JPS6126795A - Electrolysis method using fluidized bed and electrolytic cell - Google Patents

Electrolysis method using fluidized bed and electrolytic cell

Info

Publication number
JPS6126795A
JPS6126795A JP14610584A JP14610584A JPS6126795A JP S6126795 A JPS6126795 A JP S6126795A JP 14610584 A JP14610584 A JP 14610584A JP 14610584 A JP14610584 A JP 14610584A JP S6126795 A JPS6126795 A JP S6126795A
Authority
JP
Japan
Prior art keywords
particles
cathode
electrolytic cell
diaphragm
main electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14610584A
Other languages
Japanese (ja)
Other versions
JPH0413432B2 (en
Inventor
Nobutaka Goshima
伸隆 五嶋
Nobuyasu Ezawa
江沢 信泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
ThyssenKrupp Nucera Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd, Tanaka Kikinzoku Kogyo KK filed Critical Chlorine Engineers Corp Ltd
Priority to JP14610584A priority Critical patent/JPS6126795A/en
Priority to US06/674,063 priority patent/US4569729A/en
Priority to CA000468351A priority patent/CA1269635A/en
Priority to KR1019840008080A priority patent/KR890002751B1/en
Priority to EP84309163A priority patent/EP0171478B1/en
Priority to DE8484309163T priority patent/DE3481777D1/en
Priority to US06/800,528 priority patent/US4626331A/en
Publication of JPS6126795A publication Critical patent/JPS6126795A/en
Publication of JPH0413432B2 publication Critical patent/JPH0413432B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To exhaust gaseous oxygen generated at an anode to back surface to prevent electrolytic efficiency decrease due to existence of gaseous oxygen between the anode and a diaphragm, and to protect the diaphragm by opening many gas holes at the anode, in fluidized bed type electrolytic cell in which main and auxiliary electrode chambers are divided by the diaphragm. CONSTITUTION:In the electrolytic cell 1 composed of a cylindrical cathode 4, the diaphragm 28 and the anode 26, waste liquid contg. metal is supplied in cathode chamber from a solution supplying hole 2 to maintain many cathode particles therein to fluidized state. DC voltage is impressed between the cathode 4 and the anode 26, electrolytic treatment is performed to precipitate valuable metals of Au, Ag and the others in waste liquid contg. metals at surfaces of the cathode particles 30, and recover them. In this case, gaseous H2 generated simultaneously from the cathode is exhausted from an upper exist 32 of the cell 1. Oxygen generated at the anode 26 is drawn out to back surface through many small holes 27 opened at the anode plate 26 to prevent the rise of electrolytic voltage so that no oxygen exists between the electrode and the diaphragm 28, and waving and damage of the diaphragm due to gaseous oxygen are prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、各種金属の回収や精製1粒体への電気めっき
及び有機化合物及び/またはシアン化合物の分解等各種
の電気化学反応に使用する流動床を用いる電解方法と電
解槽に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Field of Application) The present invention is applicable to various electroplating methods such as recovery of various metals, electroplating into purified particles, and decomposition of organic compounds and/or cyanide compounds. This invention relates to an electrolytic method using a fluidized bed and an electrolytic cell for use in chemical reactions.

(従来技術) 金属粒子等を流動化させた電極粒子を用いて、溶液中の
金属を回収したシ、粒体にめっきしたシする流動床′電
解は公知である(特開昭53−92302号公報、米国
特許第3457152号明細書、米国特I′F第421
2722号明細書)。この流動床電解法が開発される以
前に杜、溶液中から金属を回収するには次のような方法
が試みられていた。
(Prior art) Fluidized bed electrolysis is known (Japanese Patent Laid-Open No. 53-92302), in which metal particles in a solution are recovered using electrode particles made of fluidized metal particles, and the particles are plated. Publication, U.S. Pat. No. 3,457,152, U.S. Pat. No. 421
2722 specification). Before this fluidized bed electrolysis method was developed, the following methods had been tried to recover metals from solutions.

6k)  溶液中に還元剤を加え、溶液中で直接金属を
析出させる。
6k) Add a reducing agent to the solution and deposit the metal directly in the solution.

伽) 金属イオン、金属シアン錯イオンを含む溶液をイ
オン交換樹脂塔に導入して金属イオン、金属シアン錯イ
オンをイオン交換樹脂に固定する。
佽) A solution containing metal ions and metal cyanide complex ions is introduced into an ion exchange resin tower to fix the metal ions and metal cyanide complex ions to the ion exchange resin.

(0)  溶液を低電流密度の電解槽で電解して、金属
を陰極に析出させる。
(0) Electrolyze the solution in a low current density electrolytic cell to deposit metal on the cathode.

これらの方法を使用すると、溶液中から金属を回収でき
るが、各方法には次のような欠点があった。つまシ、(
a)法は、処理液量が増加し、反応時間が長く、さらに
運転費が高騰するという欠点があシ、(b)法では、運
転紘容易であるが、装置建設費、再生薬剤費等の運転費
が高くなるという欠点がおシ、さらに(e)法は高濃度
の金属含有廃液に線速しているが、低濃度の廃液の場合
には、更に電流密度を下げないと経済的な電流効率を得
ることができず、電解槽が大型化して建設費が高くなシ
、低電流密度運転を行うため、析出状態が極めて良好な
めつき状となり、陰極からの剥離作業が困難であり、実
際には金属の剥離剤を使用して再溶解する必要があると
いう欠点があった。
Although these methods can be used to recover metals from solution, each method has the following drawbacks. Tsumashi, (
Method (a) has the drawbacks of increasing the amount of treated liquid, long reaction time, and rising operating costs; method (b) is easy to operate, but has the disadvantages of equipment construction costs, regenerating chemical costs, etc. The disadvantage is that the operating cost is high, and method (e) is suitable for high concentration metal-containing waste liquids, but in the case of low concentration waste liquids, it is not economical unless the current density is further lowered. It is not possible to obtain a high current efficiency, the electrolytic cell becomes large and the construction cost is high, and because the electrolytic cell is operated at a low current density, the deposited state becomes extremely plated, making it difficult to remove it from the cathode. However, the drawback was that it actually required remelting using a metal stripping agent.

また、溶液中からの金属の回収だけでなく、少量の不純
物を含む金属を高純度の金属に精製する際、あるいは、
粉粒体に所望の金属を電気めっきを行う際にも同様の方
法が採用され、同様の欠点が指摘されていた。
In addition to recovering metals from solutions, we also use them to refine metals containing small amounts of impurities into high-purity metals, or
A similar method has been used to electroplate a desired metal onto powder and granules, and similar drawbacks have been pointed out.

流動床亀:解技術は、これらの欠点を解消するために開
発されたもので、処理すべき電解液側の電極室に微細粒
子を収容し、仁の粒子を電解液単独または電解液と供給
ガスを用いて流動させることにより、電極表面積を飛躍
的に増大させ、高電流効率、低電解電圧にて電極粒子上
に金属を析出させることを可能にしたものである。
Fluidized bed tortoise solution technology was developed to eliminate these drawbacks. Fine particles are housed in the electrode chamber on the side of the electrolyte to be treated, and the particles are supplied with the electrolyte alone or together with the electrolyte. By using gas to flow, the electrode surface area can be dramatically increased, making it possible to deposit metal on electrode particles with high current efficiency and low electrolytic voltage.

しかし、従来の流動床電解では対極側の電極として板状
電極を使用しているため、流動状態の電極粒子や対極側
の電極と、両極室を区画する隔膜との間に対極室側で発
生するガスが進入して、電M vi、、圧を上昇させて
電解条件を不安定にさせたシ、隔膜を波釘たせて損傷さ
せたシ、さらに湾曲度が大きいと電極粒子の流動化を阻
げてよシ一層電解条件を不安定にするという欠点がある
However, because conventional fluidized bed electrolysis uses a plate-shaped electrode as the counter electrode, particles in the fluidized state and particles generated on the counter electrode chamber side between the counter electrode and the diaphragm that partitions the two electrode chambers. When the gas enters the electrolyte, it increases the pressure and destabilizes the electrolytic conditions.It also causes damage to the diaphragm by causing it to wave, and if the degree of curvature is large, it causes fluidization of the electrode particles. However, it has the disadvantage of making the electrolytic conditions even more unstable.

(発明が解決しようとする問題点) 本発明は、対極側の電極を有孔性とし、該電極面で発生
するガスを電極の背面に抜き、電極と隔膜との間にガス
を存在させないようにし、流動電解条件を一定とし、隔
膜を保護することを目的とする。
(Problems to be Solved by the Invention) In the present invention, the electrode on the counter electrode side is made porous, and the gas generated on the electrode surface is vented to the back side of the electrode, so that no gas exists between the electrode and the diaphragm. The purpose is to maintain constant flow electrolysis conditions and protect the diaphragm.

〔発明の構成〕[Structure of the invention]

本発明は、第1に隔膜で主電極室と補助電極室に区画し
てなる電解槽本体の主電極室に主電極粒子を収容し、該
主電極室に被電解液を供給して主電極粒子を流動状態に
維持しながら被電解液を電解する方法において、有孔性
の補助電極を隔膜に密着させ、補助−極表面で発生する
ガスを補助電極の背面に抜きなから電解する方法であり
、第2に隔膜で主電極室と補助電極室に区画してなる筒
状の電解槽本体の主電極室に主一種粒子を収容し、該主
電極室に被電解液を供給して主′屹極粒子を流動状態に
維持しながら被電解液を電解するようにした?し解槽に
おいて、所要個所に被電解液の供給口と抜出口を設け、
かつ有孔性の補助電極な電膜に密着させ、補助電極表面
で発生するガスを補助電極の背面に抜きながら電解する
電解槽である。
The present invention firstly stores main electrode particles in a main electrode chamber of an electrolytic cell body which is divided into a main electrode chamber and an auxiliary electrode chamber by a diaphragm, and supplies an electrolyte to the main electrode chamber to make a main electrode. A method of electrolyzing an electrolyte while maintaining particles in a fluid state, in which a porous auxiliary electrode is brought into close contact with a diaphragm, and the gas generated on the surface of the auxiliary electrode is electrolyzed without being drained to the back of the auxiliary electrode. Second, the main electrode chamber of the cylindrical electrolytic cell body is divided into a main electrode chamber and an auxiliary electrode chamber by a diaphragm, and the main particles are accommodated in the main electrode chamber, and the electrolyte is supplied to the main electrode chamber. 'Did you electrolyze the electrolyte while keeping the particles in a fluid state? In the decomposition tank, supply ports and extraction ports for the electrolyte are provided at required locations.
It is an electrolytic cell that is placed in close contact with a porous auxiliary electrode membrane, and performs electrolysis while extracting gas generated on the surface of the auxiliary electrode to the back of the auxiliary electrode.

本発明方法及び電解槽の用途は、主として金属の回収及
び精製、粉粒体へのめつき、有機化合物及び/丑たはシ
アン化合物の分解である。
The method and electrolytic cell of the present invention are mainly used for recovering and refining metals, plating powder and granules, and decomposing organic compounds and/or cyanide compounds.

金旭の回収及び精製、粉粒体へのめっきを行う際には、
主電極室を陰極室、補助電極室を陽極室として電解を行
う。又、有機化合物及び/まだはシアン化合物の分解を
行う際には、主電極室を陽極室、補助電極室を陰極室と
して分解反応を行う。
When collecting and refining Kinasahi and plating powder and granules,
Electrolysis is performed using the main electrode chamber as the cathode chamber and the auxiliary electrode chamber as the anode chamber. Further, when decomposing organic compounds and/or cyanide compounds, the decomposition reaction is carried out using the main electrode chamber as an anode chamber and the auxiliary electrode chamber as a cathode chamber.

従って金属の回収等の場合には、主電極粒子、補助電極
及び主電極室の主電極は、それぞれ、陰極粒子、@極及
び陰極となシ、有機化合物及び/またはシアン化合物の
分解の場合には、それぞれ陽極粒子、陰極及び陽極とな
る。
Therefore, in the case of metal recovery, etc., the main electrode particles, the auxiliary electrode and the main electrode of the main electrode chamber are used as cathode particles, @poles and cathodes, respectively, and in the case of decomposition of organic compounds and/or cyanide compounds. are the anode particles, the cathode and the anode, respectively.

陰極粒子を用いる場合、その材質としては、金。When using cathode particles, the material is gold.

銀、銅、ニッケル、鉛等の金属、それらの酸化物。Metals such as silver, copper, nickel, and lead, and their oxides.

硫化物、あるいはそれらの合金、グラファイト。Sulfides or their alloys, graphite.

活性炭等の導電性非金属を使用することができ、さらに
グラファイト、ガラス、セラミック等の粒子上に金、銀
、銅、ニッケル、鉛等の金属をコーティングしたものも
使用することができ、陽極粒子を用いる場合には、グラ
ファイト、ガラス、セラミック等の粒子又は゛チタン上
に貴金属、貴金属酸化物、鉛吟の被覆されたものなど、
電解しても溶液におかされないものを使用することがで
きる。
Conductive nonmetals such as activated carbon can be used, and particles of graphite, glass, ceramic, etc. coated with metals such as gold, silver, copper, nickel, and lead can also be used. When using particles of graphite, glass, ceramic, etc., or titanium coated with noble metals, noble metal oxides, lead metal, etc.
It is possible to use materials that do not dissolve into solution even when electrolyzed.

この陰極または陽極粒子の粒径は、0.05〜3.0箇
程度、好ましくは0.1〜0.5 mとする。又、陰極
及び陽極の材質としては、グラファイト、ステンレス。
The particle size of the cathode or anode particles is approximately 0.05 to 3.0 m, preferably 0.1 to 0.5 m. In addition, the materials for the cathode and anode are graphite and stainless steel.

白金あるいは貴金属酸化物をコーティングしたチタ/及
び7エ2イト等の一般に使用されているものを使用する
ことができる。
Commonly used materials such as titanium/7-E2ite coated with platinum or noble metal oxide can be used.

もよいが、有孔性隔膜を用いる場合、その孔径は、主電
極粒子の粒径よシ小さく、好ましくは10〜100μと
する。また、隔膜の材質は、ナイロン。
However, when a porous diaphragm is used, the pore size is smaller than the particle size of the main electrode particles, preferably 10 to 100 μm. Also, the material of the diaphragm is nylon.

ポリエチレン、ポリプロピレン、ポリテトラフル補助電
極は、#電極と隔膜との間に発生するガスを該電極の背
面に抜く、ために、有孔状とするとともに、隔膜に密着
させる。該有孔状補助電極は、エキスパンデッドメタル
を用いても、板状体に穿孔を設けたものや多孔質体、焼
結体を用いてもよい。
The polyethylene, polypropylene, or polytetraful auxiliary electrode is made perforated and brought into close contact with the diaphragm in order to release gas generated between the electrode and the diaphragm to the back side of the electrode. The perforated auxiliary electrode may be made of expanded metal, a plate with perforations, a porous material, or a sintered material.

このような各要素から成る電解槽の主電極室に被電解液
を供給して電解を行う。被電解液は電解の目的によって
適切なものを選択すればよく、金属の回収を行う際には
、たとえば金、白金、銀等の貴金属、カドミウム、クロ
ム等の公害金属、及び亜鉛、ガリウム、ビスマス、アル
ミニウム等ノ他の金属等各種金属の少なくとも一部を有
する溶液、特にめっき廃液またはエツチング液を使用す
る。
Electrolysis is performed by supplying the electrolyte to the main electrode chamber of the electrolytic cell made up of these various elements. An appropriate electrolyte solution can be selected depending on the purpose of electrolysis, and when recovering metals, for example, precious metals such as gold, platinum, and silver, polluting metals such as cadmium and chromium, and zinc, gallium, and bismuth are used. , a solution containing at least a portion of various metals such as other metals such as aluminum, in particular a plating waste solution or an etching solution.

また、金属の精製の際には、比較的純度の高い精製すべ
き金属と少量の不純物を含む溶液を用い、粉粒体へのめ
っきを行う場合には、めっきすべき金属の溶液を用いる
Further, when refining a metal, a solution containing a metal to be purified with relatively high purity and a small amount of impurities is used, and when plating powder or granules, a solution of the metal to be plated is used.

主電極粒子は、電解槽内に供給された被電解液の上昇力
により流動状態が形成される。この上昇力は通過面積を
拡大することによって弱められ、流動状態が維持される
。ここで「流動状態」とは、主電極粒子相互が溶液中で
くっついたシ離れたシする間に溶液が通過していく状態
をいう。
The main electrode particles are brought into a fluid state by the rising force of the electrolyte supplied into the electrolytic cell. This upward force is weakened by enlarging the passage area and the fluid state is maintained. Here, the term "fluid state" refers to a state in which the solution passes through the main electrode particles while they stick together and separate from each other in the solution.

この状態で電解を行うと、流動状態の主電極粒子を使用
しているため、主電極の表面積が非常に大きくなって電
流密度を下げると共に、主電極粒子が相互に衝突して電
気二重層を不安定としているので、電解電圧が低く電流
効率の高い状態で電解を行うことができる。また、異種
金属の析出電位差を利用すれば特定金属のみを選択的に
析出させることができ、金属の精製に好都合である。
When electrolysis is performed in this state, the main electrode particles in a fluid state are used, so the surface area of the main electrode becomes extremely large, lowering the current density, and the main electrode particles collide with each other, creating an electric double layer. Since it is unstable, electrolysis can be performed with low electrolysis voltage and high current efficiency. Further, by utilizing the deposition potential difference between different metals, only a specific metal can be selectively deposited, which is convenient for metal purification.

さらに、補助電極を隔膜に密着させ、かつ該電極を有孔
性としであるため、補助電極と隔膜の間に発生ガスが進
入して、電解電圧が上昇したシ、隔膜が波打って損傷し
たルすることがない。
Furthermore, because the auxiliary electrode was placed in close contact with the diaphragm and the electrode was porous, gas generated entered the gap between the auxiliary electrode and the diaphragm, increasing the electrolytic voltage and causing the diaphragm to become wavy and damaged. There is nothing to do.

全組の回収または精製、粉粒体へのめっきの場合には、
上記電解操作により表面に金属がコーティングされた陰
極粒子が生成するので、これを電解槽外に取シ出す。粉
粒体めりきの場合は、所望の粒体が取シ出されるので、
そのまま各用途に供すれによく、金属の回収、精製の場
合には、析出金属と陰極粒子が同一成分である場合を除
き、析出金りと陰極粒子とを分離する必要がある。分離
には、従来の分離手段、たとえば乾式分離法や湿式分離
法をそのまま使用すればよい。金属を陰極粒子から乾式
分離法により分離するには、たとえは、金や白金の場合
には次のように行えばよい。
In the case of collecting or refining the entire set, or plating on powder or granules,
The above electrolytic operation produces cathode particles whose surfaces are coated with metal, and these are taken out of the electrolytic cell. In the case of powder milling, the desired granules are removed, so
It can be used as is for various purposes, and in the case of metal recovery and purification, it is necessary to separate the precipitated metal and the cathode particles, unless the precipitated metal and the cathode particles are of the same composition. For separation, conventional separation means such as dry separation method or wet separation method may be used as is. In order to separate the metal from the cathode particles by a dry separation method, for example, in the case of gold or platinum, the following procedure may be used.

金がコーティングされた陰極粒子を溶融し、この溶融物
に酸累ガスや塩素ガスなどを吹き込むと、金、白金以外
の金月紘酸化物、塩化物等となって大気中に飛散し、陰
極粒子としてのガラス等はスラグとなって、溶融金属上
に浮遊し、分離される。
When cathode particles coated with gold are melted and acidic gas, chlorine gas, etc. Particles such as glass become slag, float on the molten metal, and are separated.

その後、冷却固化すると、白金と全以外にはとんと不純
物を含まない金または、白金を得ることができろ。1だ
、j′i金りと卑金属とを含む希薄溶液から合金として
析出させた場合には、通常の湿式分離法で再溶解して分
離することができる。この再溶解した液鉱金属元素以外
の有機物等が含まれず、また高濃度で少量の液がえられ
るので経済的に回収できる。
After that, when it is cooled and solidified, it is possible to obtain gold or platinum that contains no impurities other than platinum. 1. When precipitated as an alloy from a dilute solution containing gold and base metals, it can be redissolved and separated using a normal wet separation method. This redissolved liquid contains no organic matter other than the metal elements, and can be economically recovered because a small amount of highly concentrated liquid can be obtained.

また、有機化合物及び/またはシアン化合物の分解の場
合には、陽極粒子上には何も析出しないので、分離操作
は不要である。
Further, in the case of decomposing organic compounds and/or cyanide compounds, no separation operation is necessary because nothing is deposited on the anode particles.

本発明方法による金属回収に関する電流効率は10%以
上、溶液からの金属の回収率は、金属含有量及び電解時
間により異なるが、1回の操作で、含有量が低い場合に
は低電力でtよは100チ、比較的高い場合には、90
チ以上となる。後者の場合にも、溶液を循環させること
によりほぼ定量的に金属を回収することができる。
The current efficiency for metal recovery by the method of the present invention is 10% or more, and the recovery rate of metal from the solution varies depending on the metal content and electrolysis time, but in one operation, when the content is low, it is possible to t Yo is 100 chi, and if it is relatively high, 90
It will be more than 1. In the latter case as well, the metal can be recovered almost quantitatively by circulating the solution.

以下、本発明を添付図面に示す第1実施例及び第2実施
例に基いてよシ詳細に説明する。両実施例では、主電極
を陰極、補助電極を陽極とした金属の回収、精製及び粉
粒体へのめりき用電解槽として本発明を説明するが、本
発明はこれらに限定されるものではガい。
Hereinafter, the present invention will be explained in detail based on a first embodiment and a second embodiment shown in the accompanying drawings. In both Examples, the present invention will be explained as an electrolytic cell for metal recovery, purification, and plating into powder or granules, with the main electrode as the cathode and the auxiliary electrode as the anode, but the present invention is not limited to these. stomach.

第1図は、本発明の第1実施例を示す一部破断正面図、
第2図は、第1図の■−■線横線面断面図5る。
FIG. 1 is a partially cutaway front view showing a first embodiment of the present invention;
FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. 1.

電解槽本体lは、溶液供給口2が下向きに連設された皿
状の下部枠体3と、円筒状の陰極4とから成り、陰極4
の上下両端は、それぞれ外方に向けて折曲されている。
The electrolytic cell main body 1 consists of a dish-shaped lower frame 3 in which a solution supply port 2 is connected downward, and a cylindrical cathode 4.
Both the upper and lower ends of are bent outward.

下部枠体3の周縁のフランジ部5上には、周縁部が1対
のガスケット6にょシ挾持された有孔の下部隔膜7が載
置され、さらに該下部隔膜7−ヒには、中央上面に四部
8が設けられ、該凹部8と周縁部以外の部分に、上下方
向の多数の通孔9が穿設された溶液分散板10が載置さ
れている。陰極4の下部の外向き折曲部11はガスケッ
ト12を介して、溶液分散板10上に載置され、ボルト
13により、下部枠体3と一体化されている。
A perforated lower diaphragm 7 whose periphery is held between a pair of gaskets 6 is placed on the flange 5 at the periphery of the lower frame 3, and the lower diaphragm 7 has a central upper surface. A solution dispersion plate 10 having a large number of vertically perforated holes 9 is placed in a portion other than the recess 8 and the peripheral edge. The lower outward bent portion 11 of the cathode 4 is placed on the solution distribution plate 10 via a gasket 12, and is integrated with the lower frame 3 by bolts 13.

陰極4の上部の外向き折曲部14上に杜、ガスケット1
5を介して、流動粒子逸散防止基16の下端部外向き7
ランジ17が載置され、ボルト18により締着されてい
る。流動粒子逸散防止基16は下から順に前記下端部外
向きフランジ17.小径部19.テーパ一部20.大径
部21.上端部外向きフランジ22から構成され、該外
向き7ランジ22上には、円盤状の蓋体23がボルト2
4により締着されている。蓋体23下面中央には、棒状
体25を介して、下端が前記凹部8近傍に達する円筒状
の陽極26が垂設され、該陽極26には、ガス抜きのた
めの多数の孔27が穿設されている。陽極26の下面と
側面には、ポリテトラフルオロエチレン等実質的に電極
液を透過させない材質から成り、上面が開口する円筒状
の隔膜28が密着状態で装着され、該隔膜28の上端は
、0リング29で陽極26に固定されている。隔膜28
よシ外方の電解槽本体l内には、陰極粒子30が流動状
態で収容されている。31は、流動粒子逸散防止基16
の大径部21側面に連設された電解液抜出口、32は、
蓋体23上面に連設された発生ガス取出口、33は、陰
極の下部側面に設けられた陰極粒子取出口である。
A gasket 1 is placed on the outward bent portion 14 of the upper part of the cathode 4.
5, the lower end of the fluidized particle escape prevention group 16 faces outward 7
A flange 17 is mounted and fastened with bolts 18. The fluidized particle scattering prevention group 16 is arranged in order from the bottom to the lower end outward flange 17. Small diameter section 19. Tapered part 20. Large diameter portion 21. It consists of an upper end outward facing flange 22, and on the outward facing 7 flange 22, a disc-shaped cover body 23 is attached to the bolt 2.
It is tightened by 4. A cylindrical anode 26 whose lower end reaches the vicinity of the recess 8 is vertically disposed at the center of the lower surface of the lid body 23 via a rod-shaped body 25, and the anode 26 is provided with a number of holes 27 for degassing. It is set up. A cylindrical diaphragm 28 made of a material substantially impermeable to the electrode liquid, such as polytetrafluoroethylene, and having an open top surface is attached to the bottom and side surfaces of the anode 26 in close contact. It is fixed to the anode 26 with a ring 29. Diaphragm 28
Cathode particles 30 are accommodated in a fluid state inside the electrolytic cell main body l on the outside. 31 is a fluid particle scattering prevention group 16
The electrolyte extraction port 32 connected to the side surface of the large diameter portion 21 is
The generated gas outlet 33 connected to the upper surface of the lid 23 is a cathode particle outlet provided on the lower side surface of the cathode.

次に、上記構成から成る電解槽による被電解液の電解の
要領を金属の回収を例にとって説明する。
Next, the procedure for electrolyzing a liquid to be electrolyzed using the electrolytic cell having the above-mentioned structure will be explained by taking metal recovery as an example.

電解槽本体1に、金属含有廃液などの金属含有溶液を゛
溶液供給口2から供給する。この溶液は、一般に水溶液
が用いられるが、溶媒抽出で利用されるアルコール等の
有機溶液の場合もある。供給された溶液は、下部隔膜7
の細孔と溶液分散板1゜の通孔9を通って陰極室内に加
圧されて導入される。この場合、溶液は陰極粒子3oを
流動状態に維持する役割を果たす。陰極粒子3oの間を
通過した溶液はテーパ一部2oで減速されるため、陰極
粒子30と溶液が分離され、陰極粒子中で均一な層流が
得られる。溶液中の金属イオンは、陰極粒子3o上・で
i[解還元され、金属原子となって陰極粒子3o上に析
出するとともに副反応として水が分解されて水素が発生
し、この水素は、発生ガス取出口32がら取出される。
A metal-containing solution such as metal-containing waste liquid is supplied to the electrolytic cell body 1 from a solution supply port 2. This solution is generally an aqueous solution, but may also be an organic solution such as alcohol used in solvent extraction. The supplied solution passes through the lower diaphragm 7
The solution is introduced under pressure into the cathode chamber through the pores of the solution dispersion plate and the through holes 9 of the 1° solution distribution plate. In this case, the solution serves to maintain the cathode particles 3o in a fluid state. Since the solution passing between the cathode particles 3o is decelerated by the tapered portion 2o, the cathode particles 30 and the solution are separated, and a uniform laminar flow is obtained in the cathode particles. The metal ions in the solution are dereduced on the cathode particles 3o, become metal atoms and precipitate on the cathode particles 3o, and water is decomposed as a side reaction to generate hydrogen. The gas is taken out through the gas outlet 32.

また、陽極26表面で社通常の水電解反応による酸素発
生が生じる。この酸素は、陽極26表面全体から発生す
るが、隔膜28と陽極26の間で発生する酸素も陽極2
6の間で発生する酸素も陽&26の孔27から陽極26
の背面に抜かれ、陽極26上面の孔を通って発生ガス取
出口32から取出されるため、発生するガスが隔膜と陽
極との間に存在して電解電圧を上昇させたシ、隔膜を波
釘たせて電解条件を不安定にしたシ、隔膜を傷つけたシ
することがない。電解されて金属イオン濃度が減少した
溶液鉱、電解液抜出口31からオーバーフローして電鋳
槽外に取シ出される。
Further, oxygen is generated on the surface of the anode 26 due to a normal water electrolysis reaction. This oxygen is generated from the entire surface of the anode 26, but the oxygen generated between the diaphragm 28 and the anode 26 is also generated from the anode 26.
Oxygen generated between 6 and 26 also flows from the hole 27 of anode 26 to the anode 26.
Since the generated gas is extracted from the back side of the anode 26 through the hole on the upper surface of the anode 26 and is extracted from the generated gas outlet 32, the generated gas exists between the diaphragm and the anode and increases the electrolytic voltage. In addition, there is no possibility of destabilizing the electrolytic conditions or damaging the diaphragm. The solution ore whose metal ion concentration has been reduced by electrolysis overflows from the electrolyte extraction port 31 and is taken out of the electroforming tank.

電解が進行してくると、陰極粒子30上に金属が析出し
てくる。析出量がふえるほど陰極粒子30は重くなって
陰極室下部に集まシ、陰極室の上部には、比較的析出量
の少ない陰極粒子3oが存在する。
As the electrolysis progresses, metal is deposited on the cathode particles 30. As the amount of precipitation increases, the cathode particles 30 become heavier and gather in the lower part of the cathode chamber, and the cathode particles 3o, which are precipitated in a relatively small amount, are present in the upper part of the cathode chamber.

金属が十分に析出し、陰極室下部に集まった陰極粒子3
0は、陰極粒子取出口33から電解槽外へ取出され、取
出された分に相当する陰極粒子を上方から陰極室に供給
する。これにより、運転を止めることなく陰極粒子の供
給及び取出しを行うことができ、長期に亘る連続運転が
可能となる。
Cathode particles 3 where metal has sufficiently precipitated and gathered at the bottom of the cathode chamber
0 is taken out from the electrolytic cell through the cathode particle outlet 33, and cathode particles corresponding to the amount taken out are supplied from above to the cathode chamber. Thereby, cathode particles can be supplied and taken out without stopping operation, and continuous operation over a long period of time is possible.

この電解操作において、流動層内の微粒子に効率よく陰
極電位をもたせて金属を高電流効率、低電解電圧で陰極
上に析出させるためには、次に挙ける電解条件下で電解
を行うことが望ましい。
In this electrolytic operation, in order to efficiently impart a cathode potential to the fine particles in the fluidized bed and deposit the metal on the cathode with high current efficiency and low electrolytic voltage, it is necessary to perform electrolysis under the following electrolytic conditions. desirable.

陰極電流密度: 30A/dm’以下(好ましくは10
A/am’以下) 陽極電流密度: 20A/dm”以下(好ましくは5A
/dm”以下) 流動層内電流濃度:30All−流動層以下(好ましく
は10A/ノ一流動層以下) 流動層空間率:40〜90%(好ましくは60〜75%
)ここで、陰極電流密度及び陽極電流密度が、それぞれ
30A/dm’、20A/dm”を越えると電圧が不必
要に高くなシ好凍しくない。さらに、流動層内電流濃度
が3OA#−流動層を越えると、電圧が上がるだけでな
く、プラツギングが発生し、流動層空間率が90%を越
えると電圧が上がシ、40外より下がると、溶液供給口
付近でグジツギングが生ずるので、上記範囲内とするの
がよい。
Cathode current density: 30 A/dm' or less (preferably 10
A/am' or less) Anode current density: 20A/dm' or less (preferably 5A
/dm” or less) Current concentration in fluidized bed: 30 All-fluidized bed or less (preferably 10 A/dm or less) Fluidized bed void ratio: 40 to 90% (preferably 60 to 75%
) Here, if the cathode current density and the anode current density exceed 30A/dm' and 20A/dm'', respectively, the voltage will be unnecessarily high, which is not desirable. When the fluidized bed is exceeded, the voltage not only increases, but also plugging occurs, and when the fluidized bed void ratio exceeds 90%, the voltage increases, and when it drops below 40%, plugging occurs near the solution supply port. It is preferable to keep it within the above range.

また、仁の電解操作を引き続いて行うと、金属の析出に
伴って陰極粒子の径が大きくなって、流動条件(流動層
高、流動層空間率、流動層圧力損失)が変化するので、
本電解槽の流動床部分は次のように設計することが好ま
しい。すなわち、流動層の高さは、初期流動層の1.2
倍以上、好ましくは1.4倍以上とし、流動粒子逸散防
止基の断面積を電解槽本体の断面積の1.5倍以上、好
ましくは2倍以上として、陰極粒子が流動状態に維持で
きるようにし、かつ粒子の逸散を防止する。このように
すれば、陰極粒子のものと径の倍以上まで、金属を析出
させることができる。
In addition, if the electrolytic operation is continued, the diameter of the cathode particles increases as the metal precipitates, and the fluidization conditions (fluidized bed height, fluidized bed void ratio, fluidized bed pressure loss) change.
The fluidized bed section of the present electrolyzer is preferably designed as follows. That is, the height of the fluidized bed is 1.2 of the initial fluidized bed.
The cathode particles can be maintained in a fluid state by setting the cross-sectional area of the fluid particle dispersion prevention group to be at least 1.5 times, preferably at least twice the cross-sectional area of the electrolytic cell body. and prevent particles from escaping. In this way, metal can be deposited to a size that is more than twice the diameter of the cathode particles.

第3図鉱、本発明の#!2実施例を示す縦断面図である
。この電解槽は、第1実施例の電解槽の改良に係わるも
のであり、第1実施例の部材と同一部材には同一符合を
付して説明を省略する。
Figure 3: # of the present invention! FIG. 2 is a vertical cross-sectional view showing a second embodiment. This electrolytic cell is an improvement of the electrolytic cell of the first embodiment, and the same members as those of the first embodiment are given the same reference numerals and the explanation thereof will be omitted.

電解槽本体1′は上面が開口し、上端に外向きフランジ
41が連設された円筒体から成シ、該本体1′内壁の下
端近傍には、陰極支持用円筒42が内股され、該円筒4
2上には、有孔性隔膜43を介して、格子状の支持片4
4が内股されたドーナツ状の陰極下部フレーム45が載
置されている。陰極下部フレーム45の上級には、多孔
性円筒状の陰極4′が溶接等により立設され、該陰極下
部フレーム45の内縁には溶液分散板10′が載置され
ている。
The electrolytic cell main body 1' is made of a cylindrical body with an open top and an outward flange 41 connected to the upper end.A cathode supporting cylinder 42 is inserted in the vicinity of the lower end of the inner wall of the main body 1'. 4
2, a lattice-shaped support piece 4 is placed on top of the porous diaphragm 43.
A donut-shaped cathode lower frame 45 with 4 folded inside is mounted. A porous cylindrical cathode 4' is erected on the upper side of the lower cathode frame 45 by welding or the like, and a solution dispersion plate 10' is placed on the inner edge of the lower cathode frame 45.

陰極4′の上端には、上端に外向き折曲部46が連設さ
れた短寸円筒状の陰極上部フレーム47の下端部が溶接
等により連結され、外向き折曲部46の外端部は、前記
外向き7ランジ41の外端部と整合している。
The lower end of a short cylindrical cathode upper frame 47 with an outwardly bent portion 46 connected to the upper end is connected to the upper end of the cathode 4' by welding or the like, and the outer end of the outwardly bent portion 46 is aligned with the outer end of the outward 7 flange 41.

IXり極26の下面と側面には、ナイロン等から成シ、
陰(へ粒子は通過させないが、電解液を比較的自由に通
過させる有孔の隔膜28′が密着状態で装着され、1u
)柩26内部には、ガラスピーズ等から成る多数の粒体
48が収容されている。
The bottom and side surfaces of the IX pole 26 are made of nylon, etc.
A perforated diaphragm 28' that does not allow particles to pass through but allows the electrolyte to pass relatively freely is attached in close contact with the 1u
) Inside the coffin 26, a large number of particles 48 made of glass beads and the like are housed.

この電力〒槽に溶液供給口2から金属含有溶液を供給す
ると、第1実施例の場合と同様に金属が回収される。ま
た、この電解槽では、陰極室に加圧状態で溶液を供給し
、かつ、陽極室と陰極室を区画する隔膜が多孔性である
ため、陽極室内に粒体を存在させないと、被電解液が陰
極室から陽極室に移動し、抵抗の少ない陽極室を通シ抜
け、陰極粒子と接触せずに電解槽から取シ出され、金属
が回収されないことになるが、陽極室内に存在させた多
数の粒体により、抵抗が増大して陽極室内の被電解液の
流通が阻害されるため、被電゛解液伏十分に陰極粒子と
接触し、高収率で金属が回収される。
When a metal-containing solution is supplied to this power tank from the solution supply port 2, metals are recovered in the same manner as in the first embodiment. In addition, in this electrolytic cell, the solution is supplied under pressure to the cathode chamber, and the diaphragm separating the anode chamber and the cathode chamber is porous, so if particles are not present in the anode chamber, the electrolyte The metal moves from the cathode chamber to the anode chamber, passes through the anode chamber with low resistance, and is taken out of the electrolytic cell without coming into contact with the cathode particles. Although the metal is not recovered, it remains in the anode chamber. Since the large number of particles increases the resistance and obstructs the flow of the electrolyte within the anode chamber, the electrolyte comes into sufficient contact with the cathode particles and the metal is recovered with a high yield.

(実施例1) 第1図に示す流動床型電解槽を用いて金めつき廃液から
の金の回収を行った。電解槽の各部の寸法は、電解槽本
体の高さ113.5備、内径14.0 cm 、有孔性
陽極の高さ105cIn、直径4.9 ts 、流動粒
子逸散防止−塔の高さ35cIn、大径部の外径21−
とした。
(Example 1) Gold was recovered from gold plating waste liquid using a fluidized bed electrolytic cell shown in FIG. The dimensions of each part of the electrolytic cell are: height of the electrolytic cell body: 113.5cm, inner diameter: 14.0cm, height of the porous anode: 105cIn, diameter: 4.9ts, height of the column for preventing fluidized particle dispersion. 35cIn, outer diameter of large diameter part 21-
And so.

各部の材質は、電解槽本体及び流動粒子逸散防止基がア
クリル樹脂、陽極が白金コーティングチタン、陰極粒子
が粒径0.1〜0.15mの金めっきしたグラファイト
粒子、隔膜がポリナト2フルオロエチレン製無孔製膜、
溶液分散板が塩化ビニル樹脂であるものを用いた。
The materials of each part are acrylic resin for the electrolytic cell body and fluid particle dispersion prevention group, platinum-coated titanium for the anode, gold-plated graphite particles with a particle size of 0.1 to 0.15 m for the cathode, and polynato 2-fluoroethylene for the diaphragm. Made of non-porous membrane,
A solution dispersion plate made of vinyl chloride resin was used.

試験用溶液としては、PH値4.l、全有機炭素量(T
OC)15.Of/7.二酸化ケイ素量s H/l 、
全リンfが1.6ダ/ノでおル、各イオン濃度が次のも
のを用い、電解槽に供給する前に水で希釈して金濃度が
1650ppmになるよう調整した。
The test solution has a pH value of 4. l, total organic carbon content (T
OC)15. Of/7. Silicon dioxide amount s H/l,
The total phosphorus f was 1.6 da/no, and the following ion concentrations were used, and the gold concentration was adjusted to 1650 ppm by diluting with water before supplying to the electrolytic cell.

Au  2580ppm  、Ni    25ppm
Na   51ppm   K   13300ppm
CN−11000pp   Boa  43000pp
mCF  530ppm この調整した全廃液を約2.81/−の流速で電解槽に
供給し、陽極電流密度2.6OA/dm”、陰極電流密
度1.OA/dm”、  流動層内電流濃度10.7 
Al1−流動層、陰極粒子の流動層空間率70%の条件
となるよう電解したところ、電解電圧2.1〜2.5V
、平均電流効率38%であり、電解層出口における全濃
度は3 ppmであった。なお、ニッケル濃度紘減少し
ていなかった。
Au 2580ppm, Ni 25ppm
Na 51ppm K 13300ppm
CN-11000pp Boa 43000pp
mCF 530 ppm This adjusted total waste liquid was supplied to the electrolytic cell at a flow rate of about 2.81/-, and the anode current density was 2.6 OA/dm", the cathode current density was 1. OA/dm", and the current concentration in the fluidized bed was 10. 7
When electrolyzed under the conditions of Al1-fluidized bed and fluidized bed void ratio of cathode particles of 70%, the electrolysis voltage was 2.1 to 2.5V.
, the average current efficiency was 38%, and the total concentration at the electrolyte exit was 3 ppm. Note that the nickel concentration did not decrease.

(実施例2) 隔膜として細孔径が50!程度であるナイロン網を用い
、同極室内に粒径が0.3〜0.6m程度のガラスピー
ズを多数収容したこと以外は、実施例1と同一の電解槽
を用い、銅粒子(平均粒径100μの球状粒子)に下記
の方法により金めつきを施した。
(Example 2) Pore diameter is 50 as a diaphragm! The same electrolytic cell as in Example 1 was used, except that a nylon net with a particle size of about Gold plating was applied to spherical particles (with a diameter of 100 μm) by the following method.

まず、銅粒子5 Kfを脱脂し、次いで水洗、酸洗。First, the copper particles 5 Kf were degreased, then washed with water and pickled.

水洗を行って、銅粒子表面の汚れ、酸化膜を除去し、そ
の後下記条件によりミ気金めっきを施した。
The copper particles were washed with water to remove dirt and oxide film on the surface of the copper particles, and then gold plating was performed under the following conditions.

金めつき条件 めっき液二金St/lのオークロネクスC(日本エレク
トロプレーティング エンジニャーズ■製酸製シアンめ っき液) 不 純 物:銅 40 ppm めっき液量:  50! 電    流:   45A 電    圧:     4v めっき温度:  50℃ めっき時間=  60分 流    速:    0.3 t1n/mc銅粒子は
約10分で全体が金色にかわってきた。
Gold plating conditions Plating solution 2-gold St/L Auclonex C (Japan Electroplating Engineers acid-made cyan plating solution) Impurities: Copper 40 ppm Plating solution amount: 50! Current: 45A Voltage: 4V Plating temperature: 50°C Plating time = 60 minutes Flow rate: 0.3 The entire t1n/mc copper particle turned golden in about 10 minutes.

金めつき後、めっき液を除き、よく水洗してから濾過し
、乾燥して銅粒子に金めつき膜が0.1μ被膜した粒子
(Au/Cu粒子)を得た。
After gold plating, the plating solution was removed, thoroughly washed with water, filtered, and dried to obtain particles (Au/Cu particles) in which copper particles were coated with a gold plating film of 0.1 μm.

上述した方法で得られたAu/Cu粒子につき、SEM
写真とX線マイクロアナライザーによる全分布像を調べ
た結果、金が銅粒子に均一に電着していることが認めら
れた。また、不純物としての銅はめっき後も40 pp
mであった。
For the Au/Cu particles obtained by the method described above, SEM
As a result of examining the entire distribution image using photographs and an X-ray microanalyzer, it was found that gold was uniformly electrodeposited on the copper particles. In addition, copper as an impurity remains at 40 ppm even after plating.
It was m.

このようにしてえられたAu/Cu粒子は電気接点用素
材に利用できた。
The Au/Cu particles thus obtained could be used as a material for electrical contacts.

(実施例3) 平均粒径1鏑のAJ!08粒子21を用い、下記方法に
よりめっきを行った。
(Example 3) AJ with an average particle size of 1 kabura! Plating was carried out using 08 particles 21 according to the following method.

まず、140m粒子を脱脂し、次いで水洗、酸洗。First, the 140m particles were degreased, then washed with water and pickled.

水洗した後、下記工程に従って化学ニッケルめつきを行
った。
After washing with water, chemical nickel plating was performed according to the following steps.

センシタイジング:塩化第1錫溶液21↓ 水洗 一↓ アクチペイション:塩化パラジウム溶液21↓ 水洗 ↓ 化学ニッケルめっき:上材工業■製BELニッケル5ノ
(還元剤ジメチ ↓      ルポ2ザン) 水洗 次に、このAl*α粒子につき、第3図に示す如き装置
を用い、実施例2に準じて下記条件によりミ気白金めつ
きを施した。
Sensitizing: Stannous chloride solution 21↓ Water washing ↓ Actipation: Palladium chloride solution 21 ↓ Water washing ↓ Chemical nickel plating: Uezai Kogyo BEL Nickel 5 No. (Reducing agent Dimethy↓ Lupo 2 Zan) Water washing Next These Al*α particles were subjected to mechanical platinum plating under the following conditions according to Example 2 using the apparatus shown in FIG.

白金めっき条件 めっき液:塩化白金酸 10 f/1 塩   酸 0.3規定 めっき液量: 501 電  流:200A 電    圧:   20V めっき温度: 20℃ めっき時間: 60分 流    速=0.2鐸/式 上述した方法でえられたP t /N i /)kl!
 01粒子は、いずれも電気めっき膜が均一に電着して
いるものであり、粒子が陰極であるめっき液に確実に接
触し、均一な電着物を得ることができることを知見した
Platinum plating conditions Plating solution: Chloroplatinic acid 10 f/1 Hydrochloric acid 0.3N Plating solution amount: 501 Current: 200A Voltage: 20V Plating temperature: 20℃ Plating time: 60 minutes Flow rate = 0.2 plating/equation P t /N i /)kl obtained by the method described above!
It has been found that all of the 01 particles have a uniformly electrodeposited electroplated film, and that the particles reliably contact the plating solution serving as the cathode, thereby making it possible to obtain a uniform electrodeposit.

また、粒子が非電導性の場合、電気めっき前に化学めっ
きを施す必要があるが、本発明においては粒子に化学め
っきを施す場合、その膜厚は電気めっきが可能な程度の
ものでよく、化学めっき被膜のみによって高導電性粒子
を得る場合に比較してぞの膜厚を薄くすることができ、
コストを著しく低下させることができた。
In addition, if the particles are non-conductive, it is necessary to apply chemical plating before electroplating, but in the present invention, when chemical plating is applied to particles, the film thickness may be such that electroplating is possible. The thickness of the film can be made thinner than when highly conductive particles are obtained only by chemical plating,
We were able to significantly reduce costs.

(実施例4) 実施例1の電解槽において、陽極、陰極及び隔子、陰極
を金コーティングチタンとして全廃液中のシアンイオン
の分解を行った。
(Example 4) In the electrolytic cell of Example 1, cyanide ions in the entire waste liquid were decomposed using gold-coated titanium as the anode, cathode, separator, and cathode.

試験用廃液として杜、実施例1と同様のものを用い、電
解槽に供給する前に水を希釈して遊離シアンイオン濃度
が640ppmになるよう調整した。
As the test waste liquid, the same one as in Example 1 was used, and the free cyanide ion concentration was adjusted to 640 ppm by diluting the water before supplying it to the electrolytic cell.

このp!整した廃液を約2.811/−の流速で電解槽
に供給し、陽極電流密度2.6OA/dm”、陰極電流
密度1.OA/dm’ 、流動層内電流濃度10.7 
A/7−流動層、グラファイト粒子の流動層空間率70
−の条件となるよ5i!解したところ電解電圧2.1〜
2.5V、平均電流効率85%であり、電解槽出口にお
ける遊離シアンイオン濃度は80 ppmであった。
This p! The conditioned waste liquid was supplied to the electrolytic cell at a flow rate of about 2.811/-, and the anode current density was 2.6OA/dm', the cathode current density was 1.OA/dm', and the current concentration in the fluidized bed was 10.7.
A/7-Fluidized bed, fluidized bed void fraction of graphite particles 70
-The condition is 5i! When I solved it, the electrolytic voltage was 2.1 ~
The voltage was 2.5 V, the average current efficiency was 85%, and the free cyanide ion concentration at the electrolytic cell outlet was 80 ppm.

〔発明の効果〕〔Effect of the invention〕

本発明は、溶液から金属を回収し、または金属を精製し
、粒子に電気めっきを施し、あるいは溶液中の有機化合
物を分解する際に、流動床電解槽を用いて主電極の表面
積を非常に大きくしであるため、低電流密度で効率よく
電解できるとともに、補助電極を有孔性としかつ隔膜に
密着させているため、発生するガスが補助電極の背面に
抜け、補助電極と隔膜の間に進入することがなく、電解
電圧が上昇する等電解条件が不安定になりfCシ、隔膜
が傷ついたシすることがない。
The present invention uses a fluidized bed electrolyzer to greatly increase the surface area of the main electrode when recovering metals from solution, refining metals, electroplating particles, or decomposing organic compounds in solution. Because it is large, electrolysis can be carried out efficiently at low current density, and because the auxiliary electrode is porous and in close contact with the diaphragm, the generated gas escapes to the back of the auxiliary electrode, and there is a gap between the auxiliary electrode and the diaphragm. The electrolytic conditions will not become unstable, such as the electrolytic voltage rising, and the diaphragm will not be damaged.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す一部破断正面図、第
2図は、第1図のト1線横断面図、第3図は、本発明の
第2実施例を示す縦断面図である。 1.1・・・・・・電解槽本体、4.4’・・・・・・
陰極、16・・・・・・流動粒子逸散防止基、26・・
・・・・陽極、27・・・・・・孔、28゜28′・・
・・・・隔膜、30・・・・・・陰極粒子。
FIG. 1 is a partially cutaway front view showing a first embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line T1 in FIG. 1, and FIG. 3 is a longitudinal cross-sectional view showing a second embodiment of the present invention. It is a front view. 1.1... Electrolytic cell body, 4.4'...
Cathode, 16...Fluid particle scattering prevention group, 26...
... Anode, 27... Hole, 28゜28'...
...Diaphragm, 30...Cathode particles.

Claims (22)

【特許請求の範囲】[Claims] (1)隔膜で主電極室と補助電極室に区画してなる電解
槽本体の主電極室に主電極粒子を収容し、該主電極室に
被電解液を供給して主電極粒子を流動状態に維持しなが
ら被電解液を電解する方法において、有孔性の補助電極
を隔膜に密着させ、補助電極表面で発生するガスを補助
電極の背面に抜きながら電解することを特徴とする電解
方法。
(1) Main electrode particles are stored in the main electrode chamber of the electrolytic cell body which is divided into a main electrode chamber and an auxiliary electrode chamber by a diaphragm, and an electrolyte is supplied to the main electrode chamber to keep the main electrode particles in a fluid state. A method for electrolyzing a liquid to be electrolyzed while maintaining a porous auxiliary electrode in close contact with a diaphragm, and electrolyzing while gas generated on the surface of the auxiliary electrode is discharged to the back side of the auxiliary electrode.
(2)主電極室、補助電極室、主電極粒子及び補助電極
が、それぞれ陰極室、陽極室、陰極粒子及び陽極である
特許請求の範囲第1項に記載の方法。
(2) The method according to claim 1, wherein the main electrode chamber, the auxiliary electrode chamber, the main electrode particles and the auxiliary electrode are a cathode chamber, an anode chamber, a cathode particle and an anode, respectively.
(3)被電解液が金属の廃液であり、電解により前記廃
液中の金属を陰極粒子上に析出させ、回収する特許請求
の範囲第2項に記載の方法。
(3) The method according to claim 2, wherein the electrolyte is a metal waste liquid, and the metal in the waste liquid is deposited on cathode particles by electrolysis and recovered.
(4)被電解液が高純度金属の溶液であり、電解により
前記溶液中の金属を陰極粒子上に析出させ、精製する特
許請求の範囲第2項に記載の方法。
(4) The method according to claim 2, wherein the electrolyte is a high-purity metal solution, and the metal in the solution is precipitated onto cathode particles by electrolysis for purification.
(5)被電解液が金属の溶液であり、電解により前記溶
液中の金属を陰極粒子上にめっきするようにした特許請
求の範囲第2項に記載の方法。
(5) The method according to claim 2, wherein the electrolyte is a metal solution, and the metal in the solution is plated on the cathode particles by electrolysis.
(6)陰極粒子の材質が、金、銀、銅、ニッケル、鉛、
及びそれらの酸化物または硫化物、あるいはそれらの合
金、グラファイト、活性炭から選ばれたものである特許
請求の範囲第2項から第5項のいずれかに記載の方法。
(6) The material of the cathode particles is gold, silver, copper, nickel, lead,
and oxides or sulfides thereof, or alloys thereof, graphite, and activated carbon.
(7)陰極粒子が、グラファイト、活性炭、ガラス、セ
ラミックから選ばれた粒子上に金、銀、銅、ニッケル、
鉛から選ばれる金属をコーティングしたものである特許
請求の範囲第2項から第5項のいずれかに記載の方法。
(7) The cathode particles are coated with gold, silver, copper, nickel, etc. on particles selected from graphite, activated carbon, glass, and ceramic.
The method according to any one of claims 2 to 5, which is coated with a metal selected from lead.
(8)溶液中に含まれる金属が、金イオン及び/または
金シアン錯イオンである特許請求の範囲第1項から第3
項、第6項及び第7項のいずれかに記載の方法。
(8) Claims 1 to 3, wherein the metal contained in the solution is gold ion and/or gold cyanide complex ion.
7. The method according to any one of paragraphs 6 and 7.
(9)金属含有溶液が、金めっきまたは金エッチング廃
液である特許請求の範囲第1項から第3項及び第6項か
ら第8項のいずれかに記載の方法。
(9) The method according to any one of claims 1 to 3 and 6 to 8, wherein the metal-containing solution is a gold plating or gold etching waste solution.
(10)陰極粒子が回収される金属と同一成分である特
許請求の範囲第1項から第9項のいずれかに記載の方法
(10) The method according to any one of claims 1 to 9, wherein the cathode particles have the same composition as the metal to be recovered.
(11)主電極室、補助電極室、主電極粒子及び補助電
極が、それぞれ陽極室、陰極室、陽極粒子及び陰極で、
被電解液が有機化合物及び/またはシアン化合物含有溶
液であり、電解により有機化合物及び/またはシアン化
合物を分解するようにした特許請求の範囲第1項に記載
の方法。
(11) The main electrode chamber, the auxiliary electrode chamber, the main electrode particles and the auxiliary electrode are respectively an anode chamber, a cathode chamber, an anode particle and a cathode,
2. The method according to claim 1, wherein the electrolyte is a solution containing an organic compound and/or a cyanide compound, and the organic compound and/or cyanide compound is decomposed by electrolysis.
(12)隔膜を有孔性とし、補助電極室内に多数の粒体
を収容し電解するようにした特許請求の範囲第1項から
第11項のいずれかに記載の方法。
(12) The method according to any one of claims 1 to 11, wherein the diaphragm is porous and a large number of particles are housed in the auxiliary electrode chamber for electrolysis.
(13)隔膜を無孔性とした特許請求の範囲第1項から
第11項のいずれかに記載の方法。
(13) The method according to any one of claims 1 to 11, wherein the diaphragm is non-porous.
(14)隔膜で主電極室と補助電極室に区画してなる筒
状の電解槽本体の主電極室に主電極粒子を収容し、該主
電極室に被電解液を供給して主電極粒子を流動状態に維
持しながら被電解液を電解するようにした電解槽におい
て、所要個所に被電解液の供給口と抜出口を設け、かつ
、有孔性の補助電極を隔膜に密着させ、補助電極表面で
発生するガスを補助電極の背面に抜きながら電解するこ
とを特徴とする電解槽。
(14) Main electrode particles are accommodated in the main electrode chamber of the cylindrical electrolytic cell body which is divided into a main electrode chamber and an auxiliary electrode chamber by a diaphragm, and an electrolyte is supplied to the main electrode chamber, so that the main electrode particles In an electrolytic cell that electrolyzes the electrolyte while maintaining the electrolyte in a fluid state, a supply port and an outlet for the electrolyte are provided at required locations, and a porous auxiliary electrode is placed in close contact with the diaphragm. An electrolytic cell that performs electrolysis while extracting gas generated on the surface of the electrode to the back of the auxiliary electrode.
(15)筒状の隔膜で、電解槽本体を、内方の補助電極
室と外方の主電極室とに区画し、電解槽本体の外壁を主
電極とした特許請求の範囲第14項に記載の電解槽。
(15) The electrolytic cell body is divided into an inner auxiliary electrode chamber and an outer main electrode chamber by a cylindrical diaphragm, and the outer wall of the electrolytic cell body is used as the main electrode in claim 14. The electrolytic cell described.
(16)隔膜を有孔性とし、補助電極室内に多数の粒体
を収容した特許請求の範囲第14項又は第15項に記載
の電解槽。
(16) The electrolytic cell according to claim 14 or 15, wherein the diaphragm is porous and a large number of particles are housed in the auxiliary electrode chamber.
(17)隔膜を無孔性とした特許請求の範囲第14項又
は第15項に記載の電解槽。
(17) The electrolytic cell according to claim 14 or 15, wherein the diaphragm is non-porous.
(18)流動層内空間率が40〜90%である特許請求
の範囲第14項から第17項のいずれかに記載の電解槽
(18) The electrolytic cell according to any one of claims 14 to 17, wherein the fluidized bed has a porosity of 40 to 90%.
(19)補助電極電流密度が20A/dm^2以下であ
る特許請求の範囲第14項から第18項のいずれかに記
載の電解槽。
(19) The electrolytic cell according to any one of claims 14 to 18, wherein the auxiliary electrode current density is 20 A/dm^2 or less.
(20)主電極電流密度が20A/dm^2以下である
特許請求の範囲第14項から第19項のいずれかに記載
の電解槽。
(20) The electrolytic cell according to any one of claims 14 to 19, wherein the main electrode current density is 20 A/dm^2 or less.
(21)流動層内電流濃度が30A/l−流動層以下で
ある特許請求の範囲第14項から第20項のいずれかに
記載の電解槽。
(21) The electrolytic cell according to any one of claims 14 to 20, wherein the current concentration in the fluidized bed is 30 A/l-fluidized bed or less.
(22)主電極室の下部側面に主電極粒子取出口を設け
た特許請求の範囲第14項から第21項のいずれかに記
載の電解槽。
(22) The electrolytic cell according to any one of claims 14 to 21, wherein a main electrode particle outlet is provided on the lower side surface of the main electrode chamber.
JP14610584A 1984-07-16 1984-07-16 Electrolysis method using fluidized bed and electrolytic cell Granted JPS6126795A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP14610584A JPS6126795A (en) 1984-07-16 1984-07-16 Electrolysis method using fluidized bed and electrolytic cell
US06/674,063 US4569729A (en) 1984-07-16 1984-11-19 Electrolyzing method and electrolytic cell employing fluidized bed
CA000468351A CA1269635A (en) 1984-07-16 1984-11-21 Electrolyzing method and electrolytic cell employing fluidized bed
KR1019840008080A KR890002751B1 (en) 1984-07-16 1984-12-18 Electrolyzing process and electrolytic cell employing fluidized bed
EP84309163A EP0171478B1 (en) 1984-07-16 1984-12-31 Electrolyzing process and electrolytic cell employing fluidized bed
DE8484309163T DE3481777D1 (en) 1984-07-16 1984-12-31 ELECTROLYTIC METHOD AND ELECTROLYSIS CELL WITH A FLUID BED.
US06/800,528 US4626331A (en) 1984-07-16 1985-11-21 Electrolytic cell employing fluidized bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14610584A JPS6126795A (en) 1984-07-16 1984-07-16 Electrolysis method using fluidized bed and electrolytic cell

Publications (2)

Publication Number Publication Date
JPS6126795A true JPS6126795A (en) 1986-02-06
JPH0413432B2 JPH0413432B2 (en) 1992-03-09

Family

ID=15400259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14610584A Granted JPS6126795A (en) 1984-07-16 1984-07-16 Electrolysis method using fluidized bed and electrolytic cell

Country Status (1)

Country Link
JP (1) JPS6126795A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130792A (en) * 1986-11-21 1988-06-02 Matsuda Metal Kogyo Kk Electrolytic device
JPH0189961U (en) * 1987-12-04 1989-06-13
JP2003531300A (en) * 2000-04-19 2003-10-21 アムキナ ソチエタ ペル アチオニ Electrolysis cell and electrolysis method
JP2012522139A (en) * 2010-05-20 2012-09-20 インスー ジン Method and apparatus for extracting precious metal from waste inorganic granule catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117102A (en) * 1975-03-20 1976-10-15 Occidental Petroleum Corp Method of treating metallic ions
JPS52115650U (en) * 1976-02-29 1977-09-02
JPS533961A (en) * 1976-06-30 1978-01-14 Osaka Gas Co Ltd Dry denitration apparatus for combustion exhaust gas
JPS5392302A (en) * 1977-01-25 1978-08-14 Nat Res Inst Metals Electrolytic refining of metal
JPS5834171A (en) * 1981-08-21 1983-02-28 Hitachi Ltd Vacuum vapor-depositing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117102A (en) * 1975-03-20 1976-10-15 Occidental Petroleum Corp Method of treating metallic ions
JPS52115650U (en) * 1976-02-29 1977-09-02
JPS533961A (en) * 1976-06-30 1978-01-14 Osaka Gas Co Ltd Dry denitration apparatus for combustion exhaust gas
JPS5392302A (en) * 1977-01-25 1978-08-14 Nat Res Inst Metals Electrolytic refining of metal
JPS5834171A (en) * 1981-08-21 1983-02-28 Hitachi Ltd Vacuum vapor-depositing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130792A (en) * 1986-11-21 1988-06-02 Matsuda Metal Kogyo Kk Electrolytic device
JPH0189961U (en) * 1987-12-04 1989-06-13
JP2003531300A (en) * 2000-04-19 2003-10-21 アムキナ ソチエタ ペル アチオニ Electrolysis cell and electrolysis method
JP2012522139A (en) * 2010-05-20 2012-09-20 インスー ジン Method and apparatus for extracting precious metal from waste inorganic granule catalyst

Also Published As

Publication number Publication date
JPH0413432B2 (en) 1992-03-09

Similar Documents

Publication Publication Date Title
KR890002751B1 (en) Electrolyzing process and electrolytic cell employing fluidized bed
US3981787A (en) Electrochemical circulating bed cell
EP0309389A2 (en) Electrolytic precious metal recovery system
US4911804A (en) Electrochemical reactor for copper removal from barren solutions
US4134806A (en) Metal anodes with reduced anodic surface and high current density and their use in electrowinning processes with low cathodic current density
US4560453A (en) Efficient, safe method for decoppering copper refinery electrolyte
US4612093A (en) Method and apparatus for purification of gold
JPS6126795A (en) Electrolysis method using fluidized bed and electrolytic cell
JP2520674B2 (en) Method and device for recovering metal supported on carrier
JPS5844157B2 (en) Purification method of nickel electrolyte
JP4501726B2 (en) Electrowinning of iron from acidic chloride aqueous solution
EP0387907A1 (en) Method and apparatus for recovering silver from waste photographic processing solutions
JPH059799A (en) Method and device for supplying metal ion in sulfuric acid-bath zn-ni plating
JPH11286796A (en) Fluidized-bed electrolytic cell, method for recovering and removing metal such as nickel and treatment of water using the cell
JP2001029956A (en) Method for electrolysis
JPH11229172A (en) Method and apparatus for producing high-purity copper
JPS641961Y2 (en)
JPS6220891A (en) Method for electrolytically collecting metal from aqueous solution containing minor amount of metal
JPH0474435B2 (en)
JPH10174975A (en) Fixed bed type porous electrode-containing electrolytic bath and method and apparatus for treating water using the same
KR101048790B1 (en) Separation of Platinum Group Metals Using a Flow Electrolyzer
RU2763059C1 (en) Production of aluminium with a moving electrolyte in an electrolyser
JP2570076B2 (en) Manufacturing method of high purity nickel
JP2000157978A (en) Electrochemical water treating device and method therefor
KR101941558B1 (en) Method for electrolytically refining of coarse copper recovered from scrap of a printed circuit board

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term