JPS61258428A - Microwave plasma processor - Google Patents

Microwave plasma processor

Info

Publication number
JPS61258428A
JPS61258428A JP10069685A JP10069685A JPS61258428A JP S61258428 A JPS61258428 A JP S61258428A JP 10069685 A JP10069685 A JP 10069685A JP 10069685 A JP10069685 A JP 10069685A JP S61258428 A JPS61258428 A JP S61258428A
Authority
JP
Japan
Prior art keywords
microwave
plasma
stage
transmission window
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10069685A
Other languages
Japanese (ja)
Other versions
JPH0614521B2 (en
Inventor
Shuzo Fujimura
藤村 修三
Yasunari Motoki
本木 保成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60100696A priority Critical patent/JPH0614521B2/en
Publication of JPS61258428A publication Critical patent/JPS61258428A/en
Publication of JPH0614521B2 publication Critical patent/JPH0614521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Abstract

PURPOSE:To enable the process of an element to be processed at low temperature by improving the efficiency in microwave and facilitating the operation by a method wherein the gap between the inner surface of an opposing microwaveguide holding a microwave transmitting window and the surface of a stage is specified not to exceed 1/2 of the wavelength of microwave. CONSTITUTION:When the gap (a) between the inner surface of an opposing microwaveguide 11 holding a microwave transmitting window 13 and the surface of a stage 15 is specified not to exceed 1/2 of the wavelength of microwave 12, any vertical component will be eliminated from the region so that the entire mode of microwave 12 may be extremely stabilized before and after producing any plasma. Resultantly, the titled processor can be operated much easily since the matching region of processor is widened to facilitate the adjustment of a stub 18 for matching operation.

Description

【発明の詳細な説明】 〔概要〕 マイクロ波導波管内を進行するマイクロ波の電場に対し
垂直方向に設けたマイクロ波透過窓を透過したマイクロ
波によりプラズマ処理するマイクロ波プラズマ処理装置
において、 マイクロ波透過窓を挟んで対向するマイクロ波導波管内
面と被処理体を載置するステージ表面との間隔を、マイ
クロ波の波長の1/2以下にすることにより、 整合領域を広げ、装置の取扱いを容易にならしめたもの
である。
[Detailed Description of the Invention] [Summary] In a microwave plasma processing apparatus that performs plasma processing using microwaves transmitted through a microwave transmission window provided in a direction perpendicular to the electric field of microwaves traveling in a microwave waveguide, By reducing the distance between the inner surface of the microwave waveguide and the stage surface on which the object to be processed is placed, which face each other across the transmission window, to less than 1/2 of the wavelength of the microwave, the matching area is expanded and the handling of the equipment is made easier. It's easy to get used to.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体装置製造のウェーハプロセスなどに使
用されるマイクロ波プラズマ処理装置に関す。
The present invention relates to a microwave plasma processing apparatus used in a wafer process for manufacturing semiconductor devices.

半導体装置製造のウェーハプロセスにおいて、パターン
の微細化に伴いドライプロセス技術が多用される傾向に
あるが、処理速度を速くすることや処理温度を低くする
ことが望まれている。
BACKGROUND ART In wafer processes for manufacturing semiconductor devices, dry process technology is increasingly being used as patterns become finer, but it is desired to increase processing speed and lower processing temperature.

その要望に応えるものとして、プラズマを利用した化学
的反応によりウェーハ表面のエツチングや膜生成を行う
マイクロ波プラズマ処理装置かあ、るが、処理速度、処
理温度などを一層向上させ然も取扱いが容易になること
が望まれている。
In order to meet this demand, microwave plasma processing equipment, which etches the wafer surface and forms films through chemical reactions using plasma, has been developed, which further improves processing speed and processing temperature, and is easy to handle. It is hoped that it will become.

〔従来の技術〕[Conventional technology]

従来のマイクロ波プラズマ処理装置は第2図の要部側断
面図に示す如くである。
A conventional microwave plasma processing apparatus is shown in a sectional side view of the main part in FIG.

即ち、中央の放電室21はマイクロ波を透過させるため
に誘電体(石英またはアルミナ)の放電管22で真空封
止され、放電室21の下方にはウェーハなどの被処理体
Aを載置するステージ23が配置され、放電室21から
被処理体Aにかけてはソレノイドコイル24と永久磁石
25によりミラー磁場が印加され、放電室21と処理室
26は真空に近い所定の圧力に排気され、反応ガスはガ
ス導入口27から導入され、マグネトロン28で発生し
て矩形導波管29および円形導波管30を通った2、4
5GHzのマイクロ波31は、放電管22の上面22a
をマイクロ波透過窓にして放電室21に導入され、放電
室21内にプラズマが発生して被処理体゛Aの処理が行
われる(例えば、菅野卓雄編著二半導体プラズマプロセ
ス技術、昭和55年、産業図書、139頁)。
That is, the central discharge chamber 21 is vacuum-sealed with a dielectric (quartz or alumina) discharge tube 22 to transmit microwaves, and the object A to be processed, such as a wafer, is placed below the discharge chamber 21. A stage 23 is arranged, a mirror magnetic field is applied from the discharge chamber 21 to the object A by a solenoid coil 24 and a permanent magnet 25, the discharge chamber 21 and the processing chamber 26 are evacuated to a predetermined pressure close to vacuum, and the reaction gas is is introduced from the gas inlet 27, generated in the magnetron 28, and passed through the rectangular waveguide 29 and the circular waveguide 30.
The 5 GHz microwave 31 is transmitted to the upper surface 22a of the discharge tube 22.
is introduced into the discharge chamber 21 by using it as a microwave transmission window, plasma is generated in the discharge chamber 21, and the object to be processed A is processed. Sangyo Tosho, p. 139).

なお図中32は、放電管22側から反射してくるマイク
ロ波を再度反射させ、マグネトロン28のばらつきや変
動などに起因する整合外れを補正するための金属棒から
なるスタブで、導波管29の中への挿入長を変化させて
上記補正を行う。
Reference numeral 32 in the figure is a stub made of a metal rod for re-reflecting the microwaves reflected from the discharge tube 22 side and correcting misalignment caused by variations and fluctuations in the magnetron 28. The above correction is performed by changing the insertion length into.

従来、真空処理室にマイクロ波を導入し、プロセスを発
生させて被処理体を処理する装置は、マイクロ波を透過
させる石英またはアルミナからなり真空処理室を真空封
止するマイクロ波透過窓を、マイクロ波の進行方向に垂
直に設ける(以下かかる方式を垂直入射方式という)の
が一般的であり、その具体例は、特公昭53−2477
9号公報、特公昭53−34461号公報、特開昭53
−110378号公報などに見られる。
Conventionally, equipment that introduces microwaves into a vacuum processing chamber to generate a process and process the object to be processed uses a microwave-transmitting window made of quartz or alumina that transmits microwaves and seals the vacuum processing chamber under vacuum. Generally, it is installed perpendicular to the direction of propagation of microwaves (hereinafter, such a method is referred to as the vertical incidence method), and a specific example thereof is given in Japanese Patent Publication No. 53-2477.
Publication No. 9, Japanese Patent Publication No. 53-34461, Japanese Unexamined Patent Publication No. 1983
This can be seen in, for example, Publication No.-110378.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した垂直入射方式の装置では、マイクロ波を真空処
理室に導入する際に、マイクロ波は、導波管側の大気と
マイクロ波透過窓との界面およびマイクロ波透過窓と真
空処理室との界面の2個所で反射する。
In the above-mentioned vertical incidence system, when microwaves are introduced into the vacuum processing chamber, the microwaves pass through the interface between the atmosphere on the waveguide side and the microwave transmission window, and the interface between the microwave transmission window and the vacuum processing chamber. It is reflected at two places on the interface.

一方、マイクロ波の反射は、誘電率の小の領域から大の
領域に進む際の反射と大の領域から小の領域に進む際の
反射との間でλ/2 (λは波長)のずれが生ずる。
On the other hand, in the reflection of microwaves, there is a difference of λ/2 (λ is the wavelength) between the reflection when the dielectric constant goes from a region with a low dielectric constant to a region with a high dielectric constant, and the reflection when it travels from a region with a high dielectric constant to a region with a low dielectric constant. occurs.

そして、真空処理室の誘電率はプラズマの有無により大
幅に変化し、導波管側、マイクロ波透過窓、真空処理室
の誘電率をそれぞれ、ε1、ε2、ε、とすると、プラ
ズマの無い場合には、ε1くε2〉ε、となり、またプ
ラズマの有る場合には、@1くε2くεコとなる。
The dielectric constant of the vacuum processing chamber changes significantly depending on the presence or absence of plasma, and if the dielectric constants of the waveguide side, microwave transmission window, and vacuum processing chamber are ε1, ε2, and ε, respectively, then when there is no plasma, , ε1 × ε2>ε, and in the case of plasma, @1 × ε2 × ε.

このため、プラズマが無い際にマイクロ波がマイクロ波
透過窓を良く透過するように、即ち、プラズマが無い際
に前記2個所で反射する反射波の位相が逆になるように
マイクロ波透過窓の厚さを設定すれば、プラズマが発生
すると上記反射波の位相が揃ってマイクロ波の透過が悪
くなると言った具合に、プラズマ有無のどちらの際にも
マイクロ波の透過を良くすることは事実上不可能であり
、スタブを如何様に調整してもプラズマ発生に対するマ
イクリ波の利用効率が悪い問題がある。
For this reason, the microwave transmission window is designed so that the microwave can pass through the microwave transmission window well when there is no plasma, that is, when there is no plasma, the phases of the reflected waves reflected at the two points are opposite. In fact, if the thickness is set, when plasma is generated, the reflected waves are aligned in phase and the transmission of microwaves becomes poor.In fact, it is possible to improve the transmission of microwaves in both the presence and absence of plasma. This is impossible, and no matter how you adjust the stub, there is a problem that the efficiency of using microwaves for plasma generation is poor.

更に、プラズマが発生しているとき、マイクロ波はマイ
クロ波透過窓から真空処理室の内部に向けて急速に減衰
し、それに伴いプラズマの密度も低下する。
Furthermore, when plasma is being generated, microwaves rapidly attenuate from the microwave transmission window toward the inside of the vacuum processing chamber, and the density of the plasma decreases accordingly.

そこで、処理速度を速くするためプラズマ密度の高い処
を狙って、被処理体をマイクロ波透過窓の近くに配置す
ると、被処理体や被処理体を載置するステージが導電性
のものである場合、これらの面が電場のフシ(電場が最
小)になり、マイクロ波透過窓からの距離によっては有
効にプラズマを発生させることが難しくなる。
Therefore, in order to increase the processing speed, if you aim for a place with high plasma density and place the object to be processed near the microwave transmission window, the object to be processed and the stage on which it is placed will be conductive. In this case, these surfaces become the edges of the electric field (where the electric field is minimum), making it difficult to generate plasma effectively depending on the distance from the microwave transmission window.

このため、従来の垂直入射方式においては、マイクロ波
透過窓とステージとの間の距m <i>を例えばλ/4
以上と言ったように大きくする必要があるが、こうする
とステージ近傍のプラズマ密度が低くなって処理速度が
遅くなる問題がある。
Therefore, in the conventional vertical incidence method, the distance m <i> between the microwave transmission window and the stage is set to, for example, λ/4
As mentioned above, it is necessary to increase the size, but if this is done, there is a problem that the plasma density near the stage becomes low and the processing speed becomes slow.

具体的には、酸素ラジカルによるレジストの沃化に際し
て、4 Torrではlが2CII+以上の場合、また
、I Torrではlが4cm以上の場合には灰化が一
応出来るものの速度が遅い。
Specifically, when the resist is iodized by oxygen radicals, ashing is possible at 4 Torr when 1 is 2CII+ or more, and at I Torr when 1 is 4 cm or more, but the speed is slow.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明によるマイクロ波プラズマ処理装置の実
施例の要部側断面図である。
FIG. 1 is a sectional side view of a main part of an embodiment of a microwave plasma processing apparatus according to the present invention.

上記問題点は、第1図に示すように、マイクロ波12の
電場に垂直方向に設けたマイクロ波透過窓13を有する
マイクロ波導波管11とマイクロ波透過窓13によって
真空封止される真空処理室14とからなり、真空処理室
14にはマイクロ波透過窓13に対向し被処理体Aを載
置するステージ15と排気口16およびガス導入口17
が設けられ、マイクロ波透過窓13を挟んで対向するマ
イクロ波導波管ll内面とステージ15表面との間隔a
が、マイクロ波12の波長の1/2以下である本発明の
マイクロ波プラズマ処理装置によって解決される。
As shown in FIG. 1, the above problem is caused by vacuum processing in which a microwave waveguide 11 having a microwave transmission window 13 provided perpendicularly to the electric field of the microwave 12 and vacuum sealing by the microwave transmission window 13 are used. The vacuum processing chamber 14 includes a stage 15 on which the object to be processed A is placed facing the microwave transmission window 13, an exhaust port 16, and a gas inlet 17.
is provided, and the distance a between the inner surface of the microwave waveguide ll and the surface of the stage 15, which face each other with the microwave transmission window 13 in between, is
This can be solved by the microwave plasma processing apparatus of the present invention whose wavelength is 1/2 or less of the wavelength of the microwave 12.

〔作用〕[Effect]

上記マイクロ波プラズマ処理装置の主体は本願の発明者
が先に特願昭59−252909号にて開示したもので
、マイクロ波12の電場に垂直方向にマイクロ波透過窓
13を設けることにより、マイクロ波12のモードを乱
すことなく真空処理室14にマイクロ波12を導入して
、効率良くプラズマを発生させると共にそのプラズマを
被処理体Aの処理に寄与させることが出来、然も装置の
大きさが従来より小型になる特徴を有する。
The main body of the above-mentioned microwave plasma processing apparatus was previously disclosed in Japanese Patent Application No. 59-252909 by the inventor of the present application, and by providing a microwave transmission window 13 in a direction perpendicular to the electric field of the microwave 12, The microwave 12 can be introduced into the vacuum processing chamber 14 without disturbing the mode of the wave 12, and plasma can be efficiently generated and the plasma can contribute to the processing of the object to be processed A. It has the feature that it is smaller than before.

本発明は、この装置にマイクロ波透過窓13を挟んで対
向するマイクロ波導波管ll内面とステージ15表面と
の間隔aに関する要件を付加したものである。
The present invention adds requirements regarding the distance a between the inner surface of the microwave waveguide 11 and the surface of the stage 15, which face each other with the microwave transmission window 13 in between.

マイクロ波導波管ll内のマイクロ波12には、マイク
ロ波透過窓13に対し平行な成分と垂直な成分がある。
The microwave 12 in the microwave waveguide 11 has a component parallel to the microwave transmission window 13 and a component perpendicular to the microwave transmission window 13.

プラズマ発生の前後において、上記平行成分はモードに
変化を来さないが、上記垂直成分はプラズマ発生領域の
状態変化の影響を受けてモードに変化が生ずる。
Before and after plasma generation, the parallel component does not change in mode, but the vertical component changes in mode due to the influence of changes in the state of the plasma generation region.

そこで、マイクロ波透過窓13を挟んで対向するマイク
ロ波導波管ll内面とステージ15表面との間隔aをマ
イクロ波120波長の1/2以下にすれば、その領域に
は上記垂直成分が殆どなくなり、マイクロ波12のモー
ド全体がプラズマ発生の前後に渡って極めて安定する。
Therefore, if the distance a between the inner surface of the microwave waveguide II and the surface of the stage 15, which face each other with the microwave transmission window 13 in between, is set to 1/2 or less of the wavelength of the microwave 120, the above-mentioned vertical component will almost disappear in that region. , the entire mode of the microwave 12 is extremely stable before and after plasma generation.

そしてこのことは、装置の整合領域を広くして、整合を
とるためのスタブ18の調整を容易にさせるなど、装置
の取扱いを容易にさせる。
This in turn makes the device easier to handle, such as by increasing the alignment area of the device and making it easier to adjust the stub 18 for alignment.

〔実施例〕〔Example〕

第1図に示す実施例において、2.45GHzのマイク
ロ波12を用い、マイクロ波導波管11の土壁内面とス
テージ15の表面との間隔aを4抛m、マイクロ波透過
窓13の下面とステージ15の表面との間隔すを31M
II+に設定し、真空処理室14内に酸素を300cc
Z分で導入、0.3 Torrの真空度にして、1.5
KHのパワーで被処理体Aなるウェーハ上のレジストを
灰化したところ、スタブ18の調整位置が約10ml1
1の範囲に渡って、従来例より5倍程度のエツチングレ
ートで灰化することが出来、然もレジストに変質層が含
まれていても奇麗に除去することが出来た。
In the embodiment shown in FIG. 1, the microwave 12 of 2.45 GHz is used, the distance a between the inner surface of the earthen wall of the microwave waveguide 11 and the surface of the stage 15 is 4 mm, and the lower surface of the microwave transmission window 13 is The distance from the surface of stage 15 is 31M.
II+, and 300cc of oxygen is added to the vacuum processing chamber 14.
Introduced at Z minutes, set the vacuum to 0.3 Torr, and set the vacuum to 1.5
When the resist on the wafer, which is the object to be processed A, was ashed using the power of the KH, the adjustment position of the stub 18 was approximately 10ml1.
1, it was possible to ash at an etching rate about 5 times that of the conventional example, and even if the resist contained a degraded layer, it could be removed cleanly.

またこの際、本装置で可能になったステージ15の冷却
を行ったところ、被処理体Aの温度は100℃以下にな
り、通常のプラズマ処理の場合200℃以上であるのに
比較して一層低温での処理が可能であった。
At this time, when the stage 15 was cooled, which was made possible by this apparatus, the temperature of the object A to be processed was 100°C or less, which was much higher than the 200°C or higher in normal plasma processing. Processing at low temperatures was possible.

なお、間隔aを80+nmに設定した場合には、上記と
同様な灰化を得るためのスタブ18の調整位置範囲は約
5Ill+であった。
Note that when the spacing a was set to 80+nm, the adjustment position range of the stub 18 to obtain the same ashing as above was about 5Ill+.

このことと比較すると、間隔aをマイクロ波12の波長
の1/2以下にすることば、スタブ18の調整を容易に
させている。
Compared to this, setting the interval a to 1/2 or less of the wavelength of the microwave 12 facilitates adjustment of the stub 18.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の構成によれば、マイクロ
波に対して効率良く然も取扱いが容易で、且つ被処理体
を低温で処理することが出来る小型のマイクロ波プラズ
マ処理装置が提供出来て、処理品質および処理速度′の
向上を可能にさせる効果がある。
As explained above, according to the configuration of the present invention, it is possible to provide a small-sized microwave plasma processing apparatus that is efficient with microwaves, easy to handle, and can process objects to be processed at low temperatures. This has the effect of making it possible to improve processing quality and processing speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるマイクロ波プラズマ処理装置の実
施例の要部側断面図、 第2図は従来のマイクロ波プラズマ処理装置の要部側断
面図、である。 図において、 11.29.30はマイクロ波導波管、12.31はマ
イクロ波、 13.22aはマイクロ波透過窓、 14.26は真空処理室、 151.23はステージ、 16は排気口、 17.27はガス導入口、 18.32はスタブ、 Aは被処理体、である。 4引(q)@*kMI ch (!ツmiテC≧1$1
図 従来伊10使1M、f71U $2Z
FIG. 1 is a sectional side view of a main part of an embodiment of a microwave plasma processing apparatus according to the present invention, and FIG. 2 is a side sectional view of a main part of a conventional microwave plasma processing apparatus. In the figure, 11.29.30 is a microwave waveguide, 12.31 is a microwave, 13.22a is a microwave transmission window, 14.26 is a vacuum processing chamber, 151.23 is a stage, 16 is an exhaust port, 17 .27 is the gas inlet, 18.32 is the stub, and A is the object to be processed. 4 draws (q) @*kMI ch (!TsumiteC≧1$1
Figure Conventional Italian 10th Envoy 1M, f71U $2Z

Claims (1)

【特許請求の範囲】 マイクロ波(12)の電場に垂直方向に設けたマイクロ
波透過窓(13)を有するマイクロ波導波管(11)と
該マイクロ波透過窓(13)によって真空封止される真
空処理室(14)とからなり、 該真空処理室(14)には該マイクロ波透過窓(13)
に対向し被処理体(A)を載置するステージ(15)と
排気口(16)およびガス導入口(17)が設けられ、
該マイクロ波透過窓(13)を挟んで対向する該マイク
ロ波導波管(11)内面と該ステージ(15)表面との
間隔(a)が、該マイクロ波(12)の波長の1/2以
下であることを特徴とするマイクロ波プラズマ処理装置
[Claims] A microwave waveguide (11) having a microwave transmission window (13) provided perpendicular to the electric field of the microwave (12) and vacuum sealed by the microwave transmission window (13). It consists of a vacuum processing chamber (14), and the vacuum processing chamber (14) has a microwave transmitting window (13).
A stage (15) on which the object to be processed (A) is placed facing the stage (15), an exhaust port (16), and a gas inlet port (17) are provided,
The distance (a) between the inner surface of the microwave waveguide (11) and the surface of the stage (15), which face each other with the microwave transmission window (13) in between, is 1/2 or less of the wavelength of the microwave (12). A microwave plasma processing apparatus characterized by:
JP60100696A 1985-05-13 1985-05-13 Microwave plasma processing equipment Expired - Fee Related JPH0614521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60100696A JPH0614521B2 (en) 1985-05-13 1985-05-13 Microwave plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60100696A JPH0614521B2 (en) 1985-05-13 1985-05-13 Microwave plasma processing equipment

Publications (2)

Publication Number Publication Date
JPS61258428A true JPS61258428A (en) 1986-11-15
JPH0614521B2 JPH0614521B2 (en) 1994-02-23

Family

ID=14280887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60100696A Expired - Fee Related JPH0614521B2 (en) 1985-05-13 1985-05-13 Microwave plasma processing equipment

Country Status (1)

Country Link
JP (1) JPH0614521B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9093874B2 (en) 2004-10-25 2015-07-28 Novatorque, Inc. Sculpted field pole members and methods of forming the same for electrodynamic machines

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053732A (en) * 1991-06-28 1993-01-14 Kubota Corp Capillary apparatus for water culture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053732A (en) * 1991-06-28 1993-01-14 Kubota Corp Capillary apparatus for water culture

Also Published As

Publication number Publication date
JPH0614521B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
JPH0521335B2 (en)
US5364519A (en) Microwave plasma processing process and apparatus
JPS61131454A (en) Microwave plasma process and device therefor
JPH01184923A (en) Plasma processor optimum for etching, ashing, film formation and the like
JPS61258428A (en) Microwave plasma processor
JPS61222131A (en) Microwave plasma treater
JP2808888B2 (en) Microwave plasma device
JPS5941838A (en) Microwave plasma device
JPH0281434A (en) Plasma treatment apparatus
JPS6390132A (en) Surface-treatment apparatus
JPH0247851B2 (en)
JPH0414822A (en) Microwave plasma etching method
JPH053734B2 (en)
JP2565740B2 (en) Plasma etching method
JP2800766B2 (en) Plasma processing method and apparatus
JPH1131686A (en) Method and device for plasma treatment
JPH02139900A (en) Plasma device
JP2836329B2 (en) Plasma apparatus and plasma processing method
JPS63236327A (en) Plasma treatment apparatus
JPH07122141B2 (en) Microwave plasma CVD device
JP2990838B2 (en) Dry etching equipment
JP2738810B2 (en) Plasma processing equipment
JPS62177189A (en) Method for local reforming of solid surface by plasma
JPS62222639A (en) Microwave plasma processing method
JPS63288022A (en) Microwave plasma processor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees