JPS61270885A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPS61270885A
JPS61270885A JP60112589A JP11258985A JPS61270885A JP S61270885 A JPS61270885 A JP S61270885A JP 60112589 A JP60112589 A JP 60112589A JP 11258985 A JP11258985 A JP 11258985A JP S61270885 A JPS61270885 A JP S61270885A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
light emitting
thin film
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60112589A
Other languages
Japanese (ja)
Inventor
Yoshihiro Mori
義弘 森
Atsushi Shibata
淳 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60112589A priority Critical patent/JPS61270885A/en
Publication of JPS61270885A publication Critical patent/JPS61270885A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06203Transistor-type lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain high speed operation, by changing continuously the band gap and the refraction index of the base layer and forming its central part with the semiconductor thin film layer as the quantum well layer. CONSTITUTION:The P-type InGaAs quantum well layer 101 is sandwiched between the P-type GaAsP distributed refraction index layers 102, and the base layer is constituted by the layers 101 and 102. The N-type InP emitter layer 103 and the N-type collector layer 104 are formed in contact with the layer 102. From the P-type InP graft base layer 106, the current is supplied to the layer 102. The band gap energy of the layer 101 is small as compared with that of its both side layers 102, so that it captures the carrier easily. As regards the distribution of the refraction index, the layer 101 has a protruded configuration as composed with other layers and the effective confinement of light is made in this layer. Accordingly, the sufficient carrier can exist in the base without making the laser transistor Tr or the light emitting transistor in the saturation state, and the high speed operation is made possible.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体レーザ、発光トランジスタ、レーザトラ
ンジスタなどの半導体発光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to semiconductor light emitting devices such as semiconductor lasers, light emitting transistors, and laser transistors.

従来の技術 従来のレーザトランジスタあるいは発光トランジスタは
1つ以上のへテロ接合を持つトランジスタ構造を持って
いる(例えば、特願昭59−73380号)。
BACKGROUND OF THE INVENTION A conventional laser transistor or light emitting transistor has a transistor structure having one or more heterojunctions (for example, see Japanese Patent Application No. 73380/1983).

例えば第5図に示す素子はレーザトランジスタで、ベー
ス層501にP型InGaAsP、エミッタ層502と
コレクタ層503にn型InP層を用いた縦型のnpn
型トランジスタ構造を持っている。ベース層501にI
nPと比べて小゛バンドギャップエネルギー、高屈折率
を持つInGaAsPを用いたことで、縦方向の光とキ
ャリアが双方のとじこめを行なっている。また、グラフ
トベース層505はベース層501への良好な電流供給
と横方向の光のとじこめを行なっている。504はn型
InP基板、506はエミッタ電極、507はベース電
極、50g・・・コレクタ電極、AとBはミラー面を示
す。
For example, the device shown in FIG. 5 is a laser transistor, which is a vertical npn laser transistor using P-type InGaAsP for the base layer 501 and n-type InP layers for the emitter layer 502 and collector layer 503.
It has a type transistor structure. I in the base layer 501
By using InGaAsP, which has a smaller bandgap energy and higher refractive index than nP, both light and carriers in the vertical direction are confined. Furthermore, the graft base layer 505 provides good current supply to the base layer 501 and lateral light confinement. 504 is an n-type InP substrate, 506 is an emitter electrode, 507 is a base electrode, 50g...collector electrode, and A and B are mirror surfaces.

この素子は、例えば第6図のエミッタ接地の回路構成を
用いて駆動する。602は抵抗器、603はレーザビー
ムを表わす。発光させるときは第9図(イ)のようにト
ランジスタ動作における飽和状態にしてエミッタとコレ
クタの両方よりベースにキャリアを注入し、再結合を生
じさせる。再結合により生じた先立は、ベース層の長辺
方向に共振し、レーザ光として外部にとり出される。一
方、発光を停止させるには、第7図(ロ)のようにトラ
ンジスタ動作における活性状態またはロットオフ状態に
して、ベースからコレクタへ電子を高速で吸い出してベ
ース層内でのキャリアの再結合を中止させる方法がとら
れている。
This element is driven using, for example, the emitter-grounded circuit configuration shown in FIG. 602 represents a resistor, and 603 represents a laser beam. When emitting light, carriers are injected into the base from both the emitter and collector under the saturated state of transistor operation as shown in FIG. 9(a), causing recombination. The laser beam generated by recombination resonates in the long side direction of the base layer and is extracted to the outside as a laser beam. On the other hand, in order to stop light emission, as shown in Figure 7 (b), the transistor is placed in an active state or lot-off state, and electrons are sucked out from the base to the collector at high speed to stop recombination of carriers within the base layer. A method is being taken to

発明が解決しようとする問題点 このような状態の切りかえは、電気的には通常のスイッ
チングトランジスタのオンとオフに相当する。しかし、
スイッチングトランジスタには、オンからオフへの切り
かえのときに蓄積時間と呼ばれる動作遅れ時間が存在し
、レーザトランジスタや発光トランジスタでも同様の現
象が生じこれが高速動作化を妨げていた。
Problems to be Solved by the Invention Electrically, this switching of states corresponds to turning on and off a normal switching transistor. but,
Switching transistors have an operation delay time called accumulation time when switching from on to off, and a similar phenomenon occurs in laser transistors and light-emitting transistors, which hinders high-speed operation.

本発明は蓄積時間が無く高速動作を期待できる半導体発
光素子を提供することを目的とする。
An object of the present invention is to provide a semiconductor light emitting device that has no accumulation time and can be expected to operate at high speed.

問題点を解決するための手段 本発明の半導体発光素子は、第1の導電型の半導体薄膜
層と、上記半導体薄膜層をはさみ屈折率とバンドギャッ
プエネルギーが上記半導体薄膜層との界面近傍でそれぞ
れ最大値、前記半導体薄膜層のバンドギャップエネルギ
ーより少なくとも大きい最小値をとり前記界面からの距
離が増加するにつれ前記屈折率と前記バンドギャップエ
ネルギーが連続的にそれぞれ減少増加する分布定数半導
体領域を少なくとも一部分に持つ第1の導電型の第1と
第2の半導体層と、上記第1の半導体層の主面に接する
第2の導電型の第3の半導体層と、上記第2の半導体層
の主面に接する第2の導電型の第4の半導体層とを設け
たことを特徴とする。
Means for Solving the Problems The semiconductor light emitting device of the present invention includes a semiconductor thin film layer of a first conductivity type, and the semiconductor thin film layer is sandwiched between the refractive index and the band gap energy, respectively, in the vicinity of the interface between the semiconductor thin film layer and the semiconductor thin film layer. at least a portion of a distributed constant semiconductor region in which the refractive index and the bandgap energy continuously decrease and increase, respectively, as the distance from the interface increases, with a maximum value and a minimum value at least greater than the bandgap energy of the semiconductor thin film layer; a third semiconductor layer of a second conductivity type in contact with the main surface of the first semiconductor layer, and a main surface of the second semiconductor layer; A fourth semiconductor layer of the second conductivity type is provided in contact with the surface.

作用 この構成により、ベース層のバンドギャップと屈折率を
連続的に変化させ、その中央部を量子井戸層と呼ばれる
半導体薄膜層で形成したため、キャリアと光のとじこめ
効果を増大させ、レーザトランジスタあるいは発光トラ
ンジスタを飽和状態にせ′ずとも、ベース内にレーザ発
振あるいは発光に十分な利得を提供できる量のキャリア
を存在させることを可能にするものである。また、飽和
させずに発振あるいは発光できるため、変調時に蓄積時
間がなくなり、動作の高速化がはかれる。
Function: With this structure, the bandgap and refractive index of the base layer are continuously changed, and the central part is formed of a semiconductor thin film layer called a quantum well layer, which increases the carrier and light confinement effect, making it ideal for laser transistors or light emitting devices. This makes it possible to have a sufficient amount of carriers in the base to provide sufficient gain for laser oscillation or light emission without bringing the transistor into saturation. Furthermore, since oscillation or light emission is possible without saturation, there is no accumulation time during modulation, resulting in faster operation.

実施例 以下、本発明の一実施例を第1図〜第4図に基づいて説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described based on FIGS. 1 to 4.

第1図は本発明の半導体発光素子を示す。101はP型
InGaAsP量子井戸層で、厚さ100人、組成波長
1.3ミクロンである。102はP型I n G a 
A sP分布屈折率層、103はn型InPエミッタ層
、104はn型InPコレクタ層である。量子井戸層1
01と分布屈折率層102とでベース層が構成される。
FIG. 1 shows a semiconductor light emitting device of the present invention. 101 is a P-type InGaAsP quantum well layer with a thickness of 100 μm and a composition wavelength of 1.3 μm. 102 is P type I n Ga
103 is an n-type InP emitter layer, and 104 is an n-type InP collector layer. quantum well layer 1
01 and the distributed refractive index layer 102 constitute a base layer.

105はn型InP基板、106はベース層に電流を供
給するP型InPグラフトベース層、107.108゜
109はそれぞれエミッタ、ベース、コレクタ電極、A
、Bはミラー面である。
105 is an n-type InP substrate, 106 is a P-type InP graft base layer that supplies current to the base layer, 107.108° and 109 are emitter, base, and collector electrodes, respectively.
, B is a mirror surface.

第2図はエミッタ層103、ベース層106、コレクタ
層104のバンド状態を示すバンド図である。量子井戸
層101はその両側の分布屈折率層102と比べ、バン
ドギャップエネルギーが小さく、キャリアを捕獲しやす
くなっている6分布屈折率層102の厚みはトランジス
タとしての機能、特に少数キャリアのベース走行時間を
従来と同程度に保つため、約0.5ミクロンとしである
。205はフェルミ準位を示す。このときの屈折率分布
を第3図に示す。量子井戸層101の屈折率n0が他の
層と比べて突出した形になっており、この中に効率のよ
い光のとじこめが成される。n工は分布屈折率層の最大
屈折率、n2は分布屈折率層の最小屈折率、n、はエミ
ッタ層、コレクタ層の屈折率である0分布屈折率層10
2の屈折率n (x)は、量子井戸層101の中央部を
X=Oとしたとき、 となるような分布をしている。ここでbはベース層幅の
半分の長さである。エミッタ層103、 コレクタ層1
04はInPより成るため、その屈折率n。
FIG. 2 is a band diagram showing band states of the emitter layer 103, base layer 106, and collector layer 104. The quantum well layer 101 has a smaller bandgap energy than the distributed refractive index layers 102 on both sides, making it easier to capture carriers. In order to keep the time at the same level as before, it is set to about 0.5 micron. 205 indicates the Fermi level. The refractive index distribution at this time is shown in FIG. The refractive index n0 of the quantum well layer 101 is prominent compared to other layers, and light is efficiently confined within the quantum well layer 101. 0 distribution refractive index layer 10 where n is the maximum refractive index of the distributed refractive index layer, n2 is the minimum refractive index of the distributed refractive index layer, and n is the refractive index of the emitter layer and collector layer.
The refractive index n (x) of 2 has a distribution such that when X=O at the center of the quantum well layer 101. Here, b is half the width of the base layer. Emitter layer 103, collector layer 1
Since 04 is made of InP, its refractive index is n.

はn2よりさらに小さい。is even smaller than n2.

第4図はこの素子を駆動したときのバンド図を示す、駆
動される状態は従来例と同様にトランジスタ動作におけ
る飽和領域および第4図(イ)、(ロ)に示すように活
性領域である。よって、ベース層中の少数キャリア(電
子)分布は、工゛ミッタ・コレクタ間の印加電圧V(j
Eによって可変である。また、ベース・コレクタ間に負
荷される電圧を大きくすることにより、2者の界面に空
乏層が広がり、分布屈折率層102のバンド端がコレク
タ層の近傍で下がり、ベース層内の電子を吸い出すこと
ができる1以上2つの点より、量子井戸層101に捕獲
される電子の量はVOHにより制御できる。VCFが小
さいときを図(イ)に、大きいときを図(ロ)に示す。
Figure 4 shows a band diagram when this element is driven. The driven states are the saturated region in transistor operation and the active region as shown in Figures 4 (a) and (b), as in the conventional example. . Therefore, the minority carrier (electron) distribution in the base layer is determined by the applied voltage V(j
It is variable depending on E. In addition, by increasing the voltage applied between the base and collector, a depletion layer spreads at the interface between the two, the band edge of the distributed refractive index layer 102 drops near the collector layer, and electrons in the base layer are sucked out. The amount of electrons captured in the quantum well layer 101 can be controlled by VOH from one or more points that can be achieved. Figure (A) shows when VCF is small, and Figure (B) shows when it is large.

量子井戸層に捕獲された電子は、多数キャリアである正
孔と再結合をし、光hyを発する。ここで第4図(イ)
(ロ)に示したようにVatが小さいときの方が大きい
ときよりも多くの光hνを発する。この光は、分布屈折
率層、エミッタ層、コレクタ層によりとじこめられ、第
1図中のミラー面A−Bの間を往復し、十分な利得を持
てばレーザ発振を起こす。前述のように量子井戸層中の
電子の量は、VcBにより可変であるから、発光量もま
たVaiにより制御できる。
The electrons captured in the quantum well layer recombine with holes, which are majority carriers, and emit light hy. Here, Figure 4 (a)
As shown in (b), more light hv is emitted when Vat is small than when it is large. This light is confined by the distributed refractive index layer, the emitter layer, and the collector layer, travels back and forth between the mirror surfaces A and B in FIG. 1, and, if it has sufficient gain, causes laser oscillation. As mentioned above, since the amount of electrons in the quantum well layer is variable by VcB, the amount of light emission can also be controlled by Vai.

以上のようにベース電流の調節によって発光強度が変化
するが、これと同時に、活性状態での電流増幅率hpE
に対応した電流増幅も行なえる。また、飽和しないので
、速いスイッチング動作が可能になる。
As described above, the emission intensity changes by adjusting the base current, but at the same time, the current amplification rate hpE in the active state
It is also possible to perform current amplification corresponding to Furthermore, since saturation does not occur, fast switching operations are possible.

発明の効果 本発明の半導体発光素子は、第1の導電型の半導体簿膜
層と、上記半導体薄膜層をはさみ、屈折率とバンドギャ
ップエネルギーが上記半導体薄膜層との界面近傍でそれ
ぞれ最大値または最小値をとり、前記界面からの距離が
増加するにつれ、前記屈折率と前記バンドギャップエネ
ルギーが連続的にそれぞれ減少又は増加する分布定数半
導体領域を少なくとも一部分に持つ第1の導電型の第1
と第2の半導体層と、上記第1の半導体層の主面に接す
る第2の導電型の第3の半導体層と、上記第2の半導体
層の主面に接する第2の導電型の第4の半導体層とを設
けたため、飽和状態にせずどもレーザ発振するレーザト
ランジスタ、あるいは発光する発光トランジスタが構成
でき、高速動作に極めて有用である。また量子井戸層と
分布屈折率層とを持つ構造にしたことにより、レーザ発
振のしきい値電流の低減がはかれ、低消費電力化が図れ
るものである。
Effects of the Invention The semiconductor light emitting device of the present invention includes a semiconductor thin film layer of a first conductivity type and the semiconductor thin film layer, and has a refractive index and a band gap energy of a maximum value or a maximum value near the interface with the semiconductor thin film layer. A first semiconductor of a first conductivity type having at least a portion thereof a distributed constant semiconductor region in which the refractive index and the band gap energy continuously decrease or increase, respectively, as the distance from the interface increases.
and a second semiconductor layer, a third semiconductor layer of a second conductivity type in contact with the main surface of the first semiconductor layer, and a third semiconductor layer of a second conductivity type in contact with the main surface of the second semiconductor layer. Since the semiconductor layer No. 4 is provided, a laser transistor that oscillates or a light emitting transistor that emits light without reaching a saturated state can be constructed, which is extremely useful for high-speed operation. Further, by adopting a structure having a quantum well layer and a distributed refractive index layer, the threshold current for laser oscillation can be reduced, and power consumption can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体発光素子の一実施例の構造図、
第2図は第1図に示した実施例のバンド図、第3図は第
1図に示した実施例の屈折率分布図、第4図は第1図に
示した実施例の動作状態を示すバンド図とキャリアの流
れ図、第5図は従来のレーザトランジスタの構造図、第
6図はレーザトランジスタの駆動回路図、第7図は従来
のレーザトランジスタの動作時のバンド図とキャリアの
流れ図である。 101・P型InGaAsP量子井戸層、102−P型
I n G a A s P分布屈折率層、103− 
n型InPエミッタ層、104・・・n型InPコレク
タ層代理人   森  本  義  弘 屈前fn 第4図
FIG. 1 is a structural diagram of an embodiment of the semiconductor light emitting device of the present invention;
Fig. 2 is a band diagram of the embodiment shown in Fig. 1, Fig. 3 is a refractive index distribution diagram of the embodiment shown in Fig. 1, and Fig. 4 shows the operating state of the embodiment shown in Fig. 1. Figure 5 is a structural diagram of a conventional laser transistor, Figure 6 is a drive circuit diagram of a laser transistor, and Figure 7 is a band diagram and carrier flow diagram of a conventional laser transistor during operation. be. 101-P-type InGaAsP quantum well layer, 102-P-type InGaAsP distributed refractive index layer, 103-
N-type InP emitter layer, 104...n-type InP collector layer agent Yoshihiro Morimoto fn Figure 4

Claims (1)

【特許請求の範囲】 1、第1の導電型の半導体薄膜層と、上記半導体薄膜層
をはさみ屈折率とバンドギャップエネルギーが上記半導
体薄膜層との界面近傍でそれぞれ最大値、前記半導体薄
膜層のバンドギャップエネルギーより少なくとも大きい
最小値をとり前記界面からの距離が増加するにつれ前記
屈折率と前記バンドギャップエネルギーが連続的にそれ
ぞれ減少、増加する分布定数半導体領域を少なくとも一
部分に持つ第1の導電型の第1と第2の半導体層と、上
記第1の半導体層の主面に接する第2の導電型の第3の
半導体層と、上記第2の半導体層の主面に接する第2の
導電型の第4の半導体層とを設けた半導体発光素子。 2、第1と第2の半導体層のバンドギャップエネルギー
が半導体薄膜層のバンドギャップエネルギーより大きい
ことを特徴とする特許請求の範囲第1項記載の半導体発
光素子。 3、第1と第2の半導体層中の分布定数半導体領域の屈
折率の2乗が半導体薄膜層からの距離xに対し、1−k
x^P(0<k、p)に比例して減少することを特徴と
する特許請求の範囲第1項記載の半導体発光素子。 4、第1と第2の半導体層の屈折率が半導体薄膜層の屈
折率より小さいことを特徴とする特許請求の範囲第1項
記載の半導体発光素子。 5、第3と第4の半導体層の屈折率が、第1と第2の半
導体層より小さいことを特徴とする特許請求の範囲第1
項記載の半導体発光素子。 6、半導体薄膜層と第1と第2の半導体がベース層、第
3の半導体層がエミッタ層、第4の半導体層がコレクタ
層であることを特徴とする特許請求の範囲第1項記載の
半導体発光素子。 7、エミッタ層のバンドギャップエネルギーが、ベース
層のバンドギャップエネルギーより大きいことを特徴と
する特許請求の範囲第6項記載の半導体発光素子。 8、コレクタ層のバンドギャップエネルギーが、ベース
層のバンドギャップエネルギーより大きいことを特徴と
する特許請求の範囲第7項記載の半導体発光素子。 9、半導体薄膜領域で生じた光のための光学的共振器を
具備することを特徴とする特許請求の範囲第1項記載の
半導体発光素子。
[Claims] 1. A semiconductor thin film layer of a first conductivity type, and a refractive index and a bandgap energy of the semiconductor thin film layer sandwiching the semiconductor thin film layer have their respective maximum values near the interface with the semiconductor thin film layer; A first conductivity type having, at least in part, a distributed constant semiconductor region in which the refractive index and the bandgap energy continuously decrease and increase, respectively, as the distance from the interface increases and the minimum value is at least larger than the bandgap energy. a third semiconductor layer of a second conductivity type that is in contact with the main surface of the first semiconductor layer, and a second conductive layer that is in contact with the main surface of the second semiconductor layer. A semiconductor light emitting device comprising a molded fourth semiconductor layer. 2. The semiconductor light emitting device according to claim 1, wherein the band gap energy of the first and second semiconductor layers is larger than the band gap energy of the semiconductor thin film layer. 3. Distribution constant in the first and second semiconductor layers The square of the refractive index of the semiconductor region is 1-k with respect to the distance x from the semiconductor thin film layer.
2. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device decreases in proportion to x^P (0<k, p). 4. The semiconductor light emitting device according to claim 1, wherein the refractive index of the first and second semiconductor layers is smaller than the refractive index of the semiconductor thin film layer. 5. Claim 1, characterized in that the refractive index of the third and fourth semiconductor layers is smaller than that of the first and second semiconductor layers.
The semiconductor light-emitting device described in 2. 6. The semiconductor thin film layer and the first and second semiconductors are base layers, the third semiconductor layer is an emitter layer, and the fourth semiconductor layer is a collector layer, according to claim 1. Semiconductor light emitting device. 7. The semiconductor light emitting device according to claim 6, wherein the bandgap energy of the emitter layer is larger than the bandgap energy of the base layer. 8. The semiconductor light emitting device according to claim 7, wherein the collector layer has a band gap energy larger than that of the base layer. 9. The semiconductor light emitting device according to claim 1, characterized in that it comprises an optical resonator for light generated in the semiconductor thin film region.
JP60112589A 1985-05-24 1985-05-24 Semiconductor light emitting element Pending JPS61270885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60112589A JPS61270885A (en) 1985-05-24 1985-05-24 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60112589A JPS61270885A (en) 1985-05-24 1985-05-24 Semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JPS61270885A true JPS61270885A (en) 1986-12-01

Family

ID=14590520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60112589A Pending JPS61270885A (en) 1985-05-24 1985-05-24 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPS61270885A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197383A (en) * 1987-02-10 1988-08-16 Nec Corp Pnpn semiconductor element
US6707074B2 (en) 2000-07-04 2004-03-16 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and apparatus for driving the same
US7244997B2 (en) 2003-07-08 2007-07-17 President And Fellows Of Harvard College Magneto-luminescent transducer
JP2012524398A (en) * 2009-04-17 2012-10-11 ザ ボード オブ トラスティース オブ ザ ユニバーシティ オブ イリノイ Light emitting semiconductor method and device
US8494375B2 (en) 2009-11-09 2013-07-23 Quantum Electro Opto Systems Sdn. Bhd. High speed communication
US8509274B2 (en) 2009-01-08 2013-08-13 Quantum Electro Opto Systems Sdn. Bhd. Light emitting and lasing semiconductor methods and devices
US8618575B2 (en) 2010-09-21 2013-12-31 Quantum Electro Opto Systems Sdn. Bhd. Light emitting and lasing semiconductor methods and devices
US8638830B2 (en) * 2009-01-08 2014-01-28 Quantum Electro Opto Systems Sdn. Bhd. Light emitting and lasing semiconductor devices and methods
US8842706B2 (en) 2011-10-07 2014-09-23 The Board Of Trustees Of The University Of Illinois Opto-electronic oscillator and method
US8970126B2 (en) 2011-10-07 2015-03-03 The Board Of Trustees Of The University Of Illinois Opto-electronic devices and methods
US9159873B2 (en) 2011-11-14 2015-10-13 Quantum Electro Opto Systems Sdn. Bhd. High speed optical tilted charge devices and methods
US9452928B2 (en) 2011-09-02 2016-09-27 Quantum Electro Opto Systems Sden. Bhd. Opto-electronic circuits and techniques

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104189A (en) * 1982-12-07 1984-06-15 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104189A (en) * 1982-12-07 1984-06-15 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor laser

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197383A (en) * 1987-02-10 1988-08-16 Nec Corp Pnpn semiconductor element
US6707074B2 (en) 2000-07-04 2004-03-16 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and apparatus for driving the same
US7244997B2 (en) 2003-07-08 2007-07-17 President And Fellows Of Harvard College Magneto-luminescent transducer
CN103701031A (en) * 2009-01-08 2014-04-02 伊利诺斯大学理事会 Light emitting and lasing semiconductor devices and methods
US8509274B2 (en) 2009-01-08 2013-08-13 Quantum Electro Opto Systems Sdn. Bhd. Light emitting and lasing semiconductor methods and devices
AU2010203817B2 (en) * 2009-01-08 2014-09-25 Quantum Electro Opto Systems Sdn. Bhd. Light emitting and lasing semiconductor devices and methods
US8638830B2 (en) * 2009-01-08 2014-01-28 Quantum Electro Opto Systems Sdn. Bhd. Light emitting and lasing semiconductor devices and methods
US8675703B2 (en) 2009-01-08 2014-03-18 Quantum Electro Opto Systems Sdn. Rhd. Two terminal light emitting and lasing devices and methods
JP2012524398A (en) * 2009-04-17 2012-10-11 ザ ボード オブ トラスティース オブ ザ ユニバーシティ オブ イリノイ Light emitting semiconductor method and device
US8494375B2 (en) 2009-11-09 2013-07-23 Quantum Electro Opto Systems Sdn. Bhd. High speed communication
US9231700B2 (en) 2009-11-09 2016-01-05 Quamtum Electro Opto Systems Sdn. Bhd. High speed communication
US8618575B2 (en) 2010-09-21 2013-12-31 Quantum Electro Opto Systems Sdn. Bhd. Light emitting and lasing semiconductor methods and devices
US9299876B2 (en) 2010-09-21 2016-03-29 Quantum Electro Opto Systems Sdn. Bhd. Light emitting and lasing semiconductor methods and devices
US9452928B2 (en) 2011-09-02 2016-09-27 Quantum Electro Opto Systems Sden. Bhd. Opto-electronic circuits and techniques
US8842706B2 (en) 2011-10-07 2014-09-23 The Board Of Trustees Of The University Of Illinois Opto-electronic oscillator and method
US8970126B2 (en) 2011-10-07 2015-03-03 The Board Of Trustees Of The University Of Illinois Opto-electronic devices and methods
US9159873B2 (en) 2011-11-14 2015-10-13 Quantum Electro Opto Systems Sdn. Bhd. High speed optical tilted charge devices and methods

Similar Documents

Publication Publication Date Title
US4806997A (en) Double heterostructure optoelectronic switch
KR20130126897A (en) Light emitting and lasing semiconductor methods and devices
JPS61270885A (en) Semiconductor light emitting element
US5677552A (en) Optical control circuit for an optical pnpn thyristor
JPS60216591A (en) Semiconductor light emitting element
US5164797A (en) Lateral heterojunction bipolar transistor (LHBT) and suitability thereof as a hetero transverse junction (HTJ) laser
JPH06112594A (en) Surface emission semiconductor light emission device and fabrication thereof
JPH0738457B2 (en) Opto-electronic bistable element
JPS61231788A (en) Semiconductor light emitting element
Paoli et al. High‐power multiple‐emitter AlGaAs superluminescent diodes
JP2685441B2 (en) Tunable semiconductor laser
JPS60167390A (en) Semiconductor light-emitting element
JP3307695B2 (en) Quantum well light emitting device
JPH04237135A (en) Semiconductor laminated layer structure
JPH02155263A (en) Semiconductor optical memory
JP2529854B2 (en) Infrared semiconductor laser
JPH06204606A (en) Semiconductor laser
JPS61276389A (en) Semiconductor optical element
JP2878709B2 (en) Semiconductor laser device
KR100493145B1 (en) Gan laser diode
JPH067630B2 (en) Three-terminal semiconductor laser device
JPH06350196A (en) Optical semiconductor device
JPS61239687A (en) Semiconductor light-emitting element
JPH1126865A (en) Semiconductor laser
JPH0395985A (en) Semiconductor laser