
接触させてα−ピコリンを得る方法(米国特許第842
8641号)、(3)ラネーニッケルの存在下、反応温
度250°Cにてピリジンとメタノールを反応させでα
−ピコリンを得る方法(薬学雑誌 101巻1B20〜
24頁、1981)等が知られている。しかしながら、
上記(1)及び(2)の方法は目的物の収率が約50%
程度と低く工業的には不利である。また、上記(3)の
方法はα−ピコリンの収率が72.3%で比較的好収率
であるが、ピリジン以外の、置換基を有するピリジン塩
基類のメチル化においては収率が著しく低い(後述の比
較例1参照)。このため工業的製造としては適用範囲が
狭い。
(Problems to be Solved by the Invention of the Prior Art) Various methods have been proposed for methylating pyridine bases having no substituents at the 2- and/or 6-positions. For example, (1) a method for obtaining a-picoline by bringing carbon monoxide and hydrogen into contact with pyridine at a reaction temperature of 150 to 400"C in the presence of nickel oxide (U.S. Pat.
854165), (2) A method for obtaining α-picoline by contacting pyridine and methanol at a reaction temperature of 295°C in the presence of nickel or nickel oxide (US Pat. No. 842)
(No. 8641), (3) By reacting pyridine and methanol at a reaction temperature of 250°C in the presence of Raney nickel, α
- How to obtain picoline (Pharmaceutical Journal, Volume 101, 1B20~
24, 1981), etc. are known. however,
Methods (1) and (2) above have a yield of about 50% of the target product.
It is industrially disadvantageous due to its low level. In addition, the method (3) above has a relatively good yield of α-picoline at 72.3%, but the yield is extremely low when methylating pyridine bases having substituents other than pyridine. low (see Comparative Example 1 below). Therefore, the scope of application for industrial production is narrow.

(問題点を解決するための手段〕 な原料から安価に効率良く、また高品質で製造する方法
について鋭意研究を行なった結果、本発明を完成するに
至ったものである。
(Means for Solving the Problems) The present invention has been completed as a result of intensive research into a method of manufacturing from raw materials inexpensively, efficiently, and with high quality.

すなわち、本発明はコバルト触媒の存在下、180℃以
上で、2位および/または6位に置換基のないピリジン
塩基類を、炭素数1〜4の脂肪族アルコールと反応させ
て、ピリジン核の2位および/または6位をメチル化す
ることを特徴とする2および/または6−メチルビリジ
ン塩基類(但し2.8,5るリジン、2,3゜5.6−
チトラメチルビリジンを除く)の製造方法である。
That is, in the present invention, a pyridine base having no substituent at the 2- and/or 6-position is reacted with an aliphatic alcohol having 1 to 4 carbon atoms at 180°C or higher in the presence of a cobalt catalyst to convert the pyridine nucleus. 2- and/or 6-methylpyridine bases characterized by methylation at the 2- and/or 6-positions (with the exception of 2.8,5 lysine, 2,3°5.6-
(excluding chitramethylpyridine).

本発明における出発物質である2位および/または6位
に置換基のないピリジン塩基類とは2位および/または
6位以外の位置が炭素数1〜4の低級アルキル基で置換
されていても、まルチジン、2.4−ルチジン、2,5
−ルチジン、2−エチルピリジン、4−プロピルピリジ
ン、2−プロピルピリジン、2−メチル−5−エチルピ
リジン、8−メチル−5−エチルピリジン、8,5−ジ
エチルピリジン、4−ブチルピリジン、8−ブチルピリ
ジンなどが挙げられる。
Pyridine bases having no substituent at the 2-position and/or 6-position, which are the starting materials in the present invention, are defined as pyridine bases having no substituents at the 2-position and/or 6-position, even if positions other than the 2-position and/or 6-position are substituted with a lower alkyl group having 1 to 4 carbon atoms. , lutidine, 2,4-lutidine, 2,5
-lutidine, 2-ethylpyridine, 4-propylpyridine, 2-propylpyridine, 2-methyl-5-ethylpyridine, 8-methyl-5-ethylpyridine, 8,5-diethylpyridine, 4-butylpyridine, 8- Examples include butylpyridine.

本発明で用いられるアルコールとしては、メタノール、
エタノール、プロパツール、ブタノールなどが挙げられ
る。その使用量はピリジン塩基類に対して等モル以上で
あれば充分であるが、好ましくは2〜5倍モルの範囲で
ある。
Alcohols used in the present invention include methanol,
Examples include ethanol, propatool, and butanol. It is sufficient that the amount used is at least equimolar to the pyridine base, but it is preferably in the range of 2 to 5 times the molar amount.

本発明の目的物質としては、本発明のメチル化反応によ
り、2位又は6位のみがメチル化された化合物(以下2
−モノメチル体と称する)ならびに2位及び6位の両者
が同時にメチル化された化合物(以下2.6−ジメチル
体と称する)が挙げられるが、具体的にはa−ピコリン
、2.6−ルチジン、2,5−ルチジン、2,4−ルチ
ジン、2,3,6−コリジン、2,4゜6−コリジン、
2,5.6−ドリメチルビリジン、2−エチル−6−メ
チルピリジン、2−メチル−4−プロピルピリジン、2
−メチル−6−プロピルピリジン、2.6−ジメチル−
3−エチルピリジン、2.8−ジメチル−5−エチルピ
リジン、2−メチル−8,5−ジエチルピリジン、2−
メチル−4−ブチルピリジン、2−メチル−8−ブチル
ピリジンなどが挙げられる。本発明方法によれば、反応
条件を適宜に選ぶことにより2−モノメチル体もしくは
2.6−ジメチル体がほとんど実質的に単独生成する治
工又は2−モノメチル体及び2,6−ジメチル体が併産
する場合がある。
The target substance of the present invention is a compound in which only the 2- or 6-position is methylated (hereinafter referred to as 2) by the methylation reaction of the present invention.
Examples include compounds in which both the 2- and 6-positions are simultaneously methylated (hereinafter referred to as 2,6-dimethyl compound), and specific examples include a-picoline and 2,6-lutidine. , 2,5-lutidine, 2,4-lutidine, 2,3,6-collidine, 2,4゜6-collidine,
2,5.6-drimethylpyridine, 2-ethyl-6-methylpyridine, 2-methyl-4-propylpyridine, 2
-Methyl-6-propylpyridine, 2,6-dimethyl-
3-ethylpyridine, 2,8-dimethyl-5-ethylpyridine, 2-methyl-8,5-diethylpyridine, 2-
Examples include methyl-4-butylpyridine and 2-methyl-8-butylpyridine. According to the method of the present invention, by appropriately selecting the reaction conditions, the 2-monomethyl form or the 2,6-dimethyl form can be produced almost exclusively, or the 2-monomethyl form and the 2,6-dimethyl form can be produced simultaneously. It may give birth.

本発明で使用するコバルト触媒は、工業的に市販されて
いるラネーコバルト合金をアルカリで展開したラネーコ
バルト融媒が好適であるが、コバルト金属を含有する触
媒であれば使用しうる。またコバルト触媒にはマンガン
等の他の金属を含有していても良い。コバルト触媒の使
用量としては、特に制限されないが、原料のピリジン塩
基類に対して2〜80重量%の範囲が好適である。
The cobalt catalyst used in the present invention is preferably a Raney cobalt melt obtained by expanding an industrially available Raney cobalt alloy with an alkali, but any catalyst containing cobalt metal may be used. Further, the cobalt catalyst may contain other metals such as manganese. The amount of cobalt catalyst used is not particularly limited, but is preferably in the range of 2 to 80% by weight based on the pyridine base material.

本発明において、反応温度は180”C以上であれば特
に限定されないが、アルコールをピリジン塩基類と初め
から反応系内に共存させる場合は、210°C以下で行
なうのが好ましい。それ以上になるとアルコールの分解
が激しくなるので、内圧のコントロールが難しくなる。
In the present invention, the reaction temperature is not particularly limited as long as it is 180"C or higher, but if the alcohol is allowed to coexist with the pyridine base in the reaction system from the beginning, it is preferably carried out at 210"C or lower. As the alcohol decomposes rapidly, it becomes difficult to control the internal pressure.

このため210℃以上で反応を行なう場合は、連続的又
は断続的に反応器外部からアルコールを供給する方法が
望ましく、このときは定量ポンプで圧入する方法が好ま
しい。
For this reason, when carrying out the reaction at 210° C. or higher, it is preferable to supply alcohol continuously or intermittently from outside the reactor, and in this case, it is preferable to use a metering pump to pressure feed the alcohol.

本発明において、2−モノメチル体を効率良く製造する
場合は、特に反応温度を限定することはないが、190
〜240℃の範囲で反応するのが好ましい。又、2.6
−ジメチル体を効率良く製造する場合には、同温度範囲
でさらに長く反応すれば良いが、所望なら反応温度21
0〜270 ”Cの範囲で反応するのが好適であり、反
応時間を短縮出来る。反応温度が180″Cより低いと
、上記いずれの反応も反応速度が著しく遅くなり、工業
的に不利となる。
In the present invention, when producing the 2-monomethyl compound efficiently, the reaction temperature is not particularly limited;
It is preferable to react in the range of ~240°C. Also, 2.6
- In order to efficiently produce the dimethyl compound, the reaction may be carried out for a longer time within the same temperature range, but if desired, the reaction temperature is 21
It is suitable to carry out the reaction in the range of 0 to 270"C, and the reaction time can be shortened. If the reaction temperature is lower than 180"C, the reaction rate of any of the above reactions will be extremely slow, which is industrially disadvantageous. .

本発明において、反応圧としては処定の温度での内容物
の蒸気圧以上であれば充分であるが、好ましくは10〜
70 Kf/a+!の範囲である。なお、生成する分解
ガスのため反応圧は上昇するが、このまま反応を続ける
と、反応圧が高くなり、反応器の耐圧が必要以上に要求
されるので、該分解ガスを反応器の系外に抜きながら適
度の圧を維持しつつ反応を行なうのが望ましい。該分解
ガスを抜く際に、通常加圧状態下で還流冷却器を使用し
て非凝縮ガスのみを抜くのが良い。
In the present invention, it is sufficient that the reaction pressure is equal to or higher than the vapor pressure of the contents at a specified temperature, but preferably 10 to
70 Kf/a+! is within the range of Note that the reaction pressure will rise due to the generated cracked gas, but if the reaction continues as it is, the reaction pressure will rise and the pressure resistance of the reactor will be required to be higher than necessary, so the cracked gas should be pumped out of the reactor system. It is desirable to carry out the reaction while maintaining an appropriate pressure while removing. When removing the cracked gas, it is usually preferable to use a reflux condenser under pressurized conditions to remove only non-condensable gas.

還流冷却器を使用しない場合には、原料及び生成物の一
部が分解ガスと共に反応器の系外に留出するため、反応
効率が著しく低下する。しかし、本発明では、反応器外
に留出する原料及び生成物を冷却凝縮・回収して、反応
器内に循環させるか、又は次回以降の原料に混ぜて反応
を行なっても良い。
If a reflux condenser is not used, a portion of the raw materials and products will be distilled out of the reactor together with the cracked gas, resulting in a significant reduction in reaction efficiency. However, in the present invention, the raw materials and products distilled out of the reactor may be cooled, condensed, and recovered, and then circulated within the reactor, or may be mixed with the raw materials for subsequent reactions to carry out the reaction.

本発明において、溶媒は特に必要とされないが、ベンゼ
ン、トルエン、キシレン等の不活性溶媒の存在下で反応
を行なっても良い。
In the present invention, a solvent is not particularly required, but the reaction may be carried out in the presence of an inert solvent such as benzene, toluene, xylene, etc.

上記の方法により得られるメチル化したピリジン塩基類
は反応液から触媒を戸別し、通常の方法で精製すれば良
い。簡単には脱水工程を経たあと、蒸留することにより
反応液から容易に分離精製される。
The methylated pyridine bases obtained by the above method may be purified by a conventional method after removing the catalyst from the reaction solution. Simply, after passing through a dehydration step, it can be easily separated and purified from the reaction solution by distillation.

(発明の効果〕 本発明の方法によれば、2および/または6−メチル化
ピリジン塩基類を原料のピリジン塩基類に対し、高収率
で得ることが出来、しかも反応が極めて高選択的に起き
るために副生成物が少なく、目的物の分離精製が極めて
容易であり、シ 高純度の2および/または6メチル化ピリジン】塩基類
が得られるという利点があり、本発明は工業的にも極め
て有利な方法である。
(Effects of the Invention) According to the method of the present invention, 2- and/or 6-methylated pyridine bases can be obtained in high yield relative to the raw material pyridine bases, and the reaction is extremely selective. This invention has the advantage of producing few by-products, making it extremely easy to separate and purify the target product, and yielding highly pure 2- and/or 6-methylated pyridine bases. This is an extremely advantageous method.

(実施例) 以下に実施例を挙げて本発明を具体的に説明するが、本
発明はこれら実施例に限定されるものではない。
(Examples) The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 3tの電磁攪拌式オートクレーブに、β−ビコリン65
1F(7モル)、メタノール672fI(21モル)及
びラネーコバルト260−を仕込み、容器を水素置換後
、内温を200”Cに保ち24時間で反応を終えた。
Example 1 β-Vicoline 65 was placed in a 3t electromagnetic stirring autoclave.
1F (7 mol), methanol 672fI (21 mol), and Raney cobalt 260- were charged, and after purging the container with hydrogen, the reaction was completed in 24 hours while keeping the internal temperature at 200''C.

この間に内圧は、昇温と共に上昇し、最高721’n/
CIAに達した。反応終了後、オートクレーブを室温に
冷却し、反応液を轟した。
During this period, the internal pressure increases with the temperature rise, reaching a maximum of 721'n/
Reached the CIA. After the reaction was completed, the autoclave was cooled to room temperature and the reaction solution was evaporated.

反応液から触媒を戸別し、そのP液に苛性ソーダ140
fIを加えて油分700gを得た。
Separate the catalyst from the reaction solution and add 140 ml of caustic soda to the P solution.
fI was added to obtain 700 g of oil.

得られた油分を50mディクソン充填塔で蒸留した所、
塔頂温度66〜67”C/ 50 mHfでG、C,純
度99.1%のβ−ピコリン2111及び76−78°
O/ 50 wHf テG、C,純度99.2%の2,
5−ルチジン478flを得た。
The obtained oil was distilled in a 50m Dixon packed column,
G, C, 99.1% purity β-picoline 2111 and 76-78° at top temperature 66-67”C/50 mHf
O/ 50 wHf TeG, C, purity 99.2% 2,
478 fl of 5-lutidine was obtained.

使用したβ−ピコリンによる2、5−ルチジンの収率は
64.0%で、選択率は94.5%であった。
The yield of 2,5-lutidine from the β-picoline used was 64.0%, and the selectivity was 94.5%.

実施例2 1tの電磁攪拌式オートクレーブにγ−ピコリン65f
(0,7モル)とエタノール161f(8,5モル9及
びラネーコバルト32−を仕込み、容器内を水素置換し
た後、内温を200〜210”Cに昇温しで16時間反
応した。この間に内圧は昇温と共に上昇し、最高圧65
に9/iに達した。以下、実施例1と同様に蒸留した所
、γ−ピコリンはほとんど残存せず、塔頂温度76〜7
7℃/ 50 mHfでG、に、純度99.8%の2.
4−ルチジン62.81を得た。使用したγ−ピコリン
による2゜4−ルチジンの収率は83,8%であった。
Example 2 γ-picoline 65f in a 1t electromagnetic stirring autoclave
(0.7 mol), ethanol 161f (8.5 mol 9) and Raney cobalt 32- were charged, and after replacing the inside of the container with hydrogen, the internal temperature was raised to 200-210"C and reacted for 16 hours. During this time, The internal pressure increases as the temperature rises, reaching a maximum pressure of 65
It reached 9/i. Hereinafter, when distillation was carried out in the same manner as in Example 1, almost no γ-picoline remained, and the top temperature was 76 to 7.
G at 7 °C/50 mHf, 2. with a purity of 99.8%.
62.81 of 4-lutidine was obtained. The yield of 2°4-lutidine from the γ-picoline used was 83.8%.

実施例8 1tオートクレーブ(電磁攪拌式)にγ−ピコリン9B
g(1モル)とメタノール96f (8モル)及びラネ
ーコバルト871ntを仕込み、容器内を水素置換した
のち、内! 200℃で42時間反応した。この間、内
圧は最高’l0KI/−に上昇した。以下、実施例1と
同様に蒸留した所、G、 C,純度99.1%の2.4
−ルチジン7i、iy及び塔頂温度91〜2”C/ 5
0 mHfでG、 C,純度99.4%の2.4.6−
コリジン1.7jFを得た。γ−ピコリンによる2、4
−ルチジン及び2.4.6−コリジンの収率は、それぞ
れ95.0%、2.0%であった。
Example 8 γ-Picoline 9B in a 1t autoclave (magnetic stirring type)
g (1 mol), methanol 96f (8 mol), and Raney cobalt 871 nt, and after replacing the inside of the container with hydrogen, the inside! The reaction was carried out at 200°C for 42 hours. During this period, the internal pressure rose to a maximum of '10KI/-. Hereinafter, distilled in the same manner as in Example 1, G, C, 2.4 with a purity of 99.1%
- Lutidine 7i, iy and tower top temperature 91~2”C/5
G, C, 99.4% purity 2.4.6- at 0 mHf
Collidine 1.7jF was obtained. 2,4 by γ-picoline
The yields of -lutidine and 2.4.6-collidine were 95.0% and 2.0%, respectively.

実施例4 8L電磁攪拌式オートクレーブにγ−ピコリン465f
(5モル)とメタノール8201cioモル)及びラネ
ーコバルト108gを仕込み、容器内を水素置換したの
ち、内温を200〜205°′Cにし、8時間で反応を
終えた。この間に、内圧を50〜55に4/clAの範
囲に保ちながら生成する分解ガスを断続的に系外へ放出
した。なお、非凝縮性ガスに同伴した反応液は、オート
クレーブの系外で凝縮して捕集した。ここで反応液と同
伴液を混ぜると合計7009となり、GC分析鉦こよる
混合液の組成比はメタノール1.0%、γ−ピコリン5
%、水20.0%、2,4−ルチジン65.0%、2,
4.6−コリジン3,0%であった。これらをまとめる
と、γ−ピコリンにより2,4−ルチジン及び2,4.
6−コリ洛 ジンの収率は4々85.096.3.5%で、選択糸 率は央J 92.096.4.1 %であった。
Example 4 γ-picoline 465f in 8L electromagnetic stirring autoclave
(5 moles), methanol (8201 ciomol), and 108 g of Raney cobalt were charged, and the inside of the container was replaced with hydrogen.The internal temperature was then raised to 200 to 205°C, and the reaction was completed in 8 hours. During this time, the generated cracked gas was intermittently discharged to the outside of the system while maintaining the internal pressure in the range of 50 to 55/4/clA. Note that the reaction liquid accompanying the non-condensable gas was condensed and collected outside the autoclave system. When the reaction liquid and accompanying liquid are mixed here, the total is 7009, and the composition ratio of the mixed liquid according to the GC analysis is methanol 1.0%, γ-picoline 5
%, water 20.0%, 2,4-lutidine 65.0%, 2,
4.6-collidine was 3.0%. To summarize, γ-picoline produces 2,4-lutidine and 2,4.
The yield of 6-coli Rakujin was 85.096.3.5% for each of the four, and the selectivity was 92.096.4.1% for the middle J.

比較例1 実施例4と同様な条件下で、触媒としてラネーニッケル
を用いて、反応を行なった所、r−ピコリンによる2、
4−ルチジンの収率は45.0%であった。
Comparative Example 1 A reaction was carried out under the same conditions as in Example 4 using Raney nickel as a catalyst.
The yield of 4-lutidine was 45.0%.

実施例5 還流冷却器を備えたLtの電磁攪拌式オートクレーブに
、2.4−ルチジン8214及びラネーコバルト641
を仕込み、容器内を水素置換した。後、内温を240″
Cに昇温した。次に定量ポンプを用いて、メタノール4
80gを8時間要して連続圧入した。この間に、内圧は
45〜55に9/−の範囲で保つ様に生成する分解ガス
を連続的に放出した。
Example 5 2,4-Lutidine 8214 and Raney Cobalt 641 were added to a Lt magnetically stirred autoclave equipped with a reflux condenser.
The inside of the container was replaced with hydrogen. After that, reduce the internal temperature to 240″
The temperature was raised to C. Next, using a metering pump, methanol 4
80 g was continuously press-fitted over a period of 8 hours. During this time, generated cracked gas was continuously released so as to maintain the internal pressure within the range of 45 to 55, 9/-.

反応後、オートクレーブを室温に冷却し、反応液を取り
出した。以下、実施例1と同様に蒸留した所、2.4−
ルチジン82.Of及び2.4.6−コリジン814.
Ofを得た。使用した2、4−ルチジンに対する2、4
.6−コリジンの収率は86.0%で、選択率は96.
3%であった。
After the reaction, the autoclave was cooled to room temperature and the reaction solution was taken out. Hereinafter, 2.4-
Lutidine 82. Of and 2.4.6-collidine 814.
I got Of. 2,4 for the 2,4-lutidine used
.. The yield of 6-collidine was 86.0%, and the selectivity was 96.
It was 3%.

以上that's all

Claims (1)

【特許請求の範囲】 1、コバルト触媒の存在下、180℃以上で、2位およ
び/または6位に置換基のないピリジン塩基類を、炭素
数1〜4の脂肪族アルコールと反応せしめ、ピリジン核
の2位および/または6位をメチル化することを特徴と
する2および/または6−メチルピリジン塩基類(但し
2,3,5−コリジンおよび2,3,5,6テトラメチ
ルピリジンを除く)の製造方法 2、生成する分解ガスを反応系外に抜きながら所定の圧
力下で反応することを特徴とする特許請求の範囲第1項
記載の製造方法。 3、コバルト触媒がラネーコバルトである特許請求の範
囲第1項又は第2項記載の製造方法。 4、アルコールを反応器に圧入しながら且つ生成する分
解ガスを反応系外に放出しながら反応することを特徴と
する特許請求の範囲第1項記載の製造方法
[Claims] 1. In the presence of a cobalt catalyst, at 180°C or higher, a pyridine base having no substituent at the 2- and/or 6-position is reacted with an aliphatic alcohol having 1 to 4 carbon atoms to form pyridine. 2- and/or 6-methylpyridine bases characterized by methylation at the 2nd and/or 6th positions of the nucleus (excluding 2,3,5-collidine and 2,3,5,6-tetramethylpyridine) 2) A manufacturing method according to claim 1, characterized in that the reaction is carried out under a predetermined pressure while removing the generated cracked gas from the reaction system. 3. The manufacturing method according to claim 1 or 2, wherein the cobalt catalyst is Raney cobalt. 4. The production method according to claim 1, characterized in that the reaction is carried out while pressurizing the alcohol into the reactor and releasing the generated decomposed gas to the outside of the reaction system.
JP60114456A 1985-05-28 1985-05-28 Method for producing 2 and / or 6 methylpyridine bases Expired - Lifetime JPH06745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60114456A JPH06745B2 (en) 1985-05-28 1985-05-28 Method for producing 2 and / or 6 methylpyridine bases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60114456A JPH06745B2 (en) 1985-05-28 1985-05-28 Method for producing 2 and / or 6 methylpyridine bases

Publications (2)

Publication Number Publication Date
JPS61271274A true JPS61271274A (en) 1986-12-01
JPH06745B2 JPH06745B2 (en) 1994-01-05

Family

ID=14638179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60114456A Expired - Lifetime JPH06745B2 (en) 1985-05-28 1985-05-28 Method for producing 2 and / or 6 methylpyridine bases

Country Status (1)

Country Link
JP (1) JPH06745B2 (en)

Also Published As

Publication number Publication date
JPH06745B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
CA1172638A (en) Process for the production of chloropyridines substituted by methyl, trichloromethyl or trifluoromethyl groups
US3804845A (en) Manufacture of bipyridyls
JPS61271274A (en) Production of 2-and/or 6-methylpyridine base
JPH01213263A (en) Production of 2-chloro-5-methylpyridine
JPS59118745A (en) Manufacture of amine
JPS62129236A (en) Manufacture of methylisopropylketone and diethylketone
WO2002034720A1 (en) Process for preparing vinyl-substituted heterocycles
US3954876A (en) Production of halo-substituted derivatives of acetophenone
JPS6110527A (en) Manufacture of alpha-methyl substituted ketone
US3320269A (en) beta-amino-alpha-phenoxy-2-stilbazole derivatives
JP3123815B2 (en) Method for producing 2-chloro-5-chloromethylpyridine and / or 2-chloro-5-dichloromethylpyridine
EP0204975B1 (en) Process for preparing substituted tetralones
US2854457A (en) Process of preparing dipyridyls
US4658032A (en) Process for producing 2,3,5-collidine and/or 2,3,5,6-tetramethylpyridine
Gladiali et al. Synthesis of Glycidic Esters in a Two-Phase Solid-Liquid System
US3020281A (en) Method of preparing quinoline
US6051714A (en) Processes for dechlorinating pyridines
CN109721529B (en) Simple preparation method of 2, 5-dichloropyridine
JPS5835193B2 (en) 3.4- Methylenedioxystyrene
US3354165A (en) Akylation of pyridine compounds
US4639525A (en) Process for the preparation of pyridone-2 by demethylation
JPS639495B2 (en)
US3020280A (en) Quinoline synthesis
JP3529876B2 (en) 3-methyl-3-methoxybutanoic acid.
JPS5827789B2 (en) Method for producing substituted pyridine