JPS61270025A - Electro-chemical conbined machining method for both surfaces of thin plate material - Google Patents

Electro-chemical conbined machining method for both surfaces of thin plate material

Info

Publication number
JPS61270025A
JPS61270025A JP11246685A JP11246685A JPS61270025A JP S61270025 A JPS61270025 A JP S61270025A JP 11246685 A JP11246685 A JP 11246685A JP 11246685 A JP11246685 A JP 11246685A JP S61270025 A JPS61270025 A JP S61270025A
Authority
JP
Japan
Prior art keywords
polishing
thin plate
tools
plate material
surface plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11246685A
Other languages
Japanese (ja)
Inventor
Katsutsune Tamiya
田宮 勝恒
Akio Komura
明夫 小村
Masahiko Yamamoto
昌彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP11246685A priority Critical patent/JPS61270025A/en
Publication of JPS61270025A publication Critical patent/JPS61270025A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To enable the method to perform high efficient and high accurate combined polishing, by forming surface plate tools in both sides from an electric insulating material while applying AC voltage or pulse voltage across conductive materials, embedded in a part of each polishing surface, so as to alternately generate electro-chemical action in both surfaces of a thin plate material. CONSTITUTION:The polishing method, while supplying machining fluid 14 and abrasive polishing grains 15 to a part between both surface plate tools 9, 10, mutually oppositely rotates the tools to be relatively moved while applies pressing force so as to press the tools approaching to each other, and if AC voltage or pulse voltage is applies between conductive materials 11, 12 through conductive rings 21, 22 and brushes 23, 24, electro-chemical combined polishing is performed on both surfaces of a thin plate material 13 by polishing action through the polishing abrasive grains 15 and electro-chemical action. Here the method, rotating each carrier 25 on its own axis and around the center of the surface plate tool and performing a planetary motion of the thin plate material 13 electrically supported to these carriers, provides streak marks by the both surface polishing abrasive grains 15 in no-directivity to obtain a polished surface of uniform quality. While the method, if it adhesively attaches in its finishing process to polishing surfaces 9, 10' of the tools 9, 10 a polishing cloth having insulation, viscous elasticity and water content properties, can more effectively finish mirror surface polishing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、薄板材、たとえばSiウェハ、 GaAs
ウェハ、磁気メモリ用A6デイスク等の高精度平面を得
る薄板材の両面電解複合加工方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention is applicable to thin plate materials such as Si wafers, GaAs
This invention relates to a method for double-sided electrolytic composite processing of thin plate materials for obtaining highly accurate flat surfaces such as wafers and A6 disks for magnetic memory.

〔従来の技術〕[Conventional technology]

通常、薄板材では、高品質な表面粗さはもちろんのこと
高精度な平面度が要求され、これらの要求に対してラッ
ピングやポリシングを始め、最近では、メカニロルポリ
シングやフロートポリンング等の加工法が用いられてい
る。
Normally, thin plate materials require not only high quality surface roughness but also high precision flatness. law is used.

しかし、高精度な平面を得るためには、単に加工面を高
精度に加工するだけではなく加工に伴なう変形や加工変
質を生じないことが重要であシ、なかでも半導体をはじ
めとする電子材料では、加工変形はもとより加工表面の
無擾乱性が厳しく要求される。
However, in order to obtain a highly accurate flat surface, it is important not only to process the machined surface with high precision, but also to avoid deformation or alteration due to processing. Electronic materials are not only subject to processing deformation, but also require strict undisturbed processing surfaces.

そこで、従来では、研摩による機械的作用と電気化学的
な電解作用とにより薄板材を電解複合加工することが行
なわれている。
Therefore, conventionally, thin plate materials have been subjected to electrolytic composite processing using mechanical action by polishing and electrochemical action.

すなわち、従来のこの種薄板材の両面電解複合加工方法
は、第5図に示すように、導電性の2つの定盤工具(1
) 、 (2)をそれぞれの加工作用面(1)’ 、 
(2)’が平行に対向するよう設け、両定盤工具(1)
 、 f21間に薄板材(3)を介在し、両定盤工具(
1) 、 (2+をそれぞれ直流電源の陰極に接続する
とともに、薄板材(3)をスプリング(4)およびブラ
シ(5)を介して直流電源の陽極に接続し、両定盤工具
(1) 、 (2,1間に加工液(6)。
That is, the conventional double-sided electrolytic composite machining method for this type of thin plate material uses two conductive surface plate tools (1
), (2) as the respective machining action surfaces (1)',
(2)' are installed parallel to each other, and both surface plate tools (1)
, a thin plate material (3) is interposed between f21, and both surface plate tools (
1), (2+ are respectively connected to the cathode of the DC power supply, and the thin plate material (3) is connected to the anode of the DC power supply via the spring (4) and the brush (5), both surface plate tools (1), (Processing liquid (6) between 2 and 1.

砥粒(7)を供給しながら、両定盤工具(1) 、 (
2)を相対的に回転および相互に押圧するとともに、定
盤工具(1) 、 (2)と薄板材(3)間に直流電圧
を印加し、砥粒(7)による機械的な作用と薄板材(3
)の陽極溶出作用。
While supplying abrasive grains (7), both surface plate tools (1), (
2) are relatively rotated and pressed against each other, and a DC voltage is applied between the surface plate tools (1), (2) and the thin plate material (3), and the mechanical action of the abrasive grains (7) and the thin plate material are Board material (3
) anodic elution action.

すなわち電解作用とにより、薄板材(3)の両面(上下
面)を電解複合加工するものである。この動作時、薄板
材(3)は砥粒(7)により面加工作用面(1)′、(
2fに対し砥粒粒径に応じたギャップgl1g2を保っ
て両定盤工具(1) 、 (21間に保持される。
That is, electrolytic composite processing is performed on both surfaces (upper and lower surfaces) of the thin plate material (3) by electrolytic action. During this operation, the thin plate material (3) is processed by the abrasive grains (7) on the surfaces (1)', (
2f, a gap gl1g2 corresponding to the abrasive grain size is maintained between both surface plate tools (1) and (21).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前記従来の電解複合加工方法では、薄板材(3
)がブラシ(5)およびスプリング(4)を介して、直
流電源の陽極に直接的に接続されるため、薄板材(3)
の端面エッヂにおける電界強度が強くなり、電解電流(
8)の集中が起こり、角だれが発生する欠点があり、し
かも、薄板材(3)が陽極に接続されるため、薄板材(
3)と定盤工具(1)または(2)との接触により、電
源短絡が生じ、薄板材(3)、定盤工具(1)。
However, in the conventional electrolytic composite processing method, thin plate material (3
) is directly connected to the anode of the DC power supply through the brush (5) and spring (4), so the thin plate material (3)
The electric field strength at the edge of the edge becomes stronger, and the electrolytic current (
There is a disadvantage that concentration of 8) occurs and corner sagging occurs, and furthermore, since the thin plate material (3) is connected to the anode, the thin plate material (3)
3) and the surface plate tool (1) or (2), a power short circuit occurs, causing a short circuit between the thin plate material (3) and the surface plate tool (1).

(2)を損傷する欠点がある。(2) It has the disadvantage of damaging.

また、薄板材(3)と両定盤工具(1) 、 f2+と
のそれぞれのギャップgl、g2に差違がある場合や、
加工液(6)の介在状態に差違、不均一がある場合には
、薄板材(3)の上下面で電解電流(電解電流密度)に
差違が生じ、薄板材(3)の上下面を均等に加工できず
、表面粗さや加工面の平面精度に悪影響を及ぼす結果と
なる。
In addition, if there is a difference in the gaps gl and g2 between the thin plate material (3) and both surface plate tools (1) and f2+,
If there is a difference or non-uniformity in the intervening state of the machining fluid (6), a difference will occur in the electrolytic current (electrolytic current density) on the upper and lower surfaces of the thin plate (3), and the upper and lower surfaces of the thin plate (3) will be uniform. This results in an adverse effect on the surface roughness and flatness accuracy of the machined surface.

さらに、薄板材(3)への給電を接触面積の小さい側面
より行なうため、給電部の接触抵抗が大きくなり、固有
抵抗の大きな薄板材(3)では、給電部付近の加工面と
給電部よシ離れ念中心部の加工面とで電解電流(電解電
流密度)が均一とならず、加工不均一の原因となシ、高
精度な平面加工を得ることができなくなシ、他方、薄板
材(3)への給電を   1側面から行なわねばならな
いため、薄板材(3)をキャリア等で保持して該薄板材
(3)に自転、公転等の遊星運動を与えることが困難と
なり、これが、薄板材(3)における砥粒(7)の条こ
んを無方向性にしてよシ均−加工面を得ようとする場合
の弊害となっている。
Furthermore, since power is supplied to the thin plate material (3) from the side surface with a small contact area, the contact resistance of the power feeding part becomes large. On the other hand, the electrolytic current (electrolytic current density) is not uniform on the machined surface at the center, which causes uneven machining and makes it impossible to obtain high-precision flat machining. Since power must be supplied to (3) from one side, it is difficult to hold the thin plate (3) with a carrier or the like and give it planetary motion such as rotation or revolution. This is a problem when trying to obtain a uniformly machined surface by making the abrasive grains (7) in the thin plate material (3) non-directional.

したがって、この発明においては、前述の欠点をすべて
解消し、高精度、高能率な加工平面を得る薄板材の両面
電解複合加工方法を提供することを目的とする。
Therefore, it is an object of the present invention to provide a method for double-sided electrolytic composite machining of a thin plate material, which eliminates all of the above-mentioned drawbacks and provides a highly accurate and highly efficient machining plane.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の薄板材の両面電解複合加工方法は、第1図に
示すように、電気絶縁材にょシ構成された2つの定盤工
具(9) 、 C1Gのそれぞれの加工作用面<9f 
、 acs’を平行に対設するとともに、それぞれの加
工作用面(9)′、αイの一部に導電体q1)、(2)
を埋設し、面加工作用面<9)′、 GO’間に薄板材
α埠、加工液α→、研摩材之とえば研摩砥粒a9を介在
させ、両定盤工具(9) 、 IQを相対的に移動する
とともに互いに押圧し、両定盤工具(9) 、 (10
のそれぞれの導電体0υ、(2)間に第2図(a)に示
すような交流電圧または同図(b)に示すような極性の
反転するパルス電圧を印加し、薄板材0艷の両面に交互
に電解作用を発生させて薄板材(13の両面を電解複合
加工することを特徴とするものである。
As shown in FIG. 1, the method for double-sided electrolytic composite machining of thin plate materials according to the present invention consists of two surface plate tools (9) and C1G each made of an electrically insulating material.
, acs' are arranged parallel to each other, and conductors q1), (2) are placed on a part of the respective machining action surfaces (9)' and αa.
A thin plate material α, a machining fluid α→, and an abrasive material such as abrasive grains A9 are interposed between the surface machining working surface <9)' and GO', and both surface plate tools (9) and IQ are Both surface plate tools (9) and (10
An AC voltage as shown in Fig. 2 (a) or a pulse voltage with inverted polarity as shown in Fig. 2 (b) is applied between each conductor 0υ, (2), and both sides of the thin plate material 0υ are applied. It is characterized by electrolytic composite processing on both sides of the thin plate material (13) by alternately generating electrolytic action.

〔作 用〕[For production]

したがって、相対的に回転するとともに互いに押圧する
両定盤工具(9) 、 (10間の薄板材(至)は、各
定盤工具(9) 、 (10のそれぞれの加工作用面<
9f 、 acfから研摩砥粒a5の粒径に応じた一定
距離、すなわちギャップg3 、 g4を保って両定盤
工具(9) 、 10間に保持され、定盤工具(9) 
、 1(Iの相対移動により研摩砥粒αυが薄板材α罎
の両面を転勤または摺動することにより、薄板材α]に
機械的な作用力が与えられる。
Therefore, the thin plate material (to) between both surface plate tools (9) and (10) that rotate relatively and press each other is
9f, ACF is held between both surface plate tools (9) and 10 while maintaining a certain distance according to the grain size of abrasive grains A5, that is, gaps g3 and g4, and the surface plate tool (9)
, 1 (Due to the relative movement of I, the abrasive grains αυ transfer or slide on both sides of the thin plate α), so that a mechanical acting force is applied to the thin plate α].

一方、両定盤工具(9) 、 10のそれぞれの導電体
αυ。
On the other hand, the conductors αυ of both surface plate tools (9) and 10.

64間に交流電圧または極性の反転するパルス電圧が印
加され、たとえば定盤工具(9)の導電体aηが陽極、
定盤工具00の導電体亜が陰極になると、両定盤工具(
9) 、 ClO間の電解電流αQは実線矢印のように
定盤工具(9)の導電体aυからギャップg8に介在す
る加工液α→を通って薄板材α3に流れさらにギャップ
g4に介在する加工液04)を通って定盤工具αOの導
電体a功に流入し、薄板材α埠の定盤工具Qd側の面が
陽陽極になると、電解電流αQは破線矢印のように前述
とは反対方向に流れ、薄板材α[有]の定盤工具(9)
側の面に電解溶出作用を生じ、以下、印加電圧の反転毎
に電解電流cLQが方向を変えて交互に流れ、薄板材α
葎の両面に交互に電解作用が生じる。
64, an alternating current voltage or a pulse voltage with inverted polarity is applied, for example, the conductor aη of the surface plate tool (9) is an anode,
When the conductor of surface plate tool 00 becomes a cathode, both surface plate tools (
9) The electrolytic current αQ between ClO flows from the conductor aυ of the surface plate tool (9) through the machining liquid α→ interposed in the gap g8 to the thin plate α3 as indicated by the solid line arrow, and then flows through the machining process interposed in the gap g4. When the liquid 04) flows into the conductor a of the surface plate tool αO, and the surface of the thin plate α on the surface plate tool Qd side becomes the anode, the electrolytic current αQ is opposite to the above as indicated by the dashed arrow. Flowing in the direction, surface plate tool for thin plate material α (9)
An electrolytic elution effect occurs on the side surface, and thereafter, the electrolytic current cLQ changes direction and flows alternately every time the applied voltage is reversed, and the thin plate material α
Electrolytic action occurs alternately on both sides of the seedling.

このようにして、研摩砥粒aQによる機械作用。In this way, the mechanical action by the abrasive grains aQ.

すなわち研摩作用と電解作用とにより薄板材α東の両面
が電解複合加工される。
That is, both surfaces of the thin plate material α East are electrolytically composite processed by the polishing action and the electrolytic action.

〔実施例〕〔Example〕

つぎに、この発明を、その1実施例を示した第3図およ
び第4図とともに詳細に説明する。
Next, this invention will be explained in detail with reference to FIGS. 3 and 4 showing one embodiment thereof.

電気絶縁材により構成された2つの定盤工具(9)。Two surface plate tools (9) made of electrically insulating material.

OQはそれぞれ回転駆動源に連結された軸αカ、(至)
に一体に支持されて互いに反対方向に回転自在とされ、
両定盤工具(9) 、 QOの互いに平行に対向した加
工作用面((d 、αO′にそれぞれ放射状に凹溝部、
鴫が形成されるとともに、各凹溝a* 、 mにそれぞ
れ導電体(11) 、 a’aが凹溝0す、翰よりはみ
出すことのないよう埋設され、両定盤工具(9) 、 
CGにおけるそれぞれの導電体aυ、(6)が定盤工具
(9) 、 11を貫通して軸αη、(至)の軸端の通
電リングt2u、aに接続され、さらにブラシ(23+
 、 aaを介して交流電圧または極性の反転するパル
ス電圧の電源入力端子に接続されている。
OQ is the axis α connected to the rotational drive source, (to)
are integrally supported and are rotatable in opposite directions,
Both surface plate tools (9), the machining surfaces of the QO facing each other parallel to each other ((d), αO′ have radial concave grooves,
At the same time, conductors (11) and a'a are buried in each of the grooves a* and m so that they do not protrude beyond the grooves, and both surface plate tools (9) and
Each conductor aυ, (6) in CG passes through the surface plate tool (9), 11 and is connected to the current-carrying ring t2u, a at the shaft end of the axis αη, (to), and is further connected to the brush (23+
, aa are connected to a power input terminal of an alternating current voltage or a pulse voltage with inverted polarity.

さらに、両用工作用面<9)′、 ad間に介在された
複数の薄板材α1は、それぞれ遊星歯車を構成する絶縁
材(たとえばベーク板)からなるキャリア虞に、該キャ
リア内に対し偏心した位置に保持されており、この各キ
ャリア内がそれぞれ、たとえば定盤工具(9)に一体の
太陽歯車器と固定の内歯車万とに噛合され、各薄板材α
椴に遊星運動を与えるようになっている。
Furthermore, the plurality of thin plates α1 interposed between the dual-use working surface <9)′ and ad are placed in a carrier made of an insulating material (for example, a baked plate) constituting the planetary gear, and are eccentrically positioned with respect to the inside of the carrier. The inside of each carrier is meshed with, for example, a sun gear integrated with a surface plate tool (9) and a fixed internal gear, and each thin plate material α
It is designed to give planetary motion to the temple.

なお、(2)は両定盤工具(9) 、 (10間に加工
液α→および研摩砥粒α9を供給する供給管である。
Note that (2) is a supply pipe that supplies machining fluid α→ and polishing abrasive grains α9 between both surface plate tools (9) and (10).

そして、このような構成において、両定盤工具(9)、
01間に加工液α→と研摩砥粒CIQとを供給しながら
、両定盤工具(9)、OQをそれぞれ互いに反対方向に
回転させて相対的に移動するとともに、両定盤工具(9
)、四が互いに接近するような押圧力を加え、さらに、
両定盤工具(9)、αυのそれぞれの導電体αD。
In such a configuration, both surface plate tools (9),
While supplying machining fluid α→ and abrasive grains CIQ between 01 and 01, both surface plate tools (9) and OQ are rotated in opposite directions to move relatively, and both surface plate tools (9) and OQ are rotated in opposite directions.
), apply a pressing force such that the four approaches each other, and further,
Both surface plate tools (9), each conductor αD of αυ.

(2)間に通電リングC211、Eおよびブラシθ、 
(241を介して交流電圧またはパルス電圧を印加する
と、研摩砥粒α9による研摩作用と電解作用とにより薄
板材α]の両面が電解複合加工される。
(2) Current-carrying ring C211, E and brush θ,
(When an alternating voltage or pulse voltage is applied through 241, both sides of the thin plate material α are electrolytically composite processed by the polishing action by the abrasive grains α9 and the electrolytic action.

この加工時、太陽歯車のおよび内歯車■に噛合した各キ
ャリア謔は、定盤工具(9)の回転とともに太陽歯車の
が回転することにより、自転および公転し、各キャリア
にに偏心して支持された薄板材α艷が遊星運動を行なう
ことになり、薄板材α艷の両面において研摩砥粒α1に
よる条こんが無、方向性にされ、均質な加工面が得られ
ることになる。
During this machining, each carrier gear meshed with the sun gear and the internal gear (2) rotates and revolves around the sun gear as the surface plate tool (9) rotates, and is eccentrically supported by each carrier. The thin plate material α undergoes a planetary motion, and the streaks caused by the abrasive grains α1 on both sides of the thin plate material α1 are eliminated and directional, resulting in a homogeneous machined surface.

なお、前記実施例において、両定盤工具(9)、OQに
それぞれ埋設された導電体U])、αのを炭素、白金な
どの不溶性材料で構成すれば、導電体αυ、a争の損耗
がなく、一層効果的である。
In the above embodiment, if both the surface plate tools (9) and the conductors U]) and α buried in OQ are made of insoluble materials such as carbon and platinum, the wear and tear of the conductors αυ and a can be reduced. It is even more effective.

また、電解複合加工の仕上工程(ポリシング)において
、定盤工具(9) 、 (Ijのそれぞれの加工作用面
(q) 、 (10’に、絶縁性を有しかつ粘弾性、含
水性をもった研摩布を接着すれば、仕上工程の鏡面加工
を一蕾効果的に行なうことができる。
In addition, in the finishing process (polishing) of electrolytic composite machining, the surface plate tool (9), (Ij's respective machining working surfaces (q), (10') have insulating properties, viscoelasticity, and water-containing properties. By adhering abrasive cloth, mirror polishing in the finishing process can be done effectively.

〔発明の効果〕〔Effect of the invention〕

以上説明したようK、この発明の薄板材の両面電解複合
加工方法によると、■2つの定盤工具のそれぞれの導電
体間に薄板材に直接通電することなく電圧を印加するた
め、両定盤工具間の電解電流はそれぞれの加工作用面に
おける導電体間の最短距離を流れ、薄板材の端面エッヂ
への電流集中が従来に比し大幅に減少し、角だれの発生
を防止することができ、0両定盤工具の加工作用面と薄
板材とのそれぞれのギャップに差違があったシ、加工液
の介在状態に差違があっても、電解電流は両溝電体間を
方向を変えて流れるのみであるため、電解電流の等価抵
抗値は変わらず、薄板材の両面に流れる電解電流(電解
電流密度)は均一性を保ち、薄板材の両面を等しく加工
することができ、■薄板材へは直接給電する必要がなく
、薄板材の加工対象面における広い面積での給電となる
ため、接触不良を起こすことなく安定した給電が行なえ
、■したがって、薄板材をキャリア等で保持して自由に
自転、公転させることが容易となり、前記■。
As explained above, according to the double-sided electrolytic composite machining method for thin plate materials of the present invention, ■ voltage is applied between the respective conductors of the two surface plate tools without directly applying current to the thin plate materials; The electrolytic current between the tools flows through the shortest distance between the conductors on each machining surface, and the concentration of current on the edge of the thin plate material is significantly reduced compared to the conventional method, making it possible to prevent the occurrence of corner droop. , even if there was a difference in the gap between the machining working surface of the two surface plate tools and the thin plate material, and a difference in the intervening state of the machining fluid, the electrolytic current changed direction between the two groove electric bodies. Since the electrolytic current only flows, the equivalent resistance value of the electrolytic current does not change, and the electrolytic current (electrolytic current density) flowing on both sides of the thin plate material maintains uniformity, allowing both sides of the thin plate material to be processed equally. Since there is no need to directly supply power to the thin plate material and the power is supplied over a wide area on the surface to be processed, stable power can be supplied without causing poor contact. This makes it easy to rotate and revolve, as described in (■) above.

■で述べた角だれの防止、均一加工性と合わせて薄板材
のよシ高精度、高能率の加工が可能になシ、0両定盤工
具が電気絶縁材により構成されるため、定盤工具に電解
作用が発生することはなく、加工作用面の高精度平面を
長期にわたって保つことができ、■両溝電体が絶縁性の
定盤工具に埋設されるため、両者間が短絡を起こす危険
性がなく、定盤工具および薄板材の損傷を防ぐことがで
きるものであり、この発明は薄板材の両面を高精度かつ
高能率に電解複合加工することができる顕著な効果を有
するものである。
In addition to the prevention of corner droop and uniform machinability mentioned in ①, it is possible to process thin plate materials with high precision and high efficiency. Electrolytic action does not occur on the tool, and the machining surface can maintain a highly accurate flat surface for a long period of time. ■Since both groove electric bodies are embedded in the insulating surface plate tool, short circuits between the two do not occur. This invention is non-hazardous and can prevent damage to the surface plate tool and thin plate material, and has the remarkable effect of enabling electrolytic composite processing of both sides of a thin plate material with high precision and high efficiency. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の薄板材の両面電解複合加工方法を示
す要部の断面図、第2図(a)および(b)はそれぞれ
両溝電体間に印加される電圧の波形図、第3図および第
4図はこの発明の1実施例の正面図および一部の平面図
、第5図は従来の薄板材の両面電解複合加工方法を示す
断面図である。 (9)、α0・・・定盤工具、<9f 、 an’・・
・加工作用面、αη。 亜・・・導電体、α1・・・薄板材、α荀・・・加工液
、0句・・・研摩砥粒。
FIG. 1 is a cross-sectional view of the main parts showing the method for double-sided electrolytic composite processing of thin plate material according to the present invention, FIGS. 2(a) and (b) are waveform diagrams of the voltage applied between both groove electric bodies, and 3 and 4 are a front view and a partial plan view of an embodiment of the present invention, and FIG. 5 is a sectional view showing a conventional double-sided electrolytic composite processing method for a thin plate material. (9), α0... surface plate tool, <9f, an'...
- Processing surface, αη. A: Conductor, α1: Thin plate material, α: Processing liquid, 0: Abrasive grain.

Claims (1)

【特許請求の範囲】[Claims] (1)2つの定盤工具のそれぞれの加工作用面を平行に
対設するとともに、前記両加工作用面間に薄板材、加工
液、研摩材を介在させ、前記両定盤工具を相対的に移動
するとともに互いに押圧し、前記薄板材の両面を電解複
合加工する薄板材の両面電解複合加工方法において、前
記両定盤工具をそれぞれ電気絶縁材により構成するとと
もに、それぞれの加工作用面の一部に導電体を埋設し、
前記両定盤工具のそれぞれの導電体間に交流電圧または
極性の反転するパルス電圧を印加して前記薄板材の両面
に交互に電解作用を発生させることを特徴とする薄板材
の両面電解複合加工方法。
(1) The machining surfaces of the two surface plate tools are arranged parallel to each other, and a thin plate material, machining fluid, and abrasive material are interposed between the two surface plate tools, and the two surface plate tools are placed relative to each other. In a double-sided electrolytic composite processing method for a thin plate material, in which both sides of the thin plate material are electrolytically composite processed by moving and pressing each other, both surface plate tools are each made of an electrically insulating material, and a part of each working surface is A conductor is buried in the
Double-sided electrolytic composite machining of a thin plate material, characterized in that an alternating current voltage or a pulse voltage with inverted polarity is applied between the conductors of both surface plate tools to alternately generate electrolytic action on both sides of the thin plate material. Method.
JP11246685A 1985-05-24 1985-05-24 Electro-chemical conbined machining method for both surfaces of thin plate material Pending JPS61270025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11246685A JPS61270025A (en) 1985-05-24 1985-05-24 Electro-chemical conbined machining method for both surfaces of thin plate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11246685A JPS61270025A (en) 1985-05-24 1985-05-24 Electro-chemical conbined machining method for both surfaces of thin plate material

Publications (1)

Publication Number Publication Date
JPS61270025A true JPS61270025A (en) 1986-11-29

Family

ID=14587343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11246685A Pending JPS61270025A (en) 1985-05-24 1985-05-24 Electro-chemical conbined machining method for both surfaces of thin plate material

Country Status (1)

Country Link
JP (1) JPS61270025A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645736A (en) * 1987-06-30 1989-01-10 Besuto Eng Kk Method and device for electrolytic burr removal
JPH0899222A (en) * 1994-09-15 1996-04-16 Ind Elektronik Agie Losone Locarno:Ag Method and pulse generator for electric erosion of workpiece

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645736A (en) * 1987-06-30 1989-01-10 Besuto Eng Kk Method and device for electrolytic burr removal
JPH0899222A (en) * 1994-09-15 1996-04-16 Ind Elektronik Agie Losone Locarno:Ag Method and pulse generator for electric erosion of workpiece
US5874703A (en) * 1994-09-15 1999-02-23 Agie Sa Method and apparatus for impulse generator for electroerosive machining of workpieces

Similar Documents

Publication Publication Date Title
US7329335B2 (en) Device providing electrical contact to the surface of a semiconductor workpiece during processing
US6739951B2 (en) Method and apparatus for electrochemical-mechanical planarization
US6689258B1 (en) Electrochemically generated reactants for chemical mechanical planarization
Liu et al. ELID grinding of silicon wafers: a literature review
KR20120063297A (en) Polishing roller for display panel, semiconductor substrate, etc
JPS61270025A (en) Electro-chemical conbined machining method for both surfaces of thin plate material
CN104862772B (en) Electrochemical polish apparatus and method
JPS61270024A (en) Electro-chemical combined machining method for both surfaces in thin plate material
US6863794B2 (en) Method and apparatus for forming metal layers
US3293162A (en) Process for electropolishing both sides of a semiconductor simultaneously
CN116423384A (en) Electrochemical mechanical polishing head and polishing device
US6752699B2 (en) Working method for curved surface of a work and an apparatus thereof
JPH03251318A (en) Grinding device for plate-like body to be worked
JP2002292525A (en) High speed electrolytic polishing method for inner surface of small diameter hole
JP3194621B2 (en) Method and apparatus for generating spherical surface
JPS5917542Y2 (en) Current collector for rotating current-carrying objects
JPS5822627A (en) Method of compound machining of electrolysis and grinding of cylindrical inner surface
TWI659467B (en) Electrolytic abrasive polishing device
JP2950064B2 (en) Electrolytic dressing type grinding machine
JPS5822626A (en) Method of compound super finishing of electrolysis and grinding
JPS5835823B2 (en) Electrolytic buffing processing equipment
JPS6171970A (en) Diamond grinder element forming method
JP3294399B2 (en) Electrolytic in-process dressing grinding method and apparatus
SU406686A1 (en) DEVICE FOR ELECTROCHEMICAL REDUCTION OF THE READITIONS
JPS63123629A (en) Method of grinding magnetic material