JPS6126419A - Breaker controller - Google Patents

Breaker controller

Info

Publication number
JPS6126419A
JPS6126419A JP14676184A JP14676184A JPS6126419A JP S6126419 A JPS6126419 A JP S6126419A JP 14676184 A JP14676184 A JP 14676184A JP 14676184 A JP14676184 A JP 14676184A JP S6126419 A JPS6126419 A JP S6126419A
Authority
JP
Japan
Prior art keywords
circuit
load
circuit breaker
residual
overvoltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14676184A
Other languages
Japanese (ja)
Inventor
浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14676184A priority Critical patent/JPS6126419A/en
Publication of JPS6126419A publication Critical patent/JPS6126419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、遮断器制御装置、特に、電力系統の復旧時
に、過電圧の発生を事前に推定して遮断器・を制御する
遮断器制御装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a circuit breaker control device, and particularly to a circuit breaker control device that controls a circuit breaker by estimating the occurrence of overvoltage in advance when a power system is restored. It is something.

〔従来技術〕[Prior art]

電力系統における負荷系統の代表的な構成は第1図に示
す通りである。図において、lは健全系統、2はこの健
全系統に接続された遮断器、3は復旧されるべき負荷母
線で、遮断器コな投入することによって復1すされる。
A typical configuration of a load system in an electric power system is shown in FIG. In the figure, l is a healthy system, 2 is a circuit breaker connected to this healthy system, and 3 is a load bus bar to be restored, which is restored by turning on the circuit breaker.

ダは復旧されるべき負荷、5は負荷ダに接続された力率
改善用コンデンサ、6はケーブル等よりなる送電線りの
対地静電容量を示している。
DA is the load to be restored, 5 is a power factor correction capacitor connected to the load DA, and 6 is the ground capacitance of the power transmission line consisting of cables and the like.

このような電力系統において、事故の発生によって遮断
器−が動作した後これが復旧されるまでは、孤立した負
荷系統の電圧が低下し、負荷ダに設けられた低電圧リレ
ー、マグネットスイッチ等(図示しない)忙より負荷亭
の一部が遮断されることになる。そのような状態のとき
に復旧を目的として遮断器コを投入すると、負荷ダの一
部が遮断されているにもか〜わらず、力率改善用コンデ
ンサSの一部や送電線りの対地静電容量6はつながれた
ま又となっているため、所謂フエランチ効果により負荷
亭の電圧が上昇し、過電圧が発生する。
In such power systems, after a circuit breaker is activated due to an accident, the voltage of the isolated load system decreases until the circuit breaker is tripped and the circuit breaker is tripped due to an accident. (No) Due to busy schedules, some of the load stations will be cut off. If the circuit breaker is turned on for the purpose of recovery in such a state, even though part of the load is cut off, part of the power factor correction capacitor S and the ground of the power transmission line will be damaged. Since the capacitance 6 remains connected, the voltage at the load terminal increases due to the so-called Ferranci effect, causing an overvoltage.

従来の電力系統においては、このような現象に対して何
ら特別の対策も施されておらず、従ってこの過電圧があ
る程度以上になると、負荷μを構成する各種機器が損傷
を受けるなどの問題が生じている。また、このような事
態を防ぐために、どのような時にも遮断器の投入を行わ
ないことにすると、復旧が著しく遅れ、停電が長びき、
社会的影響が大きくなる。
In conventional power systems, no special countermeasures have been taken against such phenomena, and therefore, when this overvoltage exceeds a certain level, problems such as damage to the various devices that make up the load μ occur. ing. In addition, in order to prevent such a situation, if we decide not to close the circuit breaker at any time, recovery will be significantly delayed, the power outage will be prolonged, and
The social impact will be greater.

〔発明の概要〕[Summary of the invention]

この発明は、上述の問題を解決することを目的としたも
ので、負荷系統側における残留負荷率および残留静電容
量率を予測し、これにより発生する過電圧を推定し、推
定された過電圧が大きいときには遮断器の投入による復
旧操作を阻止できる遮断器制御装置を提供することを目
的としている。
The purpose of this invention is to solve the above-mentioned problems by predicting the residual load ratio and residual capacitance ratio on the load system side, estimating the resulting overvoltage, and determining whether the estimated overvoltage is large. It is an object of the present invention to provide a circuit breaker control device that can sometimes prevent a recovery operation by closing the circuit breaker.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明を実施例により詳述する。第2図はこの
発明の遮断器制御装置の構成を示すブロック図で、//
は負荷系統の電圧を検出する回路例えばPT(変圧器)
°、lコは負荷系統への流入電流を検出する回路例えば
cyr(変流器)、13は電圧検出回路//および電流
検出回路7.2の出力を適宜取入れて事故発生前の負荷
および負荷側の静電容量を計算し記憶する記憶回路、/
4’は事故発生時の電圧低下を電圧検出回路//により
計測し、遮断されずに残留すると予測される負荷および
静電容量の率を予測する予測回路、l!は記憶回路/3
の出力である事故発生前の負荷および静電容量と予測回
路/4(の出力である残留負荷率および残留静電容量率
とから過電圧を推定し、これが所定の値より大きいとき
に遮断器コの投入を阻止する判定制御回路である。
Hereinafter, this invention will be explained in detail with reference to Examples. FIG. 2 is a block diagram showing the configuration of the circuit breaker control device of the present invention.
is a circuit that detects the voltage of the load system, such as a PT (transformer)
°, l is a circuit that detects the inflow current into the load system, such as a cyr (current transformer), 13 is a voltage detection circuit // and the output of the current detection circuit 7.2 is appropriately taken in to determine the load before the accident. A memory circuit that calculates and stores the side capacitance, /
4' is a prediction circuit that measures the voltage drop at the time of an accident using a voltage detection circuit// and predicts the rate of load and capacitance that are predicted to remain without interruption; l! is a memory circuit/3
The overvoltage is estimated from the load and capacitance before the accident, which are the outputs of the circuit 4, and the residual load rate and residual capacitance rate, which are the outputs of the prediction circuit/4. This is a judgment control circuit that prevents the injection of

さて、遮断器コが投入された後、負荷母線3Vc接続さ
れた負荷系統の電圧は健全系統lより供給され、負荷系
統に流入する電流は負荷母線3につながる残留負荷グの
量と残留静電容量s、乙の大きさとによって決まる。今
、健全系統/〜の電圧をV、電流検出回路/2により検
出される電流な1電圧検出回路//により検出される負
荷母線3の電圧なVLとし、残留負荷亭のコンダスタン
スの合計なG、残留静電容量り、6のサセプタ、ンスの
合計なりとする。また、健全系統/と負荷母線3との間
のリアクタンスなXとすると、次の関係式が成立する二 ニー(G+jB)・vL     1・(/、l)た父
し、j=fフ1である。
Now, after the circuit breaker 1 is turned on, the voltage of the load system connected to the load bus 3Vc is supplied from the healthy system 1, and the current flowing into the load system is determined by the amount of residual load connected to the load bus 3 and the residual static electricity. It is determined by the capacity s and the size of B. Now, the voltage of the healthy system / is V, the current detected by the current detection circuit /2 is VL, the voltage of the load bus 3 detected by the voltage detection circuit //, and the total conductance of the residual load terminal is VL. G, residual capacitance, 6 susceptors, and the sum of 6. In addition, if X is the reactance between the healthy system / and the load bus 3, then the following relational expression holds: be.

また、過電圧係数kを この関係は、第3図に示すように、残留負荷の大きさが
G、残留静電量の大きさがBで与えられると、過電圧係
数kが求められることを示している。
In addition, this relationship shows that, as shown in Figure 3, if the magnitude of the residual load is given by G and the magnitude of the residual electrostatic capacity is given by B, then the overvoltage coefficient k can be found. .

そし又、残留負荷が小さく、残留静電容量が大きい程、
過電圧係数が大きくなることが理解される。
Moreover, the smaller the residual load and the larger the residual capacitance,
It is understood that the overvoltage coefficient increases.

以上を念頭において第2図の実施例の動作なみ ′てみ
る。電圧検出回路l/の出力VI、と、電流検出回路l
ユの出カニとより式(1,1)を用いて、負のような計
算と記憶は市販のマイクロプロセッサにより容易になし
得る。たyし、すべての計算結果を記憶し又おくことは
不可能であり、また無駄でもあるので、電圧検出回路/
/の出力がある値より大きく、故障のないことが確認さ
れた場合には記憶を消去する。電圧検出回路/’/の出
力が小さくなって故障と判断され、負荷系統が健全系統
/から切離されたことが確認された場合のみ、前記計算
値G。とB。を記憶として残しておくようにする。一方
、故障が発生して遮断器ユが動作した場合、故障中の電
圧低下を電圧検出回路//で検出し、予測回路/4(に
より電圧低下量から残留負荷車gおよび残留静電容量率
すを予測する。予測には種々の方法が考えられるが、実
測値から得られた第弘図のグラフなどが7つの有効な手
段となろう。
With the above in mind, let's take a look at the operation of the embodiment shown in FIG. The output VI of the voltage detection circuit l/, and the current detection circuit l
Using equation (1,1), such calculations and storage as negative can be easily done with a commercially available microprocessor. However, it is impossible and wasteful to memorize all calculation results, so the voltage detection circuit/
If the output of / is larger than a certain value and it is confirmed that there is no failure, the memory is erased. The calculated value G is determined only when the output of the voltage detection circuit /'/ becomes small and a failure is determined, and it is confirmed that the load system is disconnected from the healthy system /. and B. Try to keep it as a memory. On the other hand, when a failure occurs and the circuit breaker operates, the voltage drop during the failure is detected by the voltage detection circuit //, and the residual load vehicle g and the residual capacitance rate are determined from the amount of voltage drop by the prediction circuit /4. There are various methods for prediction, but the graph shown in Figure 1, which is obtained from actual measurements, is one of the seven most effective methods.

記憶回路13の出力G。、Boと、予測回路/l’の出
力g、bとから、残留負荷Gと残留静電容量Bを により求め、(/、3)式あるいは第3図を用いて過電
圧係数kを計算し、kが所定値より大きい場合には、判
定制御回路15により遮断器コに投入阻止信号を出す。
Output G of the memory circuit 13. , Bo, and the outputs g and b of the prediction circuit/l', find the residual load G and residual capacitance B, and calculate the overvoltage coefficient k using equation (/, 3) or Figure 3. If k is larger than a predetermined value, the determination control circuit 15 issues a closing prevention signal to the circuit breaker.

これにより、負荷系統に過電圧が発生することが推定さ
れるときには、遮断器コを投入せず、未然に過電圧によ
る機器の損傷を防ぐことができる。
Thereby, when it is estimated that an overvoltage will occur in the load system, the circuit breaker is not turned on, and damage to equipment due to overvoltage can be prevented.

一般に、負荷を構成する機器は150%程度の過電圧に
より損傷を受けるので、判定制御回路15で設定する過
電圧係数にとしては/、!rで設定することが望ましい
。この値を低く設定すると、実際には実害ある過電圧が
発生しないときでも、遮断器コの投入が阻止されて負荷
系統の復旧が遅れることになるので、適切な値例えば高
目に設定することが重要である。
Generally, equipment that constitutes a load is damaged by an overvoltage of about 150%, so the overvoltage coefficient set by the judgment control circuit 15 should be /,! It is desirable to set it as r. If this value is set low, the circuit breaker will be prevented from closing and restoration of the load system will be delayed even when no harmful overvoltage actually occurs, so it is recommended to set it to an appropriate value, for example a high value. is important.

この実施例の動作時間についてみてみると、電圧検出回
路ll、電流検出回路/2の検出時間は現用のもので約
20m5.記憶回路13には市販のマイクロプロセッサ
を用いれば、記憶時間は10m5以内、予測回路/lI
にも同様のマイクロプロセッサを用いれば、演算時間は
10m5以内、判定制御回路15にも同じくマイクロプ
ロセッサが利用でき、判定時間は10mB以内である。
Looking at the operating time of this embodiment, the detection time of voltage detection circuit 11 and current detection circuit/2 is approximately 20m5. If a commercially available microprocessor is used for the memory circuit 13, the memory time will be within 10m5, and the prediction circuit/lI
If a similar microprocessor is used for the determination control circuit 15, the calculation time will be within 10m5, and if the same microprocessor can be used for the determination control circuit 15, the determination time will be within 10mB.

従って、これらを並列に演算せず、すべてを順番に行っ
てもiooma以内に遮断器コに投入阻止信号を送るこ
とが可能である。この時間は、自動再送電時間に比べて
も充分短く、従来からの復旧制御に何ら変更を加えるこ
となく、この発明を実施することが可能である。復旧の
ために投入される遮断器は複数台が並列設置されている
のが通常であるが、この発明はそのような場合にも適用
し得ることば明らかであろう。
Therefore, even if these are not calculated in parallel and all are performed in order, it is possible to send the closing prevention signal to the circuit breaker within iooma. This time is sufficiently short compared to the automatic power retransmission time, and it is possible to implement the present invention without making any changes to conventional restoration control. Usually, a plurality of circuit breakers are installed in parallel to be used for restoration, but it is clear that the present invention can be applied to such cases as well.

なお、上記の実施例では、電流検出回路/コな遮断器コ
の負荷母線3側に設けたが、これは遮断器二の健全系統
l側に設けてもよいことは勿論であるし、また、記憶回
路13、予測回路/4I、判定制御回路15をそれぞれ
個別のマイクロプロセッサで構成すると説明したが、こ
れらを1個のマイクロプロセッサで構成することも可能
なことば鯖うまでもない。
In the above embodiment, the current detection circuit/C is provided on the load bus 3 side of the circuit breaker 2, but it is of course possible to provide it on the healthy system L side of the circuit breaker 2. , the memory circuit 13, the prediction circuit/4I, and the determination control circuit 15 have been described as being constructed with separate microprocessors, but it goes without saying that they can also be constructed with a single microprocessor.

〔発明の効果〕〔Effect of the invention〕

上述したように、この発明によれば、過電圧発生の推定
をマイクロプロセッサなどを利用した回路で行うように
したので、従来からの復旧制御に影響を与えることなく
、高速で確実な遮断器制御を行うことができ、過電圧に
よる機器の損傷を防止し得る効果がある。
As described above, according to the present invention, overvoltage occurrence is estimated by a circuit using a microprocessor, etc., so that fast and reliable circuit breaker control can be performed without affecting conventional recovery control. This has the effect of preventing damage to equipment due to overvoltage.

【図面の簡単な説明】[Brief explanation of drawings]

゛第1図は電力系統の負荷系統の構成を示すブロック図
、第2図はこの発明の遮断器制御装置の構成を示すブロ
ック図、第3図は発生すると推定さなお、図中、l・・
健全系統、コ・・遮断器、3・・負荷母線、ダ・・負荷
、5・・力率改善用コンデンサ、6・・対地静電容量、
7・・送電線、//・・電圧検出回路、lユ・・電流検
出回路、/3・・記憶回路、/+・・予測回路、15・
・判定制御回路。 なお、各図中、同一符号は同−又は相当部分を示す。 懸1図 氾2図 帛3図 歿留央荷 馬4図 電FA氏下量 e/’Ha下−1
゛Figure 1 is a block diagram showing the configuration of the load system of the power system, Figure 2 is a block diagram showing the configuration of the circuit breaker control device of the present invention, and Figure 3 is a block diagram showing the configuration of the circuit breaker control device of the present invention.・
Healthy system, Ko...breaker, 3...load bus, da...load, 5...power factor improvement capacitor, 6...ground capacitance,
7...Power transmission line, //...Voltage detection circuit, lU...Current detection circuit, /3...Memory circuit, /+...Prediction circuit, 15.
・Judgment control circuit. In each figure, the same reference numerals indicate the same or corresponding parts. Figure 1 Flood 2 Figure 3 Figure 3 Ruo draft horse 4 Figure FA Mr. lower e/'Ha lower -1

Claims (3)

【特許請求の範囲】[Claims] (1)電力系統の事故発生後復旧のために投入される遮
断器を制御するために、事故発生前に前記遮断器を通過
する電流および前記遮断器に接続された負荷系統の電圧
から負荷および静電容量の値を計算して記憶する記憶回
路と、事故発生時の前記負荷系統の電圧から残留負荷率
および残留静電容量率を予測する予測回路と、前記負荷
および静電容量の値並びに前記残留負荷率および残留静
電容量率から過電圧を推定し、この過電圧が所定の値を
超える場合は前記遮断器の投入を阻止する判定制御回路
とを備えた遮断器制御装置。
(1) In order to control a circuit breaker that is turned on for restoration after an accident occurs in a power system, load and a memory circuit that calculates and stores capacitance values; a prediction circuit that predicts a residual load ratio and a residual capacitance ratio from the voltage of the load system at the time of occurrence of an accident; A circuit breaker control device comprising: a determination control circuit that estimates overvoltage from the residual load factor and residual capacitance rate, and prevents closing of the circuit breaker if the overvoltage exceeds a predetermined value.
(2)記憶回路、予測回路および判定制御回路が個別の
マイクロプロセッサで構成される特許請求の範囲第1項
記載の遮断器制御装置。
(2) The circuit breaker control device according to claim 1, wherein the memory circuit, the prediction circuit, and the determination control circuit are each comprised of individual microprocessors.
(3)記憶回路、予測回路および判定制御回路が唯一の
マイクロプロセッサで構成される特許請求の範囲第1項
記載の遮断器制御装置。
(3) The circuit breaker control device according to claim 1, wherein the memory circuit, the prediction circuit, and the determination control circuit are comprised of a single microprocessor.
JP14676184A 1984-07-17 1984-07-17 Breaker controller Pending JPS6126419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14676184A JPS6126419A (en) 1984-07-17 1984-07-17 Breaker controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14676184A JPS6126419A (en) 1984-07-17 1984-07-17 Breaker controller

Publications (1)

Publication Number Publication Date
JPS6126419A true JPS6126419A (en) 1986-02-05

Family

ID=15414966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14676184A Pending JPS6126419A (en) 1984-07-17 1984-07-17 Breaker controller

Country Status (1)

Country Link
JP (1) JPS6126419A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300649A (en) * 1990-12-20 1992-10-23 Rhone Poulenc Chim Manufacture of covered catalyst based on both molybdate of bismuth and iron doped by phosphorus and potassium
US5663113A (en) * 1994-04-25 1997-09-02 Asahi Kasei Kogyo Kabushiki Kaisha Ammoxidation catalyst composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300649A (en) * 1990-12-20 1992-10-23 Rhone Poulenc Chim Manufacture of covered catalyst based on both molybdate of bismuth and iron doped by phosphorus and potassium
US5663113A (en) * 1994-04-25 1997-09-02 Asahi Kasei Kogyo Kabushiki Kaisha Ammoxidation catalyst composition

Similar Documents

Publication Publication Date Title
US8766481B2 (en) Reduction of inrush current due to voltage sags with switch and shunt resistance
EP2053716B1 (en) Alternating current series arc fault detection method
US9065266B2 (en) Reduction of inrush current due to voltage sags by an isolating current limiter
EP2695267B1 (en) Fast breaker failure detection for hvdc circuit breakers
US20140055895A1 (en) Voltage Surge and Overvoltage Protection Using Prestored Voltage-Time Profiles
US20070133135A1 (en) DC arc fault detection and protection
JPS63107412A (en) Tripper of breaker
WO2006001566A1 (en) Ground overcurrent protection relay system for ungrounded dc power feed system and method of controlling the same
US7541756B1 (en) Temperature compensated test for a power distribution switching device
JPS6126419A (en) Breaker controller
CN112467815B (en) Control method and system for passive current limiting of battery management system
US3553571A (en) Device including direction responsive switching means for indicating and protecting against short-circuits in a dc voltage network
CN114094553A (en) Fault protection method, device and equipment of power transmission system and power transmission system
RU2662725C1 (en) Method of differential protection of power transformer from turn faults
US4860150A (en) Protector network for A-C equipment
RU2811565C1 (en) Method for digital distance protection of power lines
JPH01227628A (en) Load control method
JPH11205996A (en) Breaker control and protective relay device
JPH0112510Y2 (en)
JPS6013435A (en) Control system of resistor for attenuating harmonic current
JPH01164229A (en) Power source protective device
JPS58204716A (en) Automatic inspecting device
JPS5889020A (en) Short time power interruption preventing device
JPH0583998U (en) No fuse breaker
JPH0152978B2 (en)