JPS6126334Y2 - - Google Patents

Info

Publication number
JPS6126334Y2
JPS6126334Y2 JP9176278U JP9176278U JPS6126334Y2 JP S6126334 Y2 JPS6126334 Y2 JP S6126334Y2 JP 9176278 U JP9176278 U JP 9176278U JP 9176278 U JP9176278 U JP 9176278U JP S6126334 Y2 JPS6126334 Y2 JP S6126334Y2
Authority
JP
Japan
Prior art keywords
water
slag
wall
air
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9176278U
Other languages
Japanese (ja)
Other versions
JPS559249U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9176278U priority Critical patent/JPS6126334Y2/ja
Publication of JPS559249U publication Critical patent/JPS559249U/ja
Application granted granted Critical
Publication of JPS6126334Y2 publication Critical patent/JPS6126334Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/026Methods of cooling or quenching molten slag using air, inert gases or removable conductive bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/052Apparatus features including rotating parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/052Apparatus features including rotating parts
    • C21B2400/056Drums whereby slag is poured on or in between
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/062Jet nozzles or pressurised fluids for cooling, fragmenting or atomising slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Glanulating (AREA)
  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【考案の詳細な説明】 本考案は、製鉄所における高炉、転炉、電気炉
等から排出される溶融スラグからの熱回収装置の
改良に関する。
[Detailed Description of the Invention] The present invention relates to an improvement of a heat recovery device from molten slag discharged from a blast furnace, converter, electric furnace, etc. in a steelworks.

製鉄所等から出る溶融スラグから熱回収を行な
い、かつスラグを有効に利用しようとする試み
は、省エネルギ、資源の再利用の観点から、金属
工業界を中心に各方面で、鋭意検討されつつあ
る。
Attempts to recover heat from molten slag produced by steel mills and use it effectively are being intensively studied in various fields, mainly in the metal industry, from the perspective of energy conservation and resource reuse. be.

特に、溶融スラグに高速空気を吹付け、該溶融
スラグを細粒化し、(この工程を以下風砕とい
う。)その過程で溶融スラグから熱回収を行なう
うにした装置は、従来から種々のものが提案され
ている。
In particular, there have been various types of equipment that blow high-speed air onto molten slag to make the molten slag into fine particles (this process is hereinafter referred to as pulverization) and recover heat from the molten slag in the process. Proposed.

第1図は従来装置の一例を示すが、同図におい
て、樋1を流れてきた溶融スラグ2は、風砕用送
風機3、エアーノズル4により発生される高速空
気により風砕されて細粒化され、風砕フード5内
を飛散する間に、該風砕フード5内空気と熱交換
を行なつて冷却されて凝固し、高温粒状スラグ6
となる。一方風砕フード5内空気は、スラグによ
り加熱されて風砕高温空気7として外部に放出さ
れる。上記高温粒状スラグ6は1000℃程度の高温
状態にあり、まだかなりの熱量を持つており、移
送装置8でストレージタンク9内に一旦貯留され
る。
FIG. 1 shows an example of a conventional device. In the figure, molten slag 2 flowing through a gutter 1 is crushed into fine particles by high-speed air generated by a crushing blower 3 and an air nozzle 4. While scattering inside the blasting hood 5, it exchanges heat with the air inside the blasting hood 5, is cooled and solidified, and becomes a high-temperature granular slag 6.
becomes. On the other hand, the air inside the crushing hood 5 is heated by the slag and is discharged to the outside as the crushing high temperature air 7. The high temperature granular slag 6 is in a high temperature state of about 1000° C. and still has a considerable amount of heat, and is temporarily stored in a storage tank 9 by a transfer device 8.

高炉、転炉、電気炉からは通常間欠的に溶融ス
ラグが排出(出滓)されるので、上記ストレージ
タンク9以前のスラグの流れは、該出滓に合わせ
て間欠運転となり、ストレージタンク9で高温粒
状スラグ6を貯蔵し、それ以降はつぎのように連
続運転となる。すなわちストレージタンク9内に
溜められた高温粒状スラグ6は連続的に所定量ず
つ熱交換器10内に導入され、該熱交換器10内
にフアン13からの冷空気11と向流式に熱交換
〓〓〓〓
を行ない、低温スラグ12となつて外部に連続的
に排出され、また、冷空気11は高温粒状スラグ
6と熱交換を行なつて加熱され、高温空気14が
連続的に得られるようになつている。
Since molten slag is normally discharged (slag) intermittently from a blast furnace, converter furnace, or electric furnace, the flow of slag before the storage tank 9 is intermittently operated in accordance with the slag discharge, and the slag in the storage tank 9 is intermittently operated. The high temperature granular slag 6 is stored, and from then on, continuous operation is performed as follows. That is, the high-temperature granular slag 6 stored in the storage tank 9 is continuously introduced into the heat exchanger 10 in a predetermined amount, and heat is exchanged with the cold air 11 from the fan 13 in the heat exchanger 10 in a countercurrent manner. 〓〓〓〓
The cold air 11 is heated by exchanging heat with the high-temperature granular slag 6, and high-temperature air 14 is continuously obtained. There is.

上記従来装置では、風砕により高温の粒状スラ
グ6を得て、ストレージタンク9以降の過程で連
続的に熱回収を行なうようになつているが、上述
のように風砕部(風砕フード5部)の運転は間欠
的となるため、風砕高温空気7は間欠的に出てく
る。このように間欠的に風砕フード5から高温空
気7が得られても、工場(製鉄所等)としてはそ
の用途に困るのが実情であり、従つて該風砕高温
空気7は利用されないまま大気中に放出されてい
る。そのため、溶融スラグ2の温度は、スラグの
種類、各工場によつてまちまちであるが、1400〜
1600℃程度であり、また高温粒状スラグ6の温度
は1000〜1100℃程度なので、その温度降下分に相
当する熱は回収されなかつたことになるという問
題点があつた。また風砕フード5の材質の保護、
熱放散を少なくする目的で、耐火材、断熱材を風
砕フード5内に張りつけると、風砕フード5内の
空気温度が上つて粒状スラグの冷却が十分でなく
なり、風砕フード5の粒状スラグの排出口に集合
された粒状スラグ6は再融着を生じやすくなると
いう欠点が生じることになる。
In the above-mentioned conventional apparatus, high-temperature granular slag 6 is obtained by wind crushing, and heat is continuously recovered in the process from the storage tank 9 onward. Since the operation of the part) is intermittent, the crushed high-temperature air 7 comes out intermittently. Even if high-temperature air 7 is obtained intermittently from the blasting hood 5 in this way, the reality is that it is difficult to use it as a factory (such as a steelworks), and therefore, the blasting high-temperature air 7 remains unused. is released into the atmosphere. Therefore, the temperature of molten slag 2 varies depending on the type of slag and each factory, but
Since the temperature of the high-temperature granular slag 6 is about 1000 to 1100°C, there was a problem in that the heat corresponding to the temperature drop was not recovered. In addition, protection of the material of the wind crushing hood 5,
If a refractory material or a heat insulating material is pasted inside the wind crushing hood 5 for the purpose of reducing heat dissipation, the air temperature inside the wind crushing hood 5 will rise and the granular slag will not be sufficiently cooled. This results in a disadvantage that the granular slag 6 collected at the discharge port is likely to re-fuse.

本考案は、上記従来装置の問題点や欠点を解消
することを目的として提案されたもので、風砕フ
ード内に導入される溶融スラグに、高速空気を吹
きつけて該溶融スラグを細粒化することにより溶
融スラグから熱を回収する装置において、上記風
砕フードの頂壁、側壁、前壁および後壁の内面の
ケーシングに水管群を配設し、給水ポンプに接続
されたドラムと、それら水管群とを給水用配管お
よび蒸気流通用配管でそれぞれ接続してなること
を特徴とする溶融スラグからの熱回収装置に係る
ものである。
The present invention was proposed with the aim of solving the problems and drawbacks of the conventional device described above, and it blows high-speed air at the molten slag introduced into the blasting hood to make the molten slag into fine particles. In an apparatus for recovering heat from molten slag by The present invention relates to a heat recovery device from molten slag, characterized in that a group of water pipes are connected to each other by water supply piping and steam distribution piping.

以下第2図および第3図に示す実施例により、
本考案につき具体的に説明する。
According to the embodiments shown in FIGS. 2 and 3 below,
The present invention will be explained in detail.

第2図において、21は高炉、転炉、電気炉等
から間欠的に出滓される溶融スラグ22を、風砕
フード内に導入する樋、23は図示省略の圧力空
気源たとえば送風機に接続されたエアノズルで、
同エアノズル23から風砕フード内に噴出する高
速空気により、樋21から風砕フード内に導びか
れた溶融スラグ22を細粒化(風砕)し、風砕フ
ード内を飛散する多数の高温の粒状スラグSを形
成させるようになつている。
In FIG. 2, 21 is a gutter that introduces molten slag 22 intermittently discharged from a blast furnace, converter, electric furnace, etc. into the crushing hood, and 23 is connected to a pressure air source (not shown), such as a blower. With the air nozzle
The high-speed air jetted into the blasting hood from the air nozzle 23 makes the molten slag 22 guided from the gutter 21 into the blasting hood into fine particles (wind crushing), resulting in a large number of high-temperature particles that are scattered inside the blasting hood. granular slag S is formed.

風砕フードは、上記樋21、エアノズル23を
装着する前壁24、頂壁25、両側壁26、底壁
27および後壁28で、前壁24側から後壁28
側に行くにつれて図示の如く末拡がり状に拡大す
る箱体状に形成されており、頂壁25の後端部と
後壁28の上端部間には、排気孔34が、また底
壁27の後端部と後壁28の下端部間には風砕さ
れて細粒化された粒状スラグの排出口33が設け
られている。32は底壁27の外側に装着された
振動装置で、同振動装置32の作用で底壁27は
振動せしめられ、該底壁27の上面に落下した粒
状スラグを上記排出口33側へ移動せしめるに役
立つようになつている。
The air crushing hood includes the gutter 21, a front wall 24 to which the air nozzle 23 is attached, a top wall 25, both side walls 26, a bottom wall 27, and a rear wall 28, and is connected from the front wall 24 side to the rear wall 28.
It is formed into a box shape that widens toward the side as shown in the figure, and an exhaust hole 34 is provided between the rear end of the top wall 25 and the upper end of the rear wall 28, and an exhaust hole 34 is provided between the rear end of the top wall 25 and the upper end of the rear wall 28. A discharge port 33 is provided between the rear end and the lower end of the rear wall 28 for discharging the granular slag that has been crushed by air. Reference numeral 32 denotes a vibrating device attached to the outside of the bottom wall 27. The bottom wall 27 is vibrated by the action of the vibrating device 32, and the granular slag that has fallen onto the top surface of the bottom wall 27 is moved toward the discharge port 33 side. It has become useful for

頂壁25、両側壁26、底壁27および後壁2
9の内面には、第3図に示す如く保温材37で裏
打ちされたケーシング36に通常のボイラの燃焼
室壁に配設されたものとほぼ同様な水管群35が
配設されている。なお第3図においてAは風砕フ
ードの内側を、Bは外側をそれぞれ示す。29は
風砕フードの上部に設置されたドラムで、同ドラ
ム29には給水ポンプ30によつて水が供給さ
れ、また該ドラム29に給水された水は、給水用
配管a,bを介して頂壁25、後壁28および底
壁27の内面に装着された水管群35に供給され
るようになつている。そして該水管群35に供給
された水は風砕によつて細粒化された粒状スラグ
の輻射熱、水管群35の管壁を介しての熱交換お
よび風砕フード内の高温空気との熱交換によつて
加熱されて蒸気となり、蒸気流通用配管c,d,
eを介してドラム29に戻るようになつており、
該ドラム29により気水分離された蒸気31は、
既設の工場蒸気配管(図示せず)を経て種々の用
途に利用されるようになつている。一方上記のよ
うにして熱交換を行なつて冷却された粒状スラグ
は排出口33から外部へ排出されてそのまま利用
されるか、またはさらに熱回収をするため、別に
設けられた熱交換器へ送られるようになつてい
る。この場合、底壁27の振動装置32は粒状ス
ラグSの排出口33側への移動の促進に役立つ。
Top wall 25, both side walls 26, bottom wall 27 and rear wall 2
On the inner surface of the boiler 9, as shown in FIG. 3, a group of water tubes 35 similar to those disposed on the combustion chamber wall of an ordinary boiler is disposed in a casing 36 lined with a heat insulating material 37. In FIG. 3, A indicates the inside of the crushing hood, and B indicates the outside. Reference numeral 29 denotes a drum installed at the top of the blasting hood.Water is supplied to the drum 29 by a water supply pump 30, and the water supplied to the drum 29 is supplied via water supply pipes a and b. Water is supplied to a group of water tubes 35 attached to the inner surfaces of the top wall 25, rear wall 28, and bottom wall 27. The water supplied to the water tube group 35 is exchanged with the radiant heat of the granular slag made into fine particles by wind crushing, through the pipe walls of the water tube group 35, and with the high-temperature air in the wind crushing hood. It is heated and turned into steam by the steam distribution pipes c, d,
It is designed to return to the drum 29 via e,
The steam 31 separated by the drum 29 is
It has come to be used for various purposes via existing factory steam piping (not shown). On the other hand, the granular slag cooled by heat exchange as described above is discharged to the outside from the discharge port 33 and is used as it is, or is sent to a separately provided heat exchanger for further heat recovery. It is becoming more and more popular. In this case, the vibration device 32 of the bottom wall 27 serves to promote the movement of the granular slag S toward the discharge port 33 side.

本考案装置の一実施例は上記のように構成され
ており、溶融スラグ24の風砕過程は、従来装置
〓〓〓〓
と同様であるが、箱体状の風砕フードを形成する
頂壁25、両側壁26、底壁27および後壁28
の内面のケーシング36に配設された水管群35
が、風砕によつて風砕フード内を飛散する高温の
粒状スラグSを囲むように配置されているので、
該水管群35は粒状スラグSの輻射熱を受けやす
い状態にある。すなわち輻射熱はその伝熱面の表
面積に大きく支配されることはよく知られている
が、このように溶融スラグが風砕によつて細粒化
(約1〜2mmφ)されると、スラグの表面積は著
しく増大することになり、かつ粒状スラグSは風
砕フード内の空間に散らばつているので、その輻
射熱が有効に水管群35に伝わることになる。し
かも該部分は1000℃以上の高温部であるが、輻射
による熱伝達は温度が上れば上るほど指数的に増
大するため、さらに効果的な熱伝達が水管群35
を介して行なわれる。また粒状スラグSから水管
群35への熱伝達は、輻射によるのみでなく、風
砕フード内に飛散される粒状スラグS中には水管
群35に衝突接触して水管群35に熱を伝える
(熱交換する)ものもある。特に底壁27の水管
群35上には落下してたまる粒状スラグがあるの
で、直接接触による水管群35への熱伝達が増大
する。ただし底壁27内面の水管群35の配置
は、粒状スラグSの排出口33側への移動の障害
とならないように考慮する要がある。また粒状ス
ラグSと風砕フード内の空気との熱交換により風
砕フード内の空気の温度が上昇するが、該高温空
気は水管群35との対流熱伝達により冷却された
のち排気口34から外部へ排出され、逆に水管群
35は該高温空気から熱を受けることになつてそ
の熱を回収する。
One embodiment of the device of the present invention is constructed as described above, and the blowing process of the molten slag 24 is performed using the conventional device.
, but with a top wall 25, both side walls 26, a bottom wall 27 and a rear wall 28 forming a box-shaped blasting hood.
Water tube group 35 arranged in the casing 36 on the inner surface of
are arranged so as to surround the high-temperature granular slag S that is scattered in the wind crushing hood by wind crushing,
The water tube group 35 is in a state where it easily receives radiant heat from the granular slag S. In other words, it is well known that radiant heat is largely controlled by the surface area of the heat transfer surface, but when molten slag is reduced to fine particles (approximately 1 to 2 mmφ) by wind crushing, the surface area of the slag increases. will increase significantly, and since the granular slag S is scattered in the space inside the blasting hood, its radiant heat will be effectively transmitted to the water tube group 35. In addition, this part is a high temperature area of 1000℃ or more, but since heat transfer by radiation increases exponentially as the temperature rises, even more effective heat transfer is possible at the water tube group 35.
It is done through. Furthermore, the heat transfer from the granular slag S to the water tube group 35 is not only due to radiation; some of the granular slag S scattered in the blasting hood collides with the water tube group 35 and transfers heat to the water tube group 35 ( (heat exchange). In particular, since there is granular slag that falls and accumulates on the water tube group 35 of the bottom wall 27, heat transfer to the water tube group 35 by direct contact is increased. However, the arrangement of the water tube group 35 on the inner surface of the bottom wall 27 must be considered so as not to become an obstacle to the movement of the granular slag S toward the discharge port 33 side. Furthermore, the temperature of the air inside the wind crushing hood increases due to heat exchange between the granular slag S and the air inside the wind crushing hood, but the high temperature air is cooled by convective heat transfer with the water tube group 35 and then exits from the exhaust port 34. The air is discharged to the outside, and conversely, the water tube group 35 receives heat from the high-temperature air and recovers the heat.

以上のようにして風砕フードを形成する頂壁2
5、側壁26、底壁27および後壁29の内面の
水管群35は粒状スラグSの熱を十分に回収し
て、給水ポンプ30でドラム29へ送られ、ここ
から給水用配管a,bを介して水管群35の管内
を流通する水を蒸気とする。そして該蒸気は蒸気
流通用配管c,d,eを介してドラム29へ戻さ
れ、該ドラム29で気水分離されたのち、蒸気3
1として取出される。このようにして取出される
蒸気31は溶融スラグ22の出滓が間欠的である
関係上、間欠的になるが、既設の大容量工場蒸気
系に適当に連結するとか、アキユムレータを設置
するとかすれば、該蒸気31の利用面での不具合
点はほとんど問題とならない。
Top wall 2 forming the wind-crushing hood as described above
5. The water pipe group 35 on the inner surface of the side wall 26, bottom wall 27, and rear wall 29 sufficiently recovers the heat of the granular slag S, and sends it to the drum 29 by the water supply pump 30, from which water supply pipes a and b are connected. The water flowing through the tubes of the water tube group 35 is turned into steam. The steam is then returned to the drum 29 via the steam distribution pipes c, d, and e, where it is separated into steam and water.
1. The steam 31 extracted in this way is intermittent because the slag of the molten slag 22 is intermittent, but if it is connected to an existing large-capacity factory steam system or an accumulator is installed, , there are almost no problems in using the steam 31.

また、この場合水管群35に衝突する粒状スラ
グSは、該水管群35の管内を流通する水と熱交
換して冷却されて温度が低下するため、水管群3
5の管壁に付着するようなことがなく、また粒状
スラグSは上記の如く輻射、接触、対流等により
水管群35を介して強力に冷却されるため、排出
口33に集合した粒状スラグが相互融着を起すよ
うなことがない。
In addition, in this case, the granular slag S colliding with the water tube group 35 exchanges heat with the water flowing through the pipes of the water tube group 35 and is cooled, so that the temperature decreases.
5, and the granular slag S is strongly cooled through the water tube group 35 by radiation, contact, convection, etc. as described above, so that the granular slag collected at the discharge port 33 is There is no possibility of mutual fusion.

なおまた、風砕フードの各壁25,26,27
および28等のケーシング36は、水管群35に
よつて冷却されるので、耐熱性が保持されて良好
となる。
Furthermore, each wall 25, 26, 27 of the wind crushing hood
Since the casing 36 such as 28 and 28 is cooled by the water tube group 35, heat resistance is maintained and improved.

つぎに第4図に示す本考案の他の実施例は、上
記実施例に比しケーシング36への水管群35の
装着構造が異なるだけで、同様の作用、効果を奏
するものである。
Next, another embodiment of the present invention shown in FIG. 4 is different from the above-mentioned embodiment only in the mounting structure of the water tube group 35 to the casing 36, but has similar functions and effects.

本考案装置は、上記のような構成、作用を具有
するものであるから、本考案によれば、 (1) 風砕によつて風砕フード内を飛散する高温の
粒状スラグSの熱は、水管群35内を流通する
水を蒸気とすることによつて極めて効果的に回
収されるため、従来装置に比し著しく熱回収率
が向上する。
Since the device of the present invention has the above-mentioned configuration and operation, according to the present invention, (1) the heat of the high temperature granular slag S scattered in the blasting hood due to blasting is Since the water flowing through the water tube group 35 is converted into steam and recovered very effectively, the heat recovery rate is significantly improved compared to conventional devices.

(2) 粒状スラグSは、十分に水管群35を介して
熱交換を行なつて冷却されるので、相互融着を
起すようなことはなく、排出口33から容易に
排出される。
(2) Since the granular slag S is sufficiently cooled by heat exchange through the water tube group 35, mutual fusion does not occur and the granular slag S is easily discharged from the discharge port 33.

(3) 風砕フード内を飛散する粒状スラグSが、該
風砕フードの内面(水管群35)に付着するよ
うなことがないので、風砕フードを従来に比し
小型化できる。
(3) Since the granular slag S scattered inside the wind crushing hood does not adhere to the inner surface of the wind crushing hood (the water tube group 35), the wind crushing hood can be made smaller in size compared to the conventional one.

(4) 風砕フードのケーシング36が水管群35で
冷却されるので、耐熱性が良くなり、該ケーシ
ング36を熱に対して保護するための特別な手
段を講じる要がない。
(4) Since the casing 36 of the blasting hood is cooled by the water tube group 35, the heat resistance is improved and there is no need to take special measures to protect the casing 36 from heat.

(5) 溶融スラグ22の熱を蒸気31として回収す
るため、取出される蒸気31が間欠的であつて
も、該蒸気31の利用上格別問題はない。
(5) Since the heat of the molten slag 22 is recovered as steam 31, there is no problem in using the steam 31 even if the steam 31 is extracted intermittently.

などの実用的効果を挙げることができる。The following practical effects can be mentioned.

【図面の簡単な説明】[Brief description of the drawings]

第1図は従来装置の一例の概略説明図、第2図
および第3図は本考案の一実施例の概略説明図
〓〓〓〓
で、第2図は縦断面図、第3図は風砕フードの頂
壁、側壁、底壁および後壁の内面に装着される水
管群の配列状態を示す断面図、第4図は第3図に
相当する他の例の断面図である。 第2図乃至第4図において、21:樋、22:
溶融スラグ、23:エアノズル、25:頂壁、2
6:側壁、27:底壁、28:後壁、29:ドラ
ム、30:給水ポンプ、31:蒸気、33:排出
口、35:水管群、36:ケーシング、37:保
温材、S:粒状スラグ、a,b:給水用配管、
c,d,e:蒸気流通配管。 〓〓〓〓
Fig. 1 is a schematic explanatory diagram of an example of a conventional device, and Figs. 2 and 3 are schematic explanatory diagrams of an embodiment of the present invention.
Fig. 2 is a longitudinal sectional view, Fig. 3 is a sectional view showing the arrangement of water tube groups attached to the inner surfaces of the top wall, side wall, bottom wall, and rear wall of the wind crushing hood. It is a sectional view of another example corresponding to the figure. In Figures 2 to 4, 21: gutter, 22:
Molten slag, 23: Air nozzle, 25: Top wall, 2
6: Side wall, 27: Bottom wall, 28: Rear wall, 29: Drum, 30: Water pump, 31: Steam, 33: Discharge port, 35: Water pipe group, 36: Casing, 37: Heat insulating material, S: Granular slag , a, b: water supply piping,
c, d, e: Steam distribution piping. 〓〓〓〓

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 溶融スラグの供給口とエアノズルを具備用した
前壁、同前壁と該前壁に対し未拡がりに拡大する
頂壁、両側壁、底壁ならびに後壁との間に形成さ
れた箱状熱回収装置、前記頂壁、側壁、底壁およ
び後壁の各内面に配設された水管群、給水ポンプ
とこれに連結された気水分離ドラム、同気水分離
ドラムからの前記水管群への給水配管ならびに発
生蒸気を含む循環水の回収配管からなる水の循環
装置、発生蒸気をマキユムレータもしくは大容量
工場蒸気系へ連結する機構、該箱状熱回収装置か
らの風砕化粒状スラグの排出口からなる溶融スラ
グからの熱回収装置。
A box-shaped heat recovery box formed between a front wall equipped with a molten slag supply port and an air nozzle, a top wall that expands without expanding to the front wall, both side walls, a bottom wall, and a rear wall. A device, a group of water pipes arranged on each inner surface of the top wall, side wall, bottom wall and rear wall, a water supply pump and an air/water separation drum connected thereto, and water supply from the air/water separation drum to the group of water pipes. A water circulation system consisting of piping and recovery piping for circulating water containing generated steam, a mechanism that connects the generated steam to a maquimulator or large-capacity factory steam system, and an outlet for the air crushed granular slag from the box-shaped heat recovery device. Heat recovery equipment from molten slag.
JP9176278U 1978-07-05 1978-07-05 Expired JPS6126334Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9176278U JPS6126334Y2 (en) 1978-07-05 1978-07-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9176278U JPS6126334Y2 (en) 1978-07-05 1978-07-05

Publications (2)

Publication Number Publication Date
JPS559249U JPS559249U (en) 1980-01-21
JPS6126334Y2 true JPS6126334Y2 (en) 1986-08-07

Family

ID=29021325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9176278U Expired JPS6126334Y2 (en) 1978-07-05 1978-07-05

Country Status (1)

Country Link
JP (1) JPS6126334Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175099A (en) * 1985-01-31 1986-08-06 黒井ガラス工業株式会社 Article with decorative lighting body and mounting structureof said decorative lighting body
BR9905656A (en) * 1999-11-30 2001-07-24 Viviane Vasconcelos Vilela Ltd Apparatus and process for the extraction of heat and for the solidification of particles of molten materials

Also Published As

Publication number Publication date
JPS559249U (en) 1980-01-21

Similar Documents

Publication Publication Date Title
CN105603135A (en) High-temperature liquid-state slag dry type centrifugation and granulation waste heat recycling system and method
CN202254893U (en) Flue gas radiation-type waste heat boiler recovery system for electric arc furnace
CN106636502B (en) A kind of high temperature furnace slag wind quenching granulation fluidized-bed combustion boiler waste-heat recovery device
CN206799664U (en) A kind of slag dry granulation and waste-heat recovery device
JP5357962B2 (en) Molten slag heat recovery device
JPS6126334Y2 (en)
CN102322746A (en) Electric arc furnace smoke radiation type waste heat boiler recovery system
JPH05311214A (en) Method for recovering heat from blast furnace slag
CN206570358U (en) A kind of high temperature furnace slag wind quenching is granulated fluidized-bed combustion boiler waste-heat recovery device
KR100804229B1 (en) Molten slag sensible heat recovery equipment in blast furnace
CN205679076U (en) A kind of combined type little particle semicoke cooling and waste-heat recovery device
JPH08503292A (en) Method and apparatus for cooling high temperature gas
JPS594634B2 (en) Slag heat recovery equipment
JPS54159302A (en) Recovering apparatus for heat from molten slag
JPS6232978Y2 (en)
JPS5919532A (en) Apparatus for collecting semi-solidified particles
CN117867195A (en) High-temperature melt air quenching granulating waste heat recovery system and recovery method
WO2024125562A1 (en) Slag granulation method and apparatus
CN219531684U (en) Heat energy recycling system of high-temperature calcium carbide
JPS6115518Y2 (en)
JPH0153316B2 (en)
JP4331884B2 (en) Collision wall structure of dust remover in coke dry fire extinguishing equipment.
JPS58168887A (en) Device for recovering heat of granular slag
JPH0138844B2 (en)
JPS6024881B2 (en) Slag cooling heat recovery equipment