JPS61269010A - Stereoscopic image replicating apparatus - Google Patents

Stereoscopic image replicating apparatus

Info

Publication number
JPS61269010A
JPS61269010A JP60111212A JP11121285A JPS61269010A JP S61269010 A JPS61269010 A JP S61269010A JP 60111212 A JP60111212 A JP 60111212A JP 11121285 A JP11121285 A JP 11121285A JP S61269010 A JPS61269010 A JP S61269010A
Authority
JP
Japan
Prior art keywords
data
coordinate system
angle
dimensional
dimensional image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60111212A
Other languages
Japanese (ja)
Other versions
JPH0418770B2 (en
Inventor
Yoshisuke Okada
岡田 愿介
Gohei Iijima
飯島 剛平
Sumihiro Ueda
上田 澄広
Masaaki Hirayama
平山 真明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP60111212A priority Critical patent/JPS61269010A/en
Publication of JPS61269010A publication Critical patent/JPS61269010A/en
Publication of JPH0418770B2 publication Critical patent/JPH0418770B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2522Projection by scanning of the object the position of the object changing and being recorded

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Copy Controls (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To replicate a stereoscopic image, by a method wherein information signal of each sectional shape of a stereoscopic image obtained as a point line in a two-dimensional rectangular coordinate system is converted to a two-dimensional cylindrical coordinate system to be memorized, a base is turned by angle information to cut the contour on radius information and plate materials thus obtained are laminated. CONSTITUTION:A laser light of a light source 2 is made a slit light 2b to irradiated the circumference of one section element of an object 4, raised to be photographed with a camera 1 and then, a 2-D image is measured 3a to memorize 3b the sectional shape of the object 4 as point line in a 2-D rectangular coordinate system. The sectional shape is converted 5a to a cylindrical coordinate system to be memorized and angle information is read out 6a to drive 11 a rotary platform 10, radius information is read-out 6b to drive 12 a linear slide base 19 to the center and a planar material 18 on the platform 10 is melt down with a vertical heating line 14 between parallel bars 19a and 19b of the slide base 19. The formed plates thus obtained are laminated and welded in the order of measurement, thereby enabling the replication of the object 4 in a massproduction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、比較的複雑な3次元的形状の対象物〔従来技
術とその問題点〕 従来この様な物体を形成するに際しては、倣いフライス
盤等を用いたり、又は、鋳温やデスマスク等の反転型を
用いて米たが、例えは人物の立体像を作成するためには
極めて高度な熟練技術と芸用しにくいという欠点があっ
た。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to an object having a relatively complicated three-dimensional shape [Prior art and its problems] Conventionally, when forming such an object, a copy milling machine was used. However, creating a three-dimensional image of a person requires extremely high level of skill and is difficult to perform.

そこで先に本発明者等は、外形の複雑さの如何にかかわ
らず、その対象物体の精密な複製像な容易にかつ迅速に
形成することのできる、斬新な方法及び装置を開発して
、特許出願をした。特願昭56−200.987号は、
いわばこれらの中心をなす基本的な発明であって、その
立脚する原理は、あらまし次のとおりである。すなわち
、対象物体く照射されたスリット光により照射断面に対
する2次元的断面形状を計測し、この計測データーを例
えば数値制御方式のNCレーデ−切断機等に4序に重ね
合せて物体を形成することにより、対象物体と同形の物
体を得るものである。
Therefore, the present inventors first developed a novel method and device that can easily and quickly form a precise replica of a target object, regardless of the complexity of the external shape, and patented the invention. I applied. Patent Application No. 1987-200.987 is
The basic inventions that form the center of these inventions, and the principles on which they are based, are summarized as follows. In other words, the two-dimensional cross-sectional shape of the irradiated cross section is measured using the slit light irradiated onto the target object, and the measured data is sequentially superimposed on, for example, a numerically controlled NC radar cutting machine to form the object. In this way, an object having the same shape as the target object is obtained.

〔発明の課題と構成的特徴〕[Problems of the invention and structural features]

本発明は、前述の先行発明に開示された装置なさらに改
良し、その方法をより有効に具現し得る新規な技術手段
を提供する、という課題の達成を目的とするものであっ
て、このために特に次の手段を採択し結合したことを特
徴とする。すなわち、(11立体像の各断面(すなわち
、各−断面要素)ごとの計測により2次元直交座標系の
点列として得られた断面形状のデータ信号を、2次元円
筒座標系のデータ信号に変換する信号形式変換手段を備
えること。
The present invention aims to achieve the problem of further improving the apparatus disclosed in the above-mentioned prior invention and providing a new technical means that can realize the method more effectively, and for this purpose. It is characterized by adopting and combining the following measures. That is, convert the data signal of the cross-sectional shape obtained as a point sequence in a two-dimensional orthogonal coordinate system by measuring each cross-section (i.e., each cross-section element) of the 11-dimensional image into a data signal in a two-dimensional cylindrical coordinate system. shall be equipped with signal format conversion means.

(1)  該信号形式変換手段から出力される変換デー
タ信号の記憶手段を備えること。
(1) It includes storage means for the converted data signal output from the signal format conversion means.

tit+ 該記憶手段から変換データを読み出し、角度
データと半径データに分けて出力する読み担し手段を備
えること。
tit+ reading means for reading the conversion data from the storage means and outputting the converted data separately into angle data and radius data.

側 該角度データ出力に応答する回転テーブル駆動手段
を備えること。
and a rotary table drive means responsive to the angular data output.

(Vl  回転チーデルの表面に対し所定の角度をなす
ように支持され、か、つ、読み出し手段から出力された
半径データに応じて移動せしめられる輪郭線切断手段を
備えること。
(Vl) A contour cutting means supported at a predetermined angle with respect to the surface of the rotating chidel, and moved according to the radius data output from the reading means.

(vll  該回転テーブル上に1熱による溶断可能な
材質で1かつ、特定の厚みを有する板状材料な載置固定
し、前記計測ごとに得られる該板状材料の各彫版を重ね
合わせる手段を備えること。
(vll) A means for placing and fixing a plate-shaped material made of a material that can be fused by heat and having a specific thickness on the rotary table, and superimposing each engraving of the plate-shaped material obtained for each measurement. Be prepared.

〔発明の実施例〕[Embodiments of the invention]

本発明の着想を実現する具体的構成とその作用を明らか
にするため、添付の図面を用いてこれを方に対置される
が、このスリット光照射装置2は、炭酸ガスレーデある
いは半導体レーデ等の光源を含み、この光源からのレー
デ光線を過当なコリメータ等を利用することにより1m
程度の細いスリット光にして立体像4に指向させて、そ
の表面上の所定区域を順次に照射する。2は立体像の垂
直軸、X及びYは互に直角で、それらの成す平面が前記
2軸と直交する2つの水平軸である。図中、矢印で示す
ように、スリット光照射装置2は、Z軸と所定間隔を距
て、かつそれと平行に、上昇または下降せしめられ、そ
の過程を通じて立体像表面の一断面要素の外周にスリッ
ト光を照射するので、この表面にはスリット光像2aが
生じる。ここで、スリット光照射装置2を前述のように
昇降せしめる支持架台には、図示のごとに、2次元撮像
装flt1(例えば、TVカメラ)も取付けてあり、そ
の視線の光軸1bが上記立体像の2軸上でスリット光2
bと交叉するようになされている。スリット光2bは、
立体像のX、Y軸が形成する平面に対して平行である。
In order to clarify the specific configuration and its operation for realizing the idea of the present invention, this will be shown oppositely using the attached drawings. By using an appropriate collimator etc., the Rede beam from this light source can be reduced to 1 m.
The slit light is made into a fairly narrow slit and is directed toward the stereoscopic image 4, and predetermined areas on the surface of the stereoscopic image 4 are sequentially irradiated. 2 is the vertical axis of the three-dimensional image, and X and Y are two horizontal axes that are perpendicular to each other and whose planes are orthogonal to the two axes. As shown by the arrow in the figure, the slit light irradiation device 2 is raised or lowered at a predetermined distance from and parallel to the Z axis, and through this process a slit is formed on the outer periphery of one cross-sectional element on the surface of the stereoscopic image. Since light is irradiated, a slit light image 2a is generated on this surface. Here, as shown in the figure, a two-dimensional imaging device flt1 (for example, a TV camera) is also attached to the support frame that raises and lowers the slit light irradiation device 2 as described above, and the optical axis 1b of its line of sight is Slit light 2 on the two axes of the image
It is designed to intersect with b. The slit light 2b is
It is parallel to the plane formed by the X and Y axes of the stereoscopic image.

本実施例では、立体像として人物の頭部を用いている。In this embodiment, a human head is used as the stereoscopic image.

2次元撮像装置で撮像された上記スリット光像2aは人
物の頭部4の凹凸に応じて、たとえば第2図に示すよう
な像となるが、特願昭58−200987等に示すよう
に、該光像の形状、2次元撮像装置1とスリット光照射
装置との距離、スリット光平面に対する2次元撮像装置
1の光軸     ′のなす角度、回転テーブルの回転
角度、および該撮像装置の光学的倍率などの関係から、
2次元画像計測回路3aKよってスリット光が照射され
た部分の人物の頭部4の断面形状を、2次元直交座標系
の点列として容易に求めることができる。得られた点列
の座標はメモリ31) K記憶する。
The slit light image 2a captured by the two-dimensional imaging device becomes an image as shown in FIG. 2 depending on the unevenness of the person's head 4, but as shown in Japanese Patent Application No. 58-200987, etc. The shape of the light image, the distance between the two-dimensional imaging device 1 and the slit light irradiation device, the angle of the optical axis ′ of the two-dimensional imaging device 1 with respect to the slit light plane, the rotation angle of the rotary table, and the optical characteristics of the imaging device. Due to factors such as magnification,
The cross-sectional shape of the portion of the human head 4 irradiated with the slit light by the two-dimensional image measuring circuit 3aK can be easily determined as a point sequence in a two-dimensional orthogonal coordinate system. The coordinates of the obtained point sequence are stored in the memory 31).

いま、第6図に示すように、この2次元直交座標系の点
列中の1点P1jの座標は(Xt、1 、 Yi、1 
)と表わされるが、これを該直交座標系の原点0を中心
とする円筒座標系の座標として弐わすための変換は、次
式(1,1及び(2)の演算によって、容易に実行する
ことができる。
Now, as shown in FIG. 6, the coordinates of one point P1j in the point sequence of this two-dimensional orthogonal coordinate system are (Xt, 1 , Yi, 1
), but the conversion to convert this into coordinates of a cylindrical coordinate system centered at the origin 0 of the orthogonal coordinate system can be easily performed by calculating the following equations (1, 1, and (2)). be able to.

γ1j−fWコ13 −−−一−(1)θxj−tan
−1Yt、%1j−−−− +2)ただし、γij p
中心すなわち原点0から第j番目の断面要素中の1点P
1jまで )            の距離、 θ1Δ:第6図のX軸をOOとした場合、第j番目の断
面要素中の1点 Pgが中心点0に関してなす角 度(すなわち、上記γ1jがX軸 に対してなす角度)、 座標変換演算回路5aにより、この式(1)、<21の
演算を断面jI!素の形状全周にわたるすべての点列P
01〜Pmnについて実行し、かくて1〜nの各断面要
素ごとに実行して得られた円筒座標系に変換された計測
データとして、計測の順序に1またはその識別符号すな
わち指標を付して、順次に記憶装*sbに入力して記憶
する。
γ1j-fWko13 ---1-(1) θxj-tan
−1Yt, %1j−−−− +2) However, γij p
One point P in the j-th cross-sectional element from the center, that is, the origin 0
1j), θ1Δ: When the X-axis in Figure 6 is OO, the angle that one point Pg in the j-th cross-sectional element makes with respect to the center point 0 (i.e., the angle that γ1j above makes with the X-axis angle), the coordinate transformation calculation circuit 5a calculates this equation (1), <21 as the cross section jI! All point sequences P over the entire circumference of the elementary shape
01 to Pmn, and thus converted to the cylindrical coordinate system for each cross-sectional element from 1 to n, with 1 or its identification code, i.e., index attached to the measurement order. , are sequentially input to the storage device *sb and stored.

次に、上記記憶装置sbに記憶された上記の変換された
計測データは、計測の順序を表わすアクセス信号により
順次に読み出されるか、これらは角度データと半径デー
タとに分けて出力され、それぞれ読み出し装置6a*6
bを介して、前者は第1の駆動制御回路11に、また、
後者は第2の駆動制御回路12に入力される。
Next, the converted measurement data stored in the storage device sb is sequentially read out using an access signal representing the measurement order, or these are outputted as angle data and radius data, and read out respectively. Device 6a*6
The former is connected to the first drive control circuit 11 via b, and
The latter is input to the second drive control circuit 12.

後述する杉板形成用の材料が載置されている回転テーブ
ル10は、適尚なアクチュエータ、たとえば第1のパル
スモータ16によって駆動され、上記第1の駆動制御回
路11に入力された角度データを表わす信号が指令する
角度だけ、回転せしめられる。
A rotary table 10 on which a material for forming a cedar board, which will be described later, is placed is driven by an appropriate actuator, for example, a first pulse motor 16, and receives angle data input to the first drive control circuit 11. It is rotated by the angle commanded by the signal it represents.

他方、回転テーブル10の中心に向って直径方向に移動
可能罠なされた直線摺動台1.9は、第2のパルスモー
タ17によって駆動され、第2の駆動制御回路12に入
力された半径データを表わす信号が指令する長さだけ、
あらかじめ定められた原点から移動せしめられる。なお
、このような直線移動のための手段としては種々のもの
が適用されるが、この実施例では、直線摺動台19にね
じ穴を開設し、これを第2のパルスモータ17の回転軸
と一体的に回転するねじ棒20に係合させて成る、それ
自体公知の直線移動手段が採用されている。なお、21
はねじ棒20の案内杆であって、摺動台19に設けた今
一つの六に挿通され、かつ、19 a + 19 bが
その下端部に設けられており、これらの平行棒の各先端
には、上記の回転テーブル10の上面に対して垂直とな
る方向に、たとえばニクロム線のような細い発熱線14
が張設されている。発熱線14の両端は、発熱に必要な
電力を供給するための電線15a、15bが接続されて
いる。
On the other hand, the linear sliding table 1.9, which is movable in the diametrical direction toward the center of the rotary table 10, is driven by a second pulse motor 17, and the radius data input to the second drive control circuit 12 is driven by the second pulse motor 17. The length specified by the signal representing
The object is moved from a predetermined origin. Various means can be used for such linear movement, but in this embodiment, a screw hole is provided in the linear slide table 19, and this is connected to the rotation axis of the second pulse motor 17. A linear movement means known per se is employed, which is engaged with a threaded rod 20 that rotates integrally with the shaft. In addition, 21
19 is a guide rod for the threaded rod 20, which is inserted into another six provided on the sliding table 19, and 19a + 19b are provided at its lower end, and each of these parallel rods has a guide rod at its tip. , a thin heating wire 14 such as a nichrome wire is installed in a direction perpendicular to the upper surface of the rotary table 10.
is installed. Electric wires 15a and 15b are connected to both ends of the heat generating line 14 for supplying power necessary for heat generation.

いま、回転チーデル10上忙、計測した厚み、つまり、
スリット光の照射により順次に計測されて角度データと
半径データを与える各断面要素の厚みをΔhとしたとき
、このΔhに対して一定の比率にの厚みΔh / kを
有する板状材料を載置する。ところで、これまでの説明
を通じて明らかなように、各計測順序における各断面要
素ととKその立体像の断面形状と一定比率の杉板が作成
されるが、この板状材料はかかる彫版用のものである 
   7.6、ユ。□ヵ。□、1よ、□、□。□  ・
:により発熱した発熱11i14と9接触すると容易&
C″溶断されるような材質のものでなければならす、ま
た、その後続プロセスにおいて積層構造を得るため、接
着剤などによって容易に接着可能であり、さら忙最終的
な仕上げ加工や着色なども楽々と行ない得る材質である
ことが望ましい。このような見地からすれば、発泡ポリ
エチレンは板状材料として好ましい典型的なものである
。一般にこの板状材料に求められる性質としては、いわ
ゆる腰が強いこと、接着し易いこと、加工性がよいこと
、などが挙げられる一方、輪郭線切断手段は上記の発熱
線を利用するものに限らず、そのほかレーデカッター、
ピアノ線カッター、糸のと等のように種々のものか適用
可能であるから、板状材料は切断手段との関連において
選択されるべきであることはいうまでもない。したがっ
て、発泡ポリエチレン以外の合成樹脂(例えば発泡スチ
ロール樹脂やウレタン樹脂)のみならず、木材、紙なら
びに金属板なども、適宜に利用することができ、またさ
らに板状材料としてはセラミック板や石膏のような無機
質材料であってもよい。
Currently, I'm busy with rotating Chidel 10, and the measured thickness is,
When the thickness of each cross-sectional element that is sequentially measured by slit light irradiation and gives angle data and radius data is Δh, a plate-shaped material having a thickness Δh/k at a constant ratio to this Δh is placed. do. By the way, as is clear from the above explanation, a cedar board is created that has a constant ratio of each cross-sectional element in each measurement order to the cross-sectional shape of the three-dimensional image, but this board-shaped material is suitable for such engraving. is something
7.6, Yu. □Ka. □, 1, □, □. □・
: It is easy to contact 9 with the heat generated by 11i14 &
C'' It must be made of a material that can be melted and cut, and in order to obtain a laminated structure in the subsequent process, it can be easily bonded with adhesive, etc., and the final finishing process and coloring can be done easily. From this perspective, foamed polyethylene is a typical material that is preferable as a plate-shaped material.Generally, the properties required for this plate-shaped material are so-called stiffness. , easy adhesion, and good workability, etc. However, the contour line cutting means is not limited to the one using the above-mentioned heating wire, and there are also other methods such as a rede cutter,
It goes without saying that the plate-shaped material should be selected in conjunction with the cutting means, since various tools such as piano wire cutters, thread cutters, etc. are applicable. Therefore, not only synthetic resins other than foamed polyethylene (for example, styrofoam resin and urethane resin), but also wood, paper, and metal plates can be used as appropriate. It may also be an inorganic material.

そこで、上述のような所定の厚みのスチロール樹脂板1
8を回転テーブル10上に固定したのち、インターフェ
イス装置すなわち読み出し装置6a。
Therefore, a styrene resin plate 1 of a predetermined thickness as described above was used.
8 is fixed on the rotary table 10, the interface device, that is, the reading device 6a.

6bを介して、記憶装置5bに記憶されている角度デー
タ及び半径データを順次に読み出し、角度データθoj
は第1の駆動制御回路11に、また、半径データroj
は、厚みに関する前述の一定比率に倍、すなわち、kX
γojにしてから第2の駆動制御回路12に同時に与え
ることにより、それぞれの負荷である第1及び第2のパ
ルスモータ16゜17を駆動して、スチロール樹脂板1
8の溶断を開始する。このようにして、(θlj+Tl
j) J (θ2jsr2j) e −−一−−+ (
θmj+γm、1)の順に、回転テーブル10と直線摺
動台19を駆動して、対象の立体像4の第j番目の断面
要素と一定比率kを有する同形の断面の形板が作製され
ることになる。
6b, the angle data and radius data stored in the storage device 5b are sequentially read out, and the angle data θoj
is sent to the first drive control circuit 11, and the radius data roj
is multiplied by the aforementioned constant ratio for thickness, i.e., kX
γoj and then simultaneously applying it to the second drive control circuit 12 to drive the first and second pulse motors 16 and 17, which are respective loads, to drive the styrene resin plate 1.
Start fusing No. 8. In this way, (θlj+Tl
j) J (θ2jsr2j) e −−1−−+ (
By driving the rotary table 10 and the linear sliding table 19 in the order of θmj + γm, 1), a shape plate having a cross section of the same shape as the j-th cross-sectional element of the target stereoscopic image 4 and having a constant ratio k is produced. become.

そして、以上の動作手順を計測の一順序にしたがって1
〜nまで繰返すことにより、対象とする複写対象の立体
像のn個の断面要素に対応したn個のスチロール樹脂板
の形板が得られるので、これらの形板を計測層に1ね合
せ接着すれば、対象とする立体像を複製することができ
る。なお、上述のようにして形板が切出された各板状材
料の残部を、計測層に1ね合せて接着すれば、成形用型
が得られるが、これを利用すると、複製像の大量生産が
可能となる。
Then, the above operation procedure is carried out in one order of measurement.
By repeating the process up to n, n styrene resin plate shapes corresponding to n cross-sectional elements of the three-dimensional image to be copied can be obtained, so these shape plates are glued onto the measurement layer. Then, the target 3D image can be reproduced. Note that by gluing the remaining parts of each plate-shaped material from which the shape plates have been cut out as described above to the measurement layer, a mold for molding can be obtained. Production becomes possible.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかとなったように、本発明は、その
特許請求の範囲記載の構成にもとづいて、前述の目的を
有効に達成するとともに、次のような特有の効果を奏す
る。すなわち、本発明によれば、種々の立体像の複製を
、容易かつ迅速に、しかも高精度で得ることができ、ま
た、2次元直交座標系(X−Y)のデータを2次元円筒
座標系のデータに変換するため、数値制御の適用が容易
であるとともに、ワーク・セットも、容易に行なうこと
が可能となる。
As has become clear from the above description, the present invention, based on the structure described in the claims, effectively achieves the above-mentioned object and also produces the following unique effects. That is, according to the present invention, reproductions of various stereoscopic images can be easily and quickly obtained with high precision, and data in a two-dimensional orthogonal coordinate system (X-Y) can be reproduced in a two-dimensional cylindrical coordinate system. Since the data is converted into data, it is easy to apply numerical control, and work sets can be easily performed.

面である。It is a surface.

Claims (1)

【特許請求の範囲】 複製すべき対象物の立体像について、その所定間隔の断
面要素の形状を順次に計測し、これらの各計測データに
もとづいて形成された板状部材を積層することによつて
該立体像と同一ないし相似の形状を有する複製物を作成
する方式において:A、前記立体像の各断面要素ごとの
計測により、2次元直交座標系の点列として得られた前
記立体像の断面形状を表わすデータ信号を、さらに2次
元円筒座標系のデータ信号に変換する信号形式変換手段
、 B、前記信号形式変換手段から出力される変換データ信
号を、前記計測の順序にしたがつて、あるいは、それら
に該計測の順序を表わす識別符号を付して、記憶する変
換データ記憶手段、C、前記記憶手段に記憶されている
変換データを前記計測の順序で読み出して、各変換デー
タごとに角度データと半径データとに分けて出力する読
み出し手段、 D、前記読み出し手段から出力された角度データに応動
して、該角度と同一角度だけ回転テーブルを回転せしめ
る駆動手段、 E、前記の回転テーブルの表面に対し所定の角度をなす
ように支持され、かつ、前記読み出し手段から出力され
た前記半径データに応じて移動せしめられる輪郭線切断
手段、 を具備して成る立体像複製装置。
[Claims] A three-dimensional image of an object to be reproduced is obtained by sequentially measuring the shapes of cross-sectional elements at predetermined intervals, and by stacking plate-like members formed based on each of these measurement data. In a method of creating a replica having the same or similar shape to the three-dimensional image: A. The three-dimensional image is obtained as a point sequence in a two-dimensional orthogonal coordinate system by measuring each cross-sectional element of the three-dimensional image. B. Signal format converting means for further converting a data signal representing a cross-sectional shape into a data signal in a two-dimensional cylindrical coordinate system; Alternatively, a converted data storage means C stores the converted data by attaching an identification code indicating the order of measurement to the converted data, and reads out the converted data stored in the storage means in the order of the measurement, reading means for outputting angle data and radius data separately; D. driving means for rotating the rotary table by the same angle as the angle in response to the angle data output from the reading means; E. the rotary table. A three-dimensional image reproduction apparatus comprising: a contour line cutting means supported at a predetermined angle with respect to a surface of the object, and moved according to the radius data outputted from the reading means.
JP60111212A 1985-05-23 1985-05-23 Stereoscopic image replicating apparatus Granted JPS61269010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60111212A JPS61269010A (en) 1985-05-23 1985-05-23 Stereoscopic image replicating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60111212A JPS61269010A (en) 1985-05-23 1985-05-23 Stereoscopic image replicating apparatus

Publications (2)

Publication Number Publication Date
JPS61269010A true JPS61269010A (en) 1986-11-28
JPH0418770B2 JPH0418770B2 (en) 1992-03-27

Family

ID=14555364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60111212A Granted JPS61269010A (en) 1985-05-23 1985-05-23 Stereoscopic image replicating apparatus

Country Status (1)

Country Link
JP (1) JPS61269010A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091346A (en) * 1973-12-12 1975-07-22
JPS53102777A (en) * 1977-02-19 1978-09-07 Toyota Motor Co Ltd Inspection method and apparatus for tooth profile of gear
JPS55153932A (en) * 1979-05-11 1980-12-01 Chlestil Gustav Method and device for photography using data carrier for reproducing threeedimensional body
JPS56154607A (en) * 1980-05-01 1981-11-30 Tokyo Seimitsu Co Ltd Measuring device for three dimensional coordinate
JPS608707A (en) * 1983-06-29 1985-01-17 Matsushita Electric Works Ltd Method for detecting outward appearance of soldering

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091346A (en) * 1973-12-12 1975-07-22
JPS53102777A (en) * 1977-02-19 1978-09-07 Toyota Motor Co Ltd Inspection method and apparatus for tooth profile of gear
JPS55153932A (en) * 1979-05-11 1980-12-01 Chlestil Gustav Method and device for photography using data carrier for reproducing threeedimensional body
JPS56154607A (en) * 1980-05-01 1981-11-30 Tokyo Seimitsu Co Ltd Measuring device for three dimensional coordinate
JPS608707A (en) * 1983-06-29 1985-01-17 Matsushita Electric Works Ltd Method for detecting outward appearance of soldering

Also Published As

Publication number Publication date
JPH0418770B2 (en) 1992-03-27

Similar Documents

Publication Publication Date Title
US6048188A (en) Stereolithographic curl reduction
US5104592A (en) Method of and apparatus for production of three-dimensional objects by stereolithography with reduced curl
US5273691A (en) Stereolithographic curl reduction
US5578227A (en) Rapid prototyping system
JPH02239921A (en) Formation of three-dimensional shape
CN106378452A (en) Increased/decreased material mixed manufacturing platform
WO1991006378A1 (en) Improved stereolithographic construction techniques
JPS59192201A (en) Metal pin and manufacture thereof
US2924768A (en) Machine tool control with compensation for non-linear guide ways
CN111889989B (en) High-precision machining method and system based on mixed reality
JP2676838B2 (en) 3D image formation method
JPS61269010A (en) Stereoscopic image replicating apparatus
US3065554A (en) Three-dimensional reproduction apparatus
JP2000263650A (en) Stereo lithographic apparatus
JPS61225012A (en) Formation of three-dimensional configuration
JPH0815839B2 (en) Method and apparatus for improving accuracy of optical optical plotter
JPH09159419A (en) Three-dimensional measuring system for tooth model
JPH0534603B2 (en)
JPS63191911A (en) Method for testing shape measurement result of three-dimensional image
Tucci et al. Application of high resolution scanning systems for virtual moulds and replicas of sculptural works
JPH04126225A (en) Three-dimensionally shaping device
Huang Development of a software procedure for curved layered fused deposition modelling (CLFDM)
US3692405A (en) Orthocartograph
JPH07232383A (en) Three-dimensional optical shaping method and apparatus
US3912995A (en) Curve milling or curve grinding machines including feed rate control