JPS6126735A - Beneficiated ore burner for self-fluxing smelting furnace - Google Patents

Beneficiated ore burner for self-fluxing smelting furnace

Info

Publication number
JPS6126735A
JPS6126735A JP14538484A JP14538484A JPS6126735A JP S6126735 A JPS6126735 A JP S6126735A JP 14538484 A JP14538484 A JP 14538484A JP 14538484 A JP14538484 A JP 14538484A JP S6126735 A JPS6126735 A JP S6126735A
Authority
JP
Japan
Prior art keywords
concentrate
burner
chute
cone
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14538484A
Other languages
Japanese (ja)
Other versions
JPH0475286B2 (en
Inventor
Yukio Shibata
柴田 幸男
Kenichi Moriyama
森山 健一
Nobumasa Iemori
伸正 家守
Harumasa Kurokawa
晴正 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP14538484A priority Critical patent/JPS6126735A/en
Publication of JPS6126735A publication Critical patent/JPS6126735A/en
Publication of JPH0475286B2 publication Critical patent/JPH0475286B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve the efficiency in the reaction between concentrates and oxygen and to reduce the time of reaction by forming the lower end part of the tubular concentrate chute provided at the center of the main body of a burner into a specified shape, and distributing the concentrates uniformly in a flame. CONSTITUTION:A concentrate chute 4, which is positioned at the center of the main body 1 of a burner and extends to a venturi throttling part 2 of the main body 1, is provided to the titled burner. High-concn. oxygen is blown into the chute 4, and the gaseous reactant is blown into the upper part of a reaction shaft from between the chute 4 and the throttling part 2. The lower end surface 14 of a concentrate diffusing cone 13 which surrounds a heavy oil burner 5 arranged along the center line of said chute 4 is in the same height as the lower end 15 of the chute 4. Besides, the angle between the inclined surface of the cone 13 and the horizontal surface is made almost equal to the angle between a line, connecting the inner surface of the lower end of the chute 4 and the inner surface of the lower end of a burner cone 3, and the horizontal surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自溶製錬炉において、反応用空気の一部を高濃
度の酸素で置換したときに精鉱を火炎内ルこ均一に分散
させ、その燃焼性を改良するのに適した精鉱バーナーの
構造に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a flash smelting furnace, in which a part of the reaction air is replaced with high-concentration oxygen, and concentrate is uniformly dispersed in the flame. The present invention relates to a structure of a concentrate burner suitable for improving the combustibility of the concentrate.

〔従来の技術〕[Conventional technology]

自溶炉においては乾燥した精鉱、例えば銅精鉱を反応用
空気又は酸素富化空気と共にリアクションシャフトの上
部に設けられた精鉱バーナーから吹き込み、瞬間的に精
鉱を酸化溶融し銅等の有価金属を鋏として濃縮する。こ
の場釡、精鉱と反応用空気又は酸素富化空気とが均一に
混合し、リアクシコンシャフト中を落下する極めて短時
間のうちに均一な酸化反応が進行するようにすることが
重要である。この混合状態が悪く局部的に未反応、未溶
解物が生成すると、これがリアクションシャフト下部の
セトラーに堆積して皺の生成を妨げたり、被温度、鋏品
位の大きな変動を生じたり、ダストの炉外への飛散量が
多くなったりして操炉上の困難を招くのみならず、反応
が集中して起る部分では局部的加熱が起り、リアクショ
ンシャフトの煉瓦を損傷する結果となる。
In a flash-smelting furnace, dry concentrate, such as copper concentrate, is blown together with reaction air or oxygen-enriched air from a concentrate burner installed at the top of the reaction shaft, and the concentrate is instantly oxidized and melted to produce copper, etc. Concentrate valuable metals as scissors. In this case, it is important to ensure that the concentrate and the reaction air or oxygen-enriched air are uniformly mixed so that a uniform oxidation reaction can proceed within a very short time as the concentrate falls through the reactor shaft. . If this mixing condition is poor and unreacted or undissolved materials are generated locally, they will accumulate in the settler at the bottom of the reaction shaft and prevent the formation of wrinkles, cause large fluctuations in temperature and scissor quality, and cause dust to be removed from the furnace. This not only causes difficulties in operating the reactor due to an increase in the amount of scattering to the outside, but also causes local heating in areas where reactions occur in a concentrated manner, resulting in damage to the bricks of the reaction shaft.

このような均一な混合と反応状態を得るためには、精鉱
−シュートから落下する精鉱に吹き込まれる反応用気体
の流速を一定以上に保って、精鉱シュート出口部の精鉱
バーナーコーン内に安定した火炎を形成させると共に火
炎内に精鉱を集中し、且つ均一に分散させることが必要
である。
In order to obtain such uniform mixing and reaction conditions, the flow rate of the reaction gas blown into the concentrate falling from the concentrate-chute must be maintained at a certain level or higher, and the flow rate of the reaction gas must be maintained at a certain level or higher, and the flow rate of the reaction gas must be kept at a certain level or higher. It is necessary to form a stable flame and to concentrate and uniformly disperse the concentrate within the flame.

従来精鉱を火炎内に均一に分散させ、安定した燃焼状態
を得るために精鉱シュート出口の外部に精鉱の分散コー
ンと呼ぶ分散装置が取り付けられていた。
Conventionally, a dispersion device called a concentrate dispersion cone was attached to the outside of the concentrate chute outlet in order to uniformly disperse the concentrate within the flame and obtain stable combustion conditions.

第3図は従来の精鉱バーナーを示す断面図で、精鉱バー
ナー本体1の下部はベンチュリー状絞り部2を有し、そ
の下方はすそ拡がりになったバーナーコーン3が形成さ
れている。精鉱バーナー本体1内の中央に管状の精鉱シ
ュート4が、その先端をベンチュリー状絞り部2よりゃ
一下方に突出するように垂設し、更に精鉱シュート4の
中心を貫通して重油バーナー5がバーナーコーン3の出
口部付近にその先端を開口している。重油バーナー5の
精鉱シュート4の出口より下方のバーナーコーン8の部
分には、落下する精鉱を分散する分散コーン6が設けら
れている。送風管7を通って供給される反応用空気が精
鉱シュート4の周囲のベンチュリー状絞り部2から、精
鉱シュート4を通って落下する精鉱に吹き込まれるよう
に構成されている。
FIG. 3 is a cross-sectional view of a conventional concentrate burner, in which the lower part of the concentrate burner main body 1 has a venturi-shaped constriction part 2, and below that a burner cone 3 with a widened base is formed. A tubular concentrate chute 4 is installed vertically in the center of the concentrate burner body 1 so that its tip protrudes one step below the venturi-shaped constriction part 2, and a heavy oil burner is inserted through the center of the concentrate chute 4. 5 has its tip open near the outlet of the burner cone 3. A dispersion cone 6 for dispersing falling concentrate is provided in a portion of the burner cone 8 below the outlet of the concentrate chute 4 of the heavy oil burner 5. It is configured such that reaction air supplied through the blast pipe 7 is blown into the concentrate falling through the concentrate chute 4 from a venturi-shaped constriction 2 around the concentrate chute 4.

分散コーン6の部分の詳細を第、4図について説明する
と、円錐状の分散コーン6の下面には円筒状の突出部8
が設けられ、止めネジ9により分散コーン6が重油バー
ナー5の外筒管に保持され、重油バーナー5の先端部に
はバーナーチップ10が分散コーン6の突出部8よりも
外側に付設されている。
The details of the dispersion cone 6 will be explained with reference to FIGS.
The dispersion cone 6 is held in the outer tube of the heavy oil burner 5 by a set screw 9, and a burner tip 10 is attached to the tip of the heavy oil burner 5 on the outside of the protrusion 8 of the dispersion cone 6. .

近時精鉱処理量の増加やエネルギーコストの低下の為に
酸素富化空気を使用するようになってきて、この酸素富
化用の純度の高い酸素を、精鉱シュート4内に直接導入
する方法も考えられ、発明者等はこれに適した精鉱バー
ナーの構造について既に出願したが、従来の精鉱バーナ
ーにおける°分散コーンの位置、形状では、精鉱シュー
トより導入される酸素のためフォーカスが上昇し、重油
バーナー直下で精鉱が燃焼する様になったが・分散コー
ン下部において発生する乱流によってバーナーチップに
半溶融精鉱が付着し、更に時間が経つと、バーナーコー
ンへ半溶融精鉱がブリッジを形成し、あるいは半溶融精
鉱が分散コーンから重油バーナーの外筒管に、更には精
鉱シュート内まで成長し、精鉱シュートを閉塞するに至
るような問題点が発生した。
Recently, oxygen-enriched air has been used to increase the throughput of concentrate and reduce energy costs, and this highly pure oxygen for oxygen enrichment is directly introduced into the concentrate chute 4. Another method has been considered, and the inventors have already filed an application for the structure of a concentrate burner suitable for this, but the position and shape of the dispersion cone in conventional concentrate burners do not allow the focus to be focused due to the oxygen introduced from the concentrate chute. As a result, the concentrate started to burn directly under the heavy oil burner, but due to the turbulent flow generated at the bottom of the dispersion cone, the semi-molten concentrate adhered to the burner tip, and as time passed, the semi-molten concentrate was transferred to the burner cone. Problems occurred where concentrate formed bridges or semi-molten concentrate grew from the dispersion cone into the outer tube of the heavy oil burner and even into the concentrate chute, leading to blockage of the concentrate chute. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は前述の問題点を解決し、精鉱シュート先端部に
形成された火炎内に精鉱を均一に分布させることにより
精鉱と酸素との反応効率を高め、反応終了時間を短縮す
ることのできる精鉱バーナーを提供することを目的とす
るものである。
The present invention solves the above-mentioned problems, improves the efficiency of the reaction between the concentrate and oxygen, and shortens the reaction completion time by uniformly distributing the concentrate within the flame formed at the tip of the concentrate chute. The purpose is to provide a concentrate burner that can

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するために発明者等は種々検討の結果、
精鉱バーナーの構造をバーナー本体内中、央に位置し、
バーナー本体のベンチュリー状絞り部に延長して設けら
れた管状の精鉱シュートを有し、該精鉱シュート内には
高濃度酸素を吹込み、且つ該精鉱シュートとベンチュリ
ー状絞り部との間から反応用気体をリアクションシャフ
トの上部に吹き込む自溶製錬炉用精鉱バーナーにおいて
、精鉱シュート中心線に沿って配置した重油バーナーを
取り囲んで設けられた精鉱分散コーンの下端面を精鉱シ
ュート下端と実質上同一高さの平面とし、且つ該精鉱分
散コーンの傾斜面の水平面となす角度を、精鉱シュート
下端内面と、バーナーコーン下端内面とを結ぶ線と水平
面とのなす角度と実質的に同一とした構成にしたもので
ある。
In order to achieve this purpose, the inventors have conducted various studies and found that
The structure of the concentrate burner is located in the center of the burner body,
It has a tubular concentrate chute extending from the venturi-shaped constriction part of the burner body, and high concentration oxygen is blown into the concentrate chute, and between the concentrate chute and the venturi-shaped constriction part. In a concentrate burner for a flash smelting furnace in which reaction gas is blown into the upper part of the reaction shaft, the bottom surface of a concentrate dispersion cone surrounding a heavy oil burner placed along the center line of the concentrate chute is The plane is substantially at the same height as the lower end of the chute, and the angle between the inclined surface of the concentrate dispersion cone and the horizontal plane is the angle between the horizontal plane and a line connecting the inner surface of the lower end of the concentrate chute and the inner surface of the lower end of the burner cone. They have substantially the same configuration.

本発明の精鉱バーナーの構造をその一実施例について説
明すると、第1図において精鉱バーナー本体1内の中央
に設けられた管状の精鉱シュート手の内側に重油バーナ
ー5を取り囲んで酸素吹込管11が設けられ、酸素吹込
管11出口部は中央部に開口面積調整用スペーサー12
により開口面積をせばめ、その吹出速度を上昇させ必要
によっては旋回流を与えうるようになっている。13は
電油バーナ−5の下端外周に取付けた精鉱分散コーンで
、精鉱分散コーン13の下端面14は精鉱シュート4の
下端15と実質上同一高さの平面となっている。16は
流速調節コーンで精鉱バーナー本体1の上面を貫通する
複数の吊りロッド17に固着されて、精鉱バーナー本体
1の上面からベンチュリー状絞り部2の近傍に吊り下げ
られており、止め金具18によってその固定位置を変え
ることによって、吊りロッド17の精鉱バーナー本体1
の内部に延長する長さを変え、流速調節コーン16の位
置を精鉱シュート4の外面に沿って上下にずらすことが
できるようになっていて、反応用空気が精鉱シュート4
周囲のベンチュリー状絞り部2を通過する速度を調節で
きるようになっている。
To explain the structure of the concentrate burner of the present invention with reference to one embodiment thereof, as shown in FIG. A pipe 11 is provided, and the outlet of the oxygen blowing pipe 11 is provided with a spacer 12 for adjusting the opening area in the center.
This makes it possible to narrow the opening area, increase the blowing speed, and provide a swirling flow if necessary. Reference numeral 13 denotes a concentrate dispersing cone attached to the outer periphery of the lower end of the electro-oil burner 5, and the lower end surface 14 of the concentrate dispersing cone 13 is a flat surface substantially at the same height as the lower end 15 of the concentrate chute 4. A flow rate adjusting cone 16 is fixed to a plurality of hanging rods 17 passing through the upper surface of the concentrate burner main body 1, and is suspended from the upper surface of the concentrate burner main body 1 near the venturi-shaped throttle part 2. By changing its fixing position by 18, the concentrate burner body 1 of the hanging rod 17
By changing the length of the cone extending into the interior of the concentrate chute 4, the position of the flow rate regulating cone 16 can be shifted up and down along the outer surface of the concentrate chute 4, so that the reaction air flows into the concentrate chute 4.
The speed at which it passes through the surrounding Venturi-shaped constriction section 2 can be adjusted.

第2図は精鉱バーナー本体1の精鉱シュート4下端部付
近の部分的説明図で、バーナーチップ1゜を実質上精鉱
分散コーン18内に収容して精鉱分散コーン13の下端
面14よりは殆んど突出しないようにし、第4図に示す
ような止めネジ9を廃止した。
FIG. 2 is a partial explanatory view of the vicinity of the lower end of the concentrate chute 4 of the concentrate burner body 1, in which the burner tip 1° is substantially housed within the concentrate dispersing cone 18 and the lower end surface 14 of the concentrate dispersing cone 13 is shown in FIG. In addition, the set screw 9 as shown in FIG. 4 was eliminated.

精鉱分散コーン13の位置を前記のようにした理由は、
精鉱分散コーン13の下端面1Φが精鉱シュート4の下
端15より内部に入り過ぎると、精鉱シュート4内で高
濃度酸素と精鉱とが混合されているため着火しやすく、
その結果精鉱分散コーン13へ精鉱が融着して精鉱流路
の閉塞が起り易い。
The reason why the concentrate dispersion cone 13 is positioned as described above is as follows.
If the lower end surface 1Φ of the concentrate dispersion cone 13 goes too far inside the lower end 15 of the concentrate chute 4, it will easily ignite because the concentrate is mixed with high concentration oxygen in the concentrate chute 4.
As a result, the concentrate is fused to the concentrate dispersion cone 13 and the concentrate flow path is likely to be clogged.

また従来のように分散コーン6下端が精鉱シュート4外
部に出ているときには、精鉱シュート4と分散コーン6
の間隙が大となり、精鉱シュートΦ出口での充分な酸素
流速が保てず、逆火の危険性を生ずるので、低負荷操業
を行なうようなときは精鉱シュート4を経由して高濃度
酸素を供給することはできないからである。
In addition, when the lower end of the dispersion cone 6 protrudes outside the concentrate chute 4 as in the conventional case, the concentrate chute 4 and the dispersion cone 6
Due to the large gap, it is not possible to maintain a sufficient oxygen flow rate at the exit of the concentrate chute Φ, creating a risk of backfire. This is because oxygen cannot be supplied.

精鉱分散コーン13の下端面14が精鉱シュート4の下
端15と実質上同じ高さとするのが良いが、下端面14
が内側に精鉱シュート4の内径の1/8程度ひっこみ、
あるいは外側へ精鉱シュート4の内径の1/4程度突出
する位になってもよい。
The lower end surface 14 of the concentrate dispersion cone 13 is preferably at substantially the same height as the lower end 15 of the concentrate chute 4;
is recessed inside about 1/8 of the inner diameter of the concentrate chute 4,
Alternatively, it may protrude outward by about 1/4 of the inner diameter of the concentrate chute 4.

また第2図において精鉱分散コーン13の円錐部の傾斜
面の水平面となす角αは、精鉱シュート4の下端15の
内面と、バーナーコーン3の下端内面とを結ぶ線と水平
面とのなす角βと実質上同一とした。精鉱分散コーン1
3の傾斜を前記のようにした理由は、従来の分散コーン
6のようにαが小だと、分散コーン6の表面に沿ってす
べり落ちた精鉱がバーナーコーン3上に衝突して、バー
ナ−コーン3内面へ融着し送風管7から送られてくる反
応用空気又は酸素富化空気の流通の抵抗となる他精鉱流
路の閉塞をももたらす。また反対に精鉱分散コーン13
のαが大きすぎると精鉱が充分に分散せず、一部の精鉱
は未溶融状態でセトラ一部へ落下して堆積し種々の障害
を生ずる。
In addition, in FIG. 2, the angle α between the inclined surface of the conical part of the concentrate dispersion cone 13 and the horizontal plane is the angle α between the horizontal plane and the line connecting the inner surface of the lower end 15 of the concentrate chute 4 and the lower end inner surface of the burner cone 3. It is assumed to be substantially the same as the angle β. Concentrate dispersion cone 1
The reason why the slope of 3 is set as described above is that if α is small as in the conventional dispersion cone 6, the concentrate that has slipped down along the surface of the dispersion cone 6 will collide with the burner cone 3, causing the burner - It fuses to the inner surface of the cone 3 and becomes a resistance to the flow of reaction air or oxygen-enriched air sent from the blast pipe 7, and also causes blockage of the concentrate flow path. On the other hand, concentrate dispersion cone 13
If α is too large, the concentrate will not be sufficiently dispersed, and some of the concentrate will fall in an unmolten state onto a part of the settler and accumulate, causing various problems.

従って精鉱分散コーン13の傾斜角αは前記のβと実質
上同一とすることが最も好ましく、β15°の範囲内と
することが好ましい。精鉱分散コーン13の底面の直径
については精鉱シュートの内径を勘案して適当な酸素吹
出し速度をとるよう、また経験的に精鉱分散コーン13
と精鉱シュート4間が精鉱で閉塞しないような値を決め
ることができる。
Therefore, it is most preferable that the inclination angle α of the concentrate dispersion cone 13 is substantially the same as the above-mentioned β, and preferably within the range of β15°. Regarding the diameter of the bottom surface of the concentrate dispersion cone 13, it is necessary to take the inner diameter of the concentrate chute into consideration and to obtain an appropriate oxygen blowing speed, and also based on experience.
It is possible to determine a value such that the space between and the concentrate chute 4 is not clogged with concentrate.

〔実施例〕〔Example〕

以下実施例について説明する。 Examples will be described below.

実施例1 第1図に示す本発明に従った精鉱バーナー4本を備えた
自溶炉で、精鉱分散コーン13の水平面とのなす角は7
0°で、精鉱シュート4下端15内面と、バーナーコー
ン3の下端内面とを結ぶ線と水平面とのなす角と等しい
ものを用い、且つ精鉱分散コーン13の下面は精鉱シュ
ート4下端15と同高とした精鉱バーナーを用い、銅精
鉱の処理量は49.6t/HX酸素2純度90%の酸素
富化用の酸素4900m /Hを、精鉱シュート4から
3000m/HN送風空気中に混入して1900 m 
/Hを使用して操業した。操業のデーターを第1表に示
す。この操業においては精鉱分散コーン13への半溶融
精鉱の融着は認められず、またバーナーコーン3への融
着もなくセトラ一部への未燃鉱石の堆積も認められなか
った。
Example 1 In a flash furnace equipped with four concentrate burners according to the present invention shown in FIG. 1, the angle formed by the concentrate dispersion cone 13 with the horizontal plane is 7.
0°, which is equal to the angle formed by the horizontal plane and the line connecting the inner surface of the lower end 15 of the concentrate chute 4 and the inner surface of the lower end of the burner cone 3, and the lower surface of the concentrate dispersion cone 13 is the lower end 15 of the concentrate chute 4. Using a concentrate burner with the same height as the copper concentrate, the throughput of copper concentrate was 49.6 t/H 1900 m
/H. Operational data are shown in Table 1. In this operation, no fusion of semi-molten concentrate to the concentrate dispersion cone 13 was observed, no fusion to the burner cone 3, and no accumulation of unburned ore on a part of the settler.

比較例1 第3図に示す従来の精鉱バーナー4本を備えた自溶炉で
、分散コーン6は水平面とのなす角度が800で底面が
図に示すように下方に突出し、更にその下部にバーナー
チップが突出した形式のものを用い、分散コーン6の円
錐部の下端は精鉱シュート4下端とバーナーコーン3下
端との丁度中間にあるように配置されている。銅精鉱の
処理量は50、4 t/H、酸素の供給量は実施例1と
同量を供給して操業した。この操業では分散コーン6へ
半溶融状の精鰐の付着が多く、炉外へ飛散するダストの
発生率も多いことが認められ、精鉱分散コーンの機能が
不充分なことを示している。
Comparative Example 1 In a conventional flash-smelting furnace equipped with four concentrate burners as shown in Fig. 3, the dispersion cone 6 has an angle of 800 with the horizontal plane, the bottom protrudes downward as shown in the figure, and A type with a protruding burner tip is used, and the lower end of the conical portion of the dispersion cone 6 is arranged exactly midway between the lower end of the concentrate chute 4 and the lower end of the burner cone 3. The processing amount of copper concentrate was 50.4 t/H, and the same amount of oxygen as in Example 1 was supplied for operation. In this operation, it was observed that a large amount of semi-molten refined crocodile adhered to the dispersing cone 6, and that a large amount of dust was generated outside the furnace, indicating that the function of the concentrate dispersing cone was insufficient.

比較例2.3 実施例1と同様に第1図に示す精鉱バーナー4本を備え
た自溶炉で、精鉱シュート4下端15内面と、バーナ−
コーン3下端内面とを結ぶ線と水平面とのなす角は70
°だが、精鉱分散コーン18の水平面とのなす角を夫々
60°、8o0とした精鉱バーナーを用い、銅精鉱処理
量、酸素供給量については夫々第1表に示すように実施
例1と比較的近い値を用いて操業したこの例では精鉱分
散コーン18への半溶融精鉱の付着は認められなかった
が、精鉱分散コーンの角度60°の場合にはバーナーコ
ーン3への半溶融精鉱が付着し、長時間の操業には支障
があった。一方精鉱分散コーン13の角□度が80°の
場合には半溶融精鉱の付着は精鉱分散コーン13及びバ
ーナーコーン3部分には認められなかったが、セトラ一
部に未燃鉱石の堆積が認められ、反応が充分でないこと
が明らかになった。
Comparative Example 2.3 Similar to Example 1, in a flash furnace equipped with four concentrate burners shown in FIG.
The angle between the line connecting the inner surface of the lower end of cone 3 and the horizontal plane is 70
However, a concentrate burner was used in which the angles formed with the horizontal plane of the concentrate dispersion cone 18 were 60° and 8o0, respectively, and the amount of copper concentrate treated and the amount of oxygen supplied were as shown in Example 1, respectively, as shown in Table 1. In this example, which was operated using a value relatively close to , no adhesion of semi-molten concentrate to the concentrate dispersion cone 18 was observed; Semi-molten concentrate adhered to the plant, making long-term operation difficult. On the other hand, when the angle □ degree of the concentrate dispersion cone 13 was 80°, no adhesion of semi-molten concentrate was observed on the concentrate dispersion cone 13 and burner cone 3, but unburned ore was observed on a part of the settler. Deposition was observed, and it became clear that the reaction was not sufficient.

比較例1〜3の操業データーを第1表に併記する。The operational data of Comparative Examples 1 to 3 are also listed in Table 1.

第    1    表 (発明の効果〕 上表の結果から明らかなように、本発明の精鉱バーナー
を使用すれば精鉱分散コーン又はバーナーコーンへの半
溶融状態の精鉱の融着は認められず、またセトラ一部へ
の未反応精鉱の堆積も認められず、精鉱の分散が極めて
良好に行なわれ且つバーナーコーン部で反応気体と充分
混合されて燃焼がうまく行なわれていることを示してい
る。
Table 1 (Effects of the Invention) As is clear from the results in the above table, when the concentrate burner of the present invention is used, no fusion of semi-molten concentrate to the concentrate dispersion cone or burner cone is observed. Furthermore, no accumulation of unreacted concentrate was observed in a part of the settler, indicating that the concentrate was dispersed very well and was sufficiently mixed with the reactant gas in the burner cone, resulting in successful combustion. ing.

しかしながら比較例に示すように精鉱分散コーンの位置
は本発明と同じであっても分散コーンの角度が適切でな
かった場合や、従来の精鉱バーナーのように精鉱分散コ
ーンが精鉱シュートより外方に設けられている場合には
、セトラ一部への未燃精鉱の堆積、あるいは半溶融精鉱
の精鉱分散コーン、バーナーコーンへの融着が認められ
る等の障害があることが判った。
However, as shown in the comparative example, even if the position of the concentrate dispersion cone is the same as in the present invention, there are cases where the angle of the dispersion cone is not appropriate, or when the concentrate dispersion cone is not connected to the concentrate shoot as in a conventional concentrate burner. If it is installed further outward, there may be problems such as accumulation of unburned concentrate on a part of the settler or fusion of semi-molten concentrate to the concentrate dispersion cone or burner cone. It turns out.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による自溶製錬炉用精鉱バーナーの一実
施例の断面図、第2図は第1図の精鉱シュート4下端付
近の部分的説明図、第3図は従来の自溶製錬炉用精鉱バ
ーナーの断面図、第4図は第3図の分散コーン6とバー
ナーチップ10部分の詳細図である。 1・・精鉱バーナー本体、2・・ベンチュリー状絞り部
、3・・バーナーコーン、4・・精鉱シュート、5・・
重油バーナー、6・・分散コーン、7・・送風管、8・
・突出部、9・・止めネジ、10・・バーナーチップ、
11・・酸素吹込管、12・・開口面積調整用スペーサ
ー1 13・・精鉱分散コーン、14・・下端面、15・・下
端116・・流速調節コーン、17・・吊りロッド、1
8・・止め金具。 14F堝l 第2図 第3図 第4図
FIG. 1 is a sectional view of an embodiment of a concentrate burner for a flash smelting furnace according to the present invention, FIG. 2 is a partial explanatory view of the vicinity of the lower end of the concentrate chute 4 in FIG. 1, and FIG. A sectional view of a concentrate burner for a flash smelting furnace, FIG. 4 is a detailed view of the dispersion cone 6 and burner tip 10 portions of FIG. 3. 1. Concentrate burner body, 2. Venturi-shaped throttle section, 3. Burner cone, 4. Concentrate chute, 5.
Heavy oil burner, 6.Dispersion cone, 7.Blow pipe, 8.
・Protruding part, 9... Set screw, 10... Burner tip,
11... Oxygen blowing pipe, 12... Spacer for adjusting opening area 1 13... Concentrate dispersion cone, 14... Lower end surface, 15... Lower end 116... Flow rate adjusting cone, 17... Hanging rod, 1
8. Stopping metal fittings. 14F Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)バーナー本体内中央に位置し、バーナー本体のベ
ンチュリー状絞り部に延長して設けられた管状の精鉱シ
ュートを有し、該精鉱シュート内には高濃度酸素を吹込
み、且つ該精鉱シュートとベンチュリー状絞り部との間
から反応用気体をリアクションシャフトの上部に吹き込
む自溶製錬炉用精鉱バーナーにおいて、精鉱シュート中
心線に沿って配置した重油バーナーを取り囲んで設けら
れた精鉱分散コーンの下端面を精鉱シュート下端と実質
上同一高さの平面とし、且つ該精鉱分散コーンの傾斜面
の水平面となす角度を、精鉱シュート下端内面と、バー
ナーコーン下端内面とを結ぶ線と水平面とのなす角度と
実質的に同一としたことを特徴とする自溶製錬炉用精鉱
バーナー。
(1) It has a tubular concentrate chute that is located in the center of the burner body and extends to the venturi-shaped constriction part of the burner body, and high concentration oxygen is blown into the concentrate chute, and In a concentrate burner for a flash smelting furnace that blows reaction gas into the upper part of a reaction shaft from between a concentrate chute and a venturi-shaped constriction part, a burner is provided surrounding a heavy oil burner arranged along the center line of the concentrate chute. The lower end surface of the concentrate dispersion cone is a plane substantially at the same height as the lower end of the concentrate chute, and the angle between the horizontal plane of the inclined surface of the concentrate dispersion cone and the inner surface of the lower end of the concentrate chute and the inner surface of the lower end of the burner cone is A concentrate burner for a self-smelting smelting furnace, characterized in that the angle between the line connecting the lines and the horizontal plane is substantially the same.
JP14538484A 1984-07-13 1984-07-13 Beneficiated ore burner for self-fluxing smelting furnace Granted JPS6126735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14538484A JPS6126735A (en) 1984-07-13 1984-07-13 Beneficiated ore burner for self-fluxing smelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14538484A JPS6126735A (en) 1984-07-13 1984-07-13 Beneficiated ore burner for self-fluxing smelting furnace

Publications (2)

Publication Number Publication Date
JPS6126735A true JPS6126735A (en) 1986-02-06
JPH0475286B2 JPH0475286B2 (en) 1992-11-30

Family

ID=15383993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14538484A Granted JPS6126735A (en) 1984-07-13 1984-07-13 Beneficiated ore burner for self-fluxing smelting furnace

Country Status (1)

Country Link
JP (1) JPS6126735A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142446U (en) * 1988-03-23 1989-09-29
JPH02153030A (en) * 1988-12-02 1990-06-12 Sumitomo Metal Mining Co Ltd Flash smelting and refining furnace
JP2010538162A (en) * 2007-09-05 2010-12-09 オウトテック オサケイティオ ユルキネン Concentrate burner
US8156709B2 (en) * 2004-03-17 2012-04-17 Technological Resources Pty. Limited Direct smelting plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142446U (en) * 1988-03-23 1989-09-29
JPH0339483Y2 (en) * 1988-03-23 1991-08-20
JPH02153030A (en) * 1988-12-02 1990-06-12 Sumitomo Metal Mining Co Ltd Flash smelting and refining furnace
US8156709B2 (en) * 2004-03-17 2012-04-17 Technological Resources Pty. Limited Direct smelting plant
JP2010538162A (en) * 2007-09-05 2010-12-09 オウトテック オサケイティオ ユルキネン Concentrate burner

Also Published As

Publication number Publication date
JPH0475286B2 (en) 1992-11-30

Similar Documents

Publication Publication Date Title
US5723027A (en) Method for preparing a powder in a plasma arc and device for carrying out said method
FI79348B (en) ANORDING FOER BILDANDE AV TAENDBARA FASTMATERIAL / GAS-SUSPENSIONER.
US8632621B2 (en) Method for melting a solid charge
AU610926B2 (en) Flame treatment
AU641463B2 (en) Method and apparatus for feeding pulverous solid materials and reaction gas into a smelting furnace
WO1997006394A1 (en) Metal fusion furnace and metal fusing method
EP2002024B1 (en) Method and equipment for treating process gas
US3734719A (en) Oxy-fuel process for melting aluminum
US4848754A (en) Flash smelting furnace
CA2334392A1 (en) Melting method and device using orientable multipurpose lance/burner units
JPS6126735A (en) Beneficiated ore burner for self-fluxing smelting furnace
EP1203754B1 (en) Process and vertical furnace for producing glass beads
JPH0435533B2 (en)
CN102459102A (en) Through-port oxy-fuel burner
US6354110B1 (en) Enhanced heat transfer through controlled interaction of separate fuel-rich and fuel-lean flames in glass furnaces
JP2012224880A (en) Concentrate burner, and flash smelting furnace
JPS5818083A (en) Plasma melting furnace
KR930012179B1 (en) Method for operation of flash-smelting furnace
JP3984165B2 (en) Method and apparatus for supplying solid raw material and oxidizing gas to suspension melting furnace
JPH06506759A (en) Methods involving lances and lances for immersion in thermometallurgical baths
US4738702A (en) Glass melting in a rotary melter
JPS6342126Y2 (en)
US5174746A (en) Method of operation of flash smelting furnace
JP3968974B2 (en) Concentrate burner
JP3381241B2 (en) Operating method of flash furnace and concentrate burner used for the method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term