JPS61268398A - Anaerobic digestion apparatus - Google Patents

Anaerobic digestion apparatus

Info

Publication number
JPS61268398A
JPS61268398A JP60109285A JP10928585A JPS61268398A JP S61268398 A JPS61268398 A JP S61268398A JP 60109285 A JP60109285 A JP 60109285A JP 10928585 A JP10928585 A JP 10928585A JP S61268398 A JPS61268398 A JP S61268398A
Authority
JP
Japan
Prior art keywords
digestion tank
sludge
primary
digested sludge
digestion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60109285A
Other languages
Japanese (ja)
Inventor
Kazuo Shibazaki
柴崎 和夫
Ryosuke Miura
良輔 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60109285A priority Critical patent/JPS61268398A/en
Publication of JPS61268398A publication Critical patent/JPS61268398A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PURPOSE:To hold a proper amount of bacteria in a digestion apparatus, by mounting a measuring device for measuring the generation speed of digestion gas, a return pump of digested sludge and an operation apparatus for calculating the objective valve of a digested sludge return flow amount. CONSTITUTION:A flowmeter 10 for measuring the generation speed of digestion gas is provided to a pipeline 7 and the measured value G of the generation speed of the digestion gas immediately before the starting of charging is imparted to an operation apparatus 11 from the flowmeter 10 in matching relation to the charging schedule of org. sludge determined in each treatment equipment. the operation apparatus 11 calculates the objective value Qr of the return flow amount of digested sludge to be retured to a first digestion tank 2 on the basis of the measured value G simultaneously with the charging of the next org. sludge. The output of the operation apparatus 11 is given to a regulator 18 and the measured valve of a flowmeter 13 is inputted and a control valve 14 is controlled so as to obtain the objective valve Qr to control the amount of returned digested sludge.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は工場廃水処理施設や下水処理場などで発生する
有機性汚泥を処理する嫌気性消化装置に係り、2次消化
槽から1次消化槽への消化汚泥の返送制御に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an anaerobic digestion device for treating organic sludge generated in factory wastewater treatment facilities, sewage treatment plants, etc. Regarding control of returning digested sludge to.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

有機性汚泥を処理する一方法として、嫌気性消化法は古
くから行なわれている。近年、エネルギ情勢の悪化にと
もない、この嫌気性消化法は特に注目を浴びるようにな
ってきている。この方法によれば、エネルギとして用い
ることができるメタンを主成分とする消化ガスを多量に
得ることができる。また、好気性の処理方法のような多
量の曝気が不必要であるという利点がある。
Anaerobic digestion has been used for a long time as a method for treating organic sludge. In recent years, with the deterioration of the energy situation, this anaerobic digestion method has been attracting particular attention. According to this method, a large amount of digestion gas containing methane as a main component that can be used as energy can be obtained. It also has the advantage of not requiring large amounts of aeration as in aerobic treatment methods.

この嫌気性消化法は、嫌気性微生物の働きで有機物を分
解処理する方法であり、有機性汚泥中の炭水化物、脂肪
、タンパク質を主に揮発性有機酸に分解する液化過程と
、揮発性有機酸を主に炭酸ガスとメタンに分解するガス
化過程の二段階の反応から構成されている。液化反応を
行なわせる細菌は酸生成菌、ガス化過程を行なわせる細
菌はメタン菌と呼ばれる。
This anaerobic digestion method is a method of decomposing organic matter using the action of anaerobic microorganisms, and includes a liquefaction process that decomposes carbohydrates, fats, and proteins in organic sludge mainly into volatile organic acids, and It mainly consists of a two-step gasification process in which carbon dioxide is decomposed into carbon dioxide and methane. Bacteria that perform the liquefaction reaction are called acid-producing bacteria, and bacteria that perform the gasification process are called methane bacteria.

酸生成菌は種々雑多な細菌群から構成されており、通性
嫌気性細菌が主であると考えられる。これ(二対しメタ
ン菌は知られている種類も少なく(十数種類)、独特の
性質をもつ絶対嫌気性細菌であると考えられる。また揮
発性有機酸生成速度とメタン生成速度は大むね14対1
で、さらに酸生成菌とメタン菌の増殖速度は約10対1
であることが知られている。従って反応の律速段階はガ
ス化過程にあると考えられる。
Acid-producing bacteria are composed of a variety of miscellaneous bacterial groups, and are thought to be mainly facultative anaerobic bacteria. On the other hand, there are only a few known types of methane bacteria (more than 10 types), and they are thought to be obligate anaerobic bacteria with unique properties.Also, the volatile organic acid production rate and methane production rate are roughly 14 pairs. 1
Furthermore, the growth rate of acid-producing bacteria and methane bacteria is approximately 10:1.
It is known that Therefore, the rate-determining step of the reaction is considered to be the gasification process.

第5因に嫌気性消化法の一般的な系統図を示す。The fifth factor shows a general system diagram of anaerobic digestion.

有機性汚泥は管路1を介して1次消化槽2に投入される
。投入は連続的には行なわず、−日に数回間欠的に行な
うのが一般的である。1次消化槽2では有機性汚泥を1
5〜20日程度滞留させ、前述した液化、ガス化反応に
より最終的にメタン、炭酸ガス等に分解する。1次消化
槽2は細菌の活性な高く維持するために、30〜40℃
程度に加温しているのが一般的である(加温装置は図示
していない)。
Organic sludge is introduced into a primary digestion tank 2 via a pipe 1. Generally, the injection is not carried out continuously, but intermittently several times a day. In primary digestion tank 2, organic sludge is
It is allowed to stay for about 5 to 20 days, and is finally decomposed into methane, carbon dioxide, etc. through the liquefaction and gasification reactions described above. The primary digestion tank 2 is kept at 30-40℃ to maintain high bacterial activity.
Generally, it is heated to a certain degree (the heating device is not shown).

また投入された有機性汚泥と細菌を均一に混合させるた
めに、発生した消化ガスをブロワ9などによって循環さ
せ、1次消化槽内を攪拌する。消化処理が終了した消化
汚泥は移送管3を介して2次消化槽4へ送られる。2次
消化槽4は主に消化汚泥を沈降濃縮する目的で設けられ
る。このため、加温装置、攪拌装置は通常設置しない。
Further, in order to uniformly mix the introduced organic sludge and bacteria, the generated digestion gas is circulated by a blower 9 or the like to agitate the inside of the primary digestion tank. The digested sludge that has undergone the digestion process is sent to the secondary digestion tank 4 via the transfer pipe 3. The secondary digestion tank 4 is provided mainly for the purpose of sedimentation and concentration of digested sludge. For this reason, heating devices and stirring devices are usually not installed.

分離された上澄液は管路5を介して、河川などに放流さ
れるか、あるいは水処理プロセスへ返送される。下方に
溜った濃縮された消化汚泥は管路6を介して次消化槽4
から発生した消化ガスは管路7を介してガスタンク8に
一旦貯留された後、1次消化槽2の加温用エネルギなど
に使われる。
The separated supernatant liquid is discharged into a river or the like via pipe 5 or is returned to a water treatment process. The concentrated digested sludge accumulated in the lower part is transferred to the next digestion tank 4 via a pipe line 6.
Digestion gas generated is temporarily stored in a gas tank 8 via a pipe 7, and then used as energy for heating the primary digestion tank 2.

このような嫌気性消化プロセスでは、消化効率の向上を
図るために、2次消化槽から1次消化槽への消化汚泥返
送が行なわれる。これは、前述したように2次消化槽で
は消化汚泥が沈降濃縮されるため、酸生成菌やメタン菌
の菌体濃度が増加し、この濃縮された消化汚泥(種汚泥
)を1次消化槽へ返送することによって、1次消化槽の
菌体濃度を増大できるためである。従来、消化汚泥返送
量を制御する方法として、(1)固形物濃度一定制御(
例えば特開昭55−94693) 、+21 F /M
比一定制御(例えば特開昭58−205595 )など
が採られている。(1)の固形物濃度一定制御は1次消
化槽内の固形物濃度が目標値になるように消化汚泥の返
送流量を制御する方法である。(2)のF/M比一定制
御は投入汚泥の固形物重量と返送消化汚泥の固形物重量
の比が目標値になるように消化汚泥の返送流量を制御す
る方法である。
In such an anaerobic digestion process, digested sludge is returned from the secondary digestion tank to the primary digestion tank in order to improve digestion efficiency. This is because, as mentioned above, the digested sludge is sedimented and concentrated in the secondary digestion tank, so the concentration of acid-producing bacteria and methane bacteria increases, and this concentrated digested sludge (seed sludge) is transferred to the primary digestion tank. This is because the bacterial cell concentration in the primary digestion tank can be increased by returning the bacteria to the primary digestion tank. Conventionally, methods for controlling the amount of returned digested sludge include (1) constant solids concentration control (
For example, JP-A-55-94693), +21 F/M
Constant ratio control (for example, Japanese Patent Laid-Open No. 58-205595) has been adopted. (1) Constant solids concentration control is a method of controlling the return flow rate of digested sludge so that the solids concentration in the primary digestion tank reaches a target value. (2) Constant F/M ratio control is a method of controlling the return flow rate of digested sludge so that the ratio of the solid weight of input sludge to the solid weight of returned digested sludge becomes a target value.

前述した(1)の固形物濃度一定制御方法は簡便であり
、投入する有機物が溶存性の場合には有効な制御方法で
ある。しかし、投入する有機物が下水汚泥のように大部
分が固形物である場合には次のような問題点が生じた。
The above-described method (1) for controlling the solids concentration at a constant level is simple and is an effective control method when the organic matter to be introduced is soluble. However, when the organic matter to be input is mostly solid, such as sewage sludge, the following problems arise.

すなわち、投入有機物の固形物濃度が高くなった場合、
投入負荷が大きくなるため消化汚泥返送量を増やし1次
消化槽内の菌体量を増加させるべきである。しがし、従
来例では高濃度の有機性固形物が投入されると1次消化
槽内の固形物濃度が増加する傾向になり、消化汚泥の返
送流量を逆に低下させる指示が出される。
In other words, when the solid concentration of input organic matter increases,
As the input load increases, the amount of returned digested sludge should be increased to increase the amount of bacterial cells in the primary digestion tank. However, in the conventional example, when a high concentration of organic solids is introduced, the solids concentration in the primary digestion tank tends to increase, and an instruction is issued to reduce the return flow rate of digested sludge.

このため、投入された有機物量に見合った菌体な1次消
化槽に保持できなくなり、消化効率が低下するという逆
効果を招く。さらにこの従来例では1次消化槽内の固形
物濃度を一定とするため、1次消化槽内に保持されてい
る菌体量も大略一定となる。このため投入負荷が大きく
変動する場合には、菌体量の過不足を生じ消化効率の低
下を招くこともあった。
For this reason, it becomes impossible to maintain bacterial cells in the primary digestion tank that are commensurate with the amount of organic matter input, resulting in the opposite effect of lowering digestion efficiency. Furthermore, in this conventional example, since the solid concentration in the primary digestion tank is kept constant, the amount of bacterial cells held in the primary digestion tank is also approximately constant. For this reason, when the input load fluctuates greatly, an excess or deficiency in the amount of bacterial cells may occur, resulting in a decrease in digestion efficiency.

また前述した(2)のF/M比一定制御は、投入する有
機物の大部分が固形物である場合には有効な制御方法で
ある。しかし投入する有機物が溶存性のものを含んでい
る場合には、固形物量の測定だけでは投入する有機物量
の把握はできない。このため適正な菌体量を保持できず
消化効率の低下を招くことがあった。
Further, the above-mentioned (2) constant F/M ratio control is an effective control method when most of the organic matter to be introduced is solid matter. However, if the organic matter to be introduced contains dissolved substances, the amount of organic matter to be introduced cannot be determined just by measuring the amount of solid matter. For this reason, an appropriate amount of bacterial cells could not be maintained, leading to a decrease in digestion efficiency.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、1次消化槽内の菌体量を常に適正に保
つことができる消化汚泥返送制御を採用した嫌気性消化
装置を提供することにある。
An object of the present invention is to provide an anaerobic digestion apparatus that employs digested sludge return control that can always maintain an appropriate amount of bacterial cells in a primary digestion tank.

〔発明の概要〕[Summary of the invention]

本発明は、1次消化槽と2次消化槽を有し、1次消化槽
には間欠的に汚泥が投入される嫌気性消化装置(二おい
て1次消化槽と2次消化槽から発生する消化ガスの発生
速Wkガス流量計で測定し、次回の有機性汚泥投入直前
の消化ガス発生速度と予め設定してある設定値との偏差
によって次回に返送する消化汚泥流量を制御し、投入す
る有機物置に見合った適正な菌体量を1次消化槽内に保
つようにしたものである。
The present invention is an anaerobic digestion device that has a primary digestion tank and a secondary digestion tank, and sludge is intermittently fed into the primary digestion tank. The rate of generation of digested sludge is measured using a Wk gas flow meter, and the flow rate of digested sludge to be returned next time is controlled based on the deviation between the rate of generation of digested gas immediately before the next input of organic sludge and a preset value. The system is designed to maintain an appropriate amount of bacterial cells in the primary digestion tank, commensurate with the size of the organic storage.

更に本発明では、1次消化槽内の固形物濃度と、返送し
ている消化汚泥の固形物濃度とを測定し、前者が後者よ
り大きい場合には返送を直ちに停止させることによって
、1次消化槽内の菌体量を・より適正に保つようにした
ものでもある。
Furthermore, in the present invention, the solid matter concentration in the primary digestion tank and the solid matter concentration in the returned digested sludge are measured, and if the former is greater than the latter, the returning is immediately stopped, thereby reducing the primary digestion. It is also designed to maintain a more appropriate amount of bacterial cells in the tank.

〔発明の実施例〕[Embodiments of the invention]

まず始めに本発明の基本的な概念について説明する。 First, the basic concept of the present invention will be explained.

前述したように、嫌気性消化プロセスでは有機性汚泥の
投入は間欠的に行うことが一般的である。
As mentioned above, organic sludge is generally added intermittently in the anaerobic digestion process.

このため、消化ガス発生速度は有機性汚泥の投入後徐々
に増加し、最大値を経てまた徐々に減少するパターンを
採る(第2図参照)。1次消化槽内1:保持されている
菌体量に対して有機性汚泥の投入量が適正ならば、消化
ガス発生速度の変化パターンは第3図に示したように、
次回の有機性汚泥投入時には各処理施設個有のベースラ
イン付近まで消化ガス発生速度は徐々に減少する。一方
、1次消化槽内に保持されている菌体量に対して有機性
汚泥の投入量が過大な場合には、第4図に示すように次
回の有機性汚泥投入時でも、消化ガス発゛生速度はベー
スライン付近まで減少しない。これは未処理の有機物が
まだ1次消化槽内に残留していることを意味し、このま
まの運転、管理を続けると1次消化槽内に揮発性有機酸
が蓄積してPHを低下させ、消化効率の低下を招くこと
になる。
For this reason, the digestion gas generation rate adopts a pattern in which it gradually increases after organic sludge is added, reaches a maximum value, and then gradually decreases again (see Figure 2). In the primary digestion tank 1: If the amount of organic sludge input is appropriate for the amount of bacteria retained, the change pattern of the rate of digestion gas generation will be as shown in Figure 3.
The next time organic sludge is introduced, the rate of digestion gas generation will gradually decrease to around the baseline unique to each treatment facility. On the other hand, if the amount of organic sludge input is too large for the amount of bacteria held in the primary digestion tank, even when the next organic sludge is input, as shown in Figure 4, digestion gas will not be generated.゛The raw speed does not decrease to near the baseline. This means that untreated organic matter still remains in the primary digestion tank, and if operation and management continue as is, volatile organic acids will accumulate in the primary digestion tank, lowering the pH. This will lead to a decrease in digestive efficiency.

このような場合、2次消化槽で沈降濃縮した消化汚泥を
1次消化槽へ返送することによって1次消化槽内に保有
する菌体量を増加させ、消化反応速度を大きくすれば良
い。また、2次消化槽での消化汚泥の沈降濃縮が悪化し
た場合、返送汚泥中の菌体濃度も当然減少するので、消
化汚泥を返送しても1次消化槽内の菌体濃度を高める効
果はあまりない。このような場合には、直ちに消化汚泥
の返送を停止しなければならない。
In such a case, the digested sludge that has been sedimented and concentrated in the secondary digestion tank may be returned to the primary digestion tank to increase the amount of bacterial cells held in the primary digestion tank and increase the digestion reaction rate. Additionally, if the sedimentation and concentration of the digested sludge in the secondary digestion tank worsens, the bacterial concentration in the returned sludge will naturally decrease, so even if the digested sludge is returned, it has no effect on increasing the bacterial concentration in the primary digestion tank. There aren't many. In such cases, the return of digested sludge must be stopped immediately.

以下本発明を図示する実施例に基づいて説明する。第1
図は本発明の一実施例を示す概略ブロック図である。こ
こで第5図と同一構成要素については同一符号を付す。
The present invention will be described below based on illustrated embodiments. 1st
The figure is a schematic block diagram showing one embodiment of the present invention. Here, the same components as in FIG. 5 are given the same reference numerals.

管路7に消化ガス発生速度を測定する流量計10を設け
る。この流量計10からは各処理施設で決められている
有機性汚泥の投入スケジュールに合せて、投入を開始す
る直前の消化ガス発生速度の測定値Gが、演算装置11
に与えられる。演算装置11では測定値Gに基づいて次
回の有機性汚泥の投入と同時に第1消化槽2に返送すべ
き消化汚泥の返送流量の目標値Qrを演算によって求め
る。これは例えば次式によってQrの変動分△Qrを求
めることによってなされる。
A flow meter 10 is provided in the pipe line 7 to measure the rate of digestive gas generation. From this flow meter 10, a measured value G of the digestion gas generation rate immediately before the start of the introduction of organic sludge is sent to the calculation device 11 in accordance with the organic sludge introduction schedule determined by each treatment facility.
given to. Based on the measured value G, the calculation device 11 calculates a target value Qr of the return flow rate of the digested sludge to be returned to the first digestion tank 2 at the same time as the next feeding of organic sludge. This is done, for example, by finding the variation ΔQr of Qr using the following equation.

△Qr = K (G −00) ここでG。は設定値、Kは係数であり、各処理施設ごと
に決められる。次に、演算装置11の出力は、調節器1
8に与えられる。この調節器18は、返送ラインに設置
された流量計13の測定値を入力し、これが前記目標値
Qrとなるように調節弁14を制御し、返送ポンプ19
により返送される消化汚泥駄を調節する。なお、返送汚
泥量の調節は上記手段に限定されるものではなく、タイ
マー等で返送汚泥ポンプ19のオン・オフを行うことに
よって、返送流量を目標値に制御してもよい。
△Qr = K (G -00) where G. is a set value and K is a coefficient, which is determined for each treatment facility. Next, the output of the arithmetic unit 11 is
given to 8. This regulator 18 inputs the measured value of the flow meter 13 installed in the return line, controls the control valve 14 so that this becomes the target value Qr, and controls the return pump 19.
Adjust the digested sludge that is returned. Note that the adjustment of the amount of returned sludge is not limited to the above-mentioned means, and the return flow rate may be controlled to a target value by turning on and off the return sludge pump 19 using a timer or the like.

また、1次消化槽2内には固形物m度肝16が設けられ
、1次消化槽内の固形物濃度Crが測定される。一方、
管路12には固形物濃度計15が設けられ、返送する消
化汚泥の固形物濃度Crが測定される。
Further, a solid matter concentration Cr is provided in the primary digestion tank 2, and the solid matter concentration Cr in the primary digestion tank is measured. on the other hand,
A solid matter concentration meter 15 is provided in the pipe line 12, and the solid matter concentration Cr of the returned digested sludge is measured.

これらの測定値OrとCrとは停止制御装置17へ与え
られ、互いに比較され、Cr≧Crの場合Cユは消化汚
泥の返送停止信号を返送ポンプ18に出力し、これを停
止させる。
These measured values Or and Cr are given to the stop control device 17 and compared with each other. If Cr≧Cr, the C unit outputs a digested sludge return stop signal to the return pump 18 to stop it.

また有機性汚泥の投入と消化汚泥の返送を同時ζユ行わ
なくてもよく、消化汚泥の返送を行った後直ちに有機性
汚泥の投入を行ってもよい。
Further, it is not necessary to simultaneously charge the organic sludge and return the digested sludge, and it is also possible to immediately charge the organic sludge after returning the digested sludge.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、消化ガス発生速度と
いう消化処理の結果を測定することによって、投入する
有機物量に対して菌体量が適正であったか否かを判断し
て消化汚泥の返送量を制御するので、常に適正な菌体量
を1次消化槽内に保持することができる。
As described above, according to the present invention, it is determined whether the amount of bacterial cells is appropriate for the amount of organic matter input by measuring the result of the digestion process, which is the rate of generation of digestive gas, and the digested sludge is returned. Since the amount is controlled, an appropriate amount of bacterial cells can always be maintained in the primary digestion tank.

さらに、1次消化槽内の固形物濃度が返送消化汚泥のそ
れより大きい場合は、消化汚泥の返送を停止するように
したため1次消化槽内の菌体量をより適正な値に維持で
きる。
Furthermore, when the solid matter concentration in the primary digestion tank is higher than that of the returned digested sludge, the return of the digested sludge is stopped, so the amount of bacterial cells in the primary digestion tank can be maintained at a more appropriate value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による嫌気性消化装置の一実施例を示す
ブロック図、第2図、第3図、第4図は消化ガス発生速
度の特性図、第5図は一般的な嫌気性消化装置のフロー
を示す図である。 2・・・1次消化槽    4・・・2次消化槽10・
・・ガス流量計   11・・・演算装置12・・・管
路       13・・・流量計14・・・調節弁 
     15,16・・・固形物濃度計17・・・停
止制御装置   18・・・調節器19・・・返送ポン
プ (7317)代理人 弁理士 則 近 憲 佑(ばか1
名) 第2図 第3図 を−、lbK←層」く
Figure 1 is a block diagram showing an embodiment of the anaerobic digestion apparatus according to the present invention, Figures 2, 3, and 4 are characteristic diagrams of the digestion gas generation rate, and Figure 5 is a typical anaerobic digestion system. It is a figure showing the flow of an apparatus. 2... Primary digestion tank 4... Secondary digestion tank 10.
...Gas flow meter 11...Arithmetic unit 12...Pipe line 13...Flow meter 14...Control valve
15, 16...Solid concentration meter 17...Stop control device 18...Regulator 19...Return pump (7317) Agent Patent attorney Kensuke Chika (Baka 1)
name) Figure 2 Figure 3 -, lbK←layer''

Claims (2)

【特許請求の範囲】[Claims] (1)1次消化槽と2次消化槽を有し、上記1次消化槽
には間欠的に汚泥が投入される嫌気性消化装置において
、 前記1次消化槽および前記2次消化槽から発生する消化
ガスの発生速度を測定する測定器と、前記2次消化槽か
ら前記1次消化槽への消化汚泥返送ラインに設置された
消化汚泥の返送ポンプと、 前記1次消化槽への汚泥投入直前の前記測定器からの出
力と予め設定してある設定値との偏差に基づいて1次消
化槽への消化汚泥返送流量の目標値を求める演算装置と
、 この演算装置からの出力を受けて前記返送ラインにおけ
る消化汚泥返送流量を調整する調整器と、を備えたこと
を特徴とする嫌気性消化装置。
(1) In an anaerobic digestion device that has a primary digestion tank and a secondary digestion tank, and in which sludge is intermittently fed into the primary digestion tank, generated from the primary digestion tank and the secondary digestion tank. a measuring device for measuring the rate of generation of digested gas; a digested sludge return pump installed in a digested sludge return line from the secondary digester to the primary digester; and a sludge input to the primary digester. a calculation device that calculates a target value of the digested sludge return flow rate to the primary digestion tank based on the deviation between the output from the measuring device immediately before and a preset value; and a calculation device that receives the output from the calculation device. An anaerobic digestion device comprising: a regulator that adjusts the flow rate of digested sludge returned in the return line.
(2)1次消化槽と2次消化槽を有し、上記1次消化槽
には間欠的に汚泥が投入される嫌気性消化装置において
、 前記1次消化槽および前記2次消化槽から発生する消化
ガスの発生速度を測定する測定器と、前記2次消化槽か
ら前記1次消化槽への消化汚泥返送ラインに設置された
消化汚泥の返送ポンプと、 前記1次消化槽への汚泥投入直前の前記測定器からの出
力と予め設定してある設定値との偏差に基づいて、1次
消化槽への消化汚泥返送流量の目標値を求める演算装置
と、 この演算装置からの出力を受けて前記返送ラインにおけ
る消化汚泥返送流量を調整する調整器と、前記1次消化
槽内の固形物濃度Crを測定する測定器と、 前記返送ラインに設置され返送消化汚泥の固形物濃度C
rを測定する測定器と、 これら1次消化槽および返送ラインにおける固形物濃度
CrおよびCrを比較しCr≧Crの場合は消化汚泥の
返送を停止させる停止制御装置と、を備えたことを特徴
とする嫌気性消化装置。
(2) In an anaerobic digestion device having a primary digestion tank and a secondary digestion tank, and in which sludge is intermittently fed into the primary digestion tank, generated from the primary digestion tank and the secondary digestion tank. a measuring device for measuring the rate of generation of digested gas; a digested sludge return pump installed in a digested sludge return line from the secondary digester to the primary digester; and a sludge input to the primary digester. a calculation device that calculates a target value for the flow rate of digested sludge returned to the primary digestion tank based on the deviation between the output from the measuring device immediately before and a preset value; and a calculation device that receives the output from the calculation device. a regulator for adjusting the flow rate of the digested sludge returned in the return line; a measuring device for measuring the solids concentration Cr in the primary digestion tank; and a measuring device installed in the return line to measure the solids concentration C of the returned digested sludge.
A measuring device for measuring r, and a stop control device that compares the solids concentration Cr and Cr in the primary digestion tank and the return line and stops returning the digested sludge if Cr≧Cr. Anaerobic digestion equipment.
JP60109285A 1985-05-23 1985-05-23 Anaerobic digestion apparatus Pending JPS61268398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60109285A JPS61268398A (en) 1985-05-23 1985-05-23 Anaerobic digestion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60109285A JPS61268398A (en) 1985-05-23 1985-05-23 Anaerobic digestion apparatus

Publications (1)

Publication Number Publication Date
JPS61268398A true JPS61268398A (en) 1986-11-27

Family

ID=14506294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60109285A Pending JPS61268398A (en) 1985-05-23 1985-05-23 Anaerobic digestion apparatus

Country Status (1)

Country Link
JP (1) JPS61268398A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136985A (en) * 2006-12-05 2008-06-19 Fuji Electric Holdings Co Ltd Methane fermentation system
JP2015526083A (en) * 2012-08-13 2015-09-10 ボンノム,ミシェル Method and apparatus for continuous dry methane fermentation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136985A (en) * 2006-12-05 2008-06-19 Fuji Electric Holdings Co Ltd Methane fermentation system
JP2015526083A (en) * 2012-08-13 2015-09-10 ボンノム,ミシェル Method and apparatus for continuous dry methane fermentation
JP2018108117A (en) * 2012-08-13 2018-07-12 ボンノム,ミシェル Method and apparatus for continuous dry methane fermentation

Similar Documents

Publication Publication Date Title
CA2225456C (en) Controlling wastewater treatment by monitoring oxygen utilisation rates
US5296147A (en) Method for processing manure, fermented manure and ammonium nitrogen containing waste water
CN110577275B (en) Intelligent aeration control system and method for sewage treatment
CN109607770B (en) Multi-scene self-learning carbon source intelligent adding system and method for denitrification tank
US8956540B2 (en) Process and apparatus for controlling aeration during nitrification and denitrification of water
CN106495321B (en) Biological tank process optimization and operation control system and its control method
JP2009502494A (en) Method and apparatus for nitrogen enrichment (high nitrogen concentration) wastewater treatment in a continuous fractionation cycle biological reactor
CN113023881B (en) Aeration quantity and internal reflux quantity optimal control system and method based on MABR (moving average aeration ratio) process
CN101759290A (en) Device and method for rapidly realizing and stably maintaining shortcut nitrification in continuous flow process
Drewnowski et al. Modelling AOB-NOB competition in shortcut nitrification compared with conventional nitrification-denitrification process
JPS61268398A (en) Anaerobic digestion apparatus
CN111087073A (en) Sewage treatment biochemical aerobic control system and method based on synchronous nitrification and denitrification mechanism
JPS61287497A (en) Anaerobic digester
CN212425586U (en) Biochemical oxygen demand control system based on synchronous nitrification and denitrification mechanism
Ingildsen et al. Improved nutrient removal using in situ continuous on-line sensors with short response time
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JPS62221496A (en) Apparatus for controlling return of digested sludge
CN111217449B (en) Sewage treatment device and method based on accurate control of oxygen input
JPS5919599A (en) Anaerobic digestion
CN210163206U (en) Short-range biological nitrogen and phosphorus removal system
CN114133027A (en) Method for realizing stable operation of continuous flow anaerobic ammonia oxidation reactor
JPS61107999A (en) Seed sludge return control apparatus of digestion tank
JPH08323393A (en) Water quality simulator for circulation type nitrification and denitirification method
JPH021000B2 (en)
CN107973409A (en) Aerobic organic matter migration is used for endogenous denitrification coupling Anammox two-part deep denitrogenation device and method